JP2004140397A - Piezoelectric/electrostrictive film element - Google Patents

Piezoelectric/electrostrictive film element Download PDF

Info

Publication number
JP2004140397A
JP2004140397A JP2003420036A JP2003420036A JP2004140397A JP 2004140397 A JP2004140397 A JP 2004140397A JP 2003420036 A JP2003420036 A JP 2003420036A JP 2003420036 A JP2003420036 A JP 2003420036A JP 2004140397 A JP2004140397 A JP 2004140397A
Authority
JP
Japan
Prior art keywords
piezoelectric
electrostrictive
film
electrode film
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003420036A
Other languages
Japanese (ja)
Inventor
Yukihisa Takeuchi
武内 幸久
Koji Kimura
木村 浩二
Mitsuru Kurashina
倉品 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003420036A priority Critical patent/JP2004140397A/en
Publication of JP2004140397A publication Critical patent/JP2004140397A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • B41J2002/1425Embedded thin film piezoelectric element

Abstract

<P>PROBLEM TO BE SOLVED: To realize a stable piezoelectric/electrostrictive film element in which the displacement, the force, or the like to the direction opposite to a cavity can be stably obtained, and the displacement and an increment in the volume of the cavity generated are almost unchanged even when the formed position of the piezoelectric/electrostrictive operating part is misaligned. <P>SOLUTION: The piezoelectric/electrostrictive film element comprises a lower-electrode-film non-forming region on the outer surface of a thin-walled portion (5a) on the cavity (5b) formed in a ceramic substrate (5), a lower electrode film formed in a specified area that surrounds the lower-electrode-film non-forming region, and a piezoelectric/electrostrictive film and an upper electrode film sequentially stacked on the lower piezoelectric/electrostrictive film, wherein all the circumference of the lower-electrode-film non-forming region is surrounded by the lower electrode film. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、フィルター、加速度センサや衝撃センサ等の各種センサ、トランス、マイクロホン、発音体(スピーカ等)、動力用や通信用の振動子や発振子の他、ディスプレイや刊行物「圧電/電歪アクチュエータ基礎から応用まで」(森北出版発行、内野研二著、日本工業技術センター編)に記載のリレー、サーボ変位素子等に用いられるユニモルフ型の屈曲変位を発生させるタイプのアクチュエータ等、電気エネルギーを機械エネルギーに変換、即ち機械的な変位又は応力又は振動に変換を行う、並びにその逆の変換を行う圧電/電歪膜型素子に関するものである。 The present invention relates to various sensors such as a filter, an acceleration sensor and an impact sensor, a transformer, a microphone, a sounding body (such as a speaker), a vibrator and an oscillator for power and communication, a display and a publication “piezoelectric / electrostrictive”. Electric actuators such as unimorph type actuators that generate bending displacement used in relays and servo displacement elements described in "From Actuator Basics to Applications" (published by Morikita Publishing, Kenji Uchino, edited by Japan Industrial Technology Center) The present invention relates to a piezoelectric / electrostrictive film type element that converts energy, that is, converts mechanical displacement or stress or vibration, and vice versa.

 近年、光学や精密加工等の分野においてサブミクロンのオーダーで光路長や位置を調整する変位素子や微小変位を電気的変化として検知する検出素子が所望されるようになってきており、これに応えるものとして強誘電体等の圧電/電歪材料に電界を加えた時に起こる逆圧電効果や電歪効果に基づく変位或はその逆の現象を利用したアクチュエータやセンサの開発が進められている。 In recent years, in fields such as optics and precision processing, a displacement element for adjusting an optical path length and a position on the order of submicrons and a detection element for detecting a minute displacement as an electrical change have been desired. As a matter of course, development of actuators and sensors utilizing displacement caused by an inverse piezoelectric effect or an electrostrictive effect which occurs when an electric field is applied to a piezoelectric / electrostrictive material such as a ferroelectric material or a reverse phenomenon has been advanced.

 そのような分野の中で、アクチュエータ等においては、安価で小型化、低電圧作動化、高速応答化を安定して実現することができるよう開発が進められている。 In such a field, the development of actuators and the like is being promoted so that they can be stably realized at low cost, downsizing, low-voltage operation, and high-speed response.

 図15に本願発明者が先に提案した圧電/電歪膜型素子を示す。素子(20)は、セラミック基板(5) に形成されたキャビティ(5b)の薄肉部(5a)上に下部電極膜(21a) 及び圧電/電歪膜(21b) 及び上部電極膜(21c) を順次積層形成した圧電/電歪作動部(21)を設けて成る。ここで、(21b) の材料に圧電材料を用いた場合、上部電極膜(21c) 及び下部電極膜(21a) に、圧電膜の分極処理時の印加電圧と正負が同じとなるように電圧を印加すると、電界誘起歪の横効果によって(21b) がキャビティ(5b)側へ屈曲変位する。又、(21b) の材料として電歪材料を用いた場合は、上部電極膜(21c) と下部電極膜(21a) に電圧を印加すれば、その極性に関係なく、(21b) は図15(b) に示すようにキャビティ(5b)側へ屈曲変位する。 FIG. 15 shows the piezoelectric / electrostrictive film type element proposed by the present inventor earlier. The element (20) has a lower electrode film (21a), a piezoelectric / electrostrictive film (21b) and an upper electrode film (21c) on a thin portion (5a) of a cavity (5b) formed in a ceramic substrate (5). It comprises a piezoelectric / electrostrictive operating part (21) which is sequentially formed. Here, when a piezoelectric material is used as the material of (21b), a voltage is applied to the upper electrode film (21c) and the lower electrode film (21a) so that the applied voltage at the time of polarization processing of the piezoelectric film is the same as that of the piezoelectric film. When the voltage is applied, (21b) is bent and displaced toward the cavity (5b) due to the transverse effect of the electric field induced strain. Further, when an electrostrictive material is used as the material of (21b), if a voltage is applied to the upper electrode film (21c) and the lower electrode film (21a), (21b) is shown in FIG. As shown in b), it is bent toward the cavity (5b).

 ところで、前記素子(20)をリレー等の用途として用い、素子(20)を上部電極膜(21c) 上に設けられた接点(22)の方向、即ちキャビティ(5b)とは反対の方向に変位させようとした場合、(21b) に圧電膜を用いると、分極処理の極性とは逆の極性で上部電極膜(21c) 、下部電極膜(21a) 間に電圧を印加することとなる。しかしこの場合、分極反転が起こる抗電界よりも小さい電位に限られるため、十分な変位を得ることができない他、変位自体が不安定であった。一方、(21b) に電歪膜を用いると、分極処理をして分極方向を設定することができないので、印加電圧の極性を変更しても変位方向はキャビティ(5b)の方向であり、反対の方向に変位させることができない。即ち、電界誘起歪の横効果を用いるタイプでは、安定して大きな変位を上方に得ることができない。
 又、キャビティ側へ変位した薄肉部の、元の位置に戻る時の反動を利用して逆方向に変位させることも可能であるが、この場合には変位量と変位速度等を任意に得ることが困難である。更に、図15の素子では、薄肉部外表面上に圧電/電歪作動部(21)が形成されているが、これを薄肉部内表面上に形成することにより、素子の上方への変位が可能となるが、キャビティ構造の場合、その薄肉部内表面上に圧電/電歪作動部を形成することは容易ではなく、製造上問題がある。このようにキャビティ構造であるが故に変位方向を上方にするには大きな制約がある。
By the way, using the element (20) as a relay or the like, the element (20) is displaced in the direction of the contact (22) provided on the upper electrode film (21c), that is, in the direction opposite to the cavity (5b). In this case, if a piezoelectric film is used for (21b), a voltage is applied between the upper electrode film (21c) and the lower electrode film (21a) with a polarity opposite to the polarity of the polarization processing. However, in this case, since the potential is limited to a potential smaller than the coercive electric field at which the polarization inversion occurs, a sufficient displacement cannot be obtained, and the displacement itself is unstable. On the other hand, if an electrostrictive film is used for (21b), the polarization direction cannot be set by performing a polarization process, so that even if the polarity of the applied voltage is changed, the displacement direction is the direction of the cavity (5b), Cannot be displaced in the direction of. That is, in the type using the lateral effect of the electric field induced strain, a large displacement cannot be stably obtained upward.
It is also possible to displace the thin portion displaced toward the cavity in the opposite direction by using the recoil when returning to the original position, but in this case, the displacement amount and displacement speed can be obtained arbitrarily. Is difficult. Further, in the device of FIG. 15, the piezoelectric / electrostrictive operating portion (21) is formed on the outer surface of the thin portion. By forming this on the inner surface of the thin portion, the device can be displaced upward. However, in the case of the cavity structure, it is not easy to form the piezoelectric / electrostrictive operating portion on the inner surface of the thin portion, and there is a problem in manufacturing. Because of the cavity structure as described above, there is a large restriction in raising the displacement direction.

 そして更に、前記従来構造の素子は、その製造過程のばらつきにより図16(a) に示すように圧電/電歪作動部(21)が薄肉部(5a)の中心からずれて形成される場合がある。この場合、素子の変位量は同図(b) に示すようにセラミック基板の厚肉部に近い部分程、厚肉部の高い基板剛性による影響を受けるため小さくなる。従って、このような素子は、前記作動手段を用いても本来の変位量を得ることができない。 Further, in the element having the conventional structure, the piezoelectric / electrostrictive operating portion (21) may be formed off the center of the thin portion (5a) as shown in FIG. is there. In this case, the displacement amount of the element becomes smaller as the thickness of the ceramic substrate is closer to the thick portion as shown in FIG. Therefore, such an element cannot obtain the original displacement amount even by using the actuation means.

 故に本発明の目的は、例えばリレー等に用いるアクチュエータにおいて、リレーの接点方向、即ちキャビティとは反対方向への変位、力等を安定して得ることのできる素子を実現することにある。又、セラミック基板の薄肉部への圧電/電歪作動部の形成位置が中央から若干ずれた場合でも、そのずれとは無関係に、発生する変位及びキャビティ内の増加する体積が、殆ど変化しない安定した素子を実現することにもある。 Therefore, an object of the present invention is to realize an element that can stably obtain displacement, force, and the like in a contact direction of a relay, that is, in a direction opposite to a cavity in an actuator used for a relay or the like. Also, even when the formation position of the piezoelectric / electrostrictive operation portion on the thin portion of the ceramic substrate slightly deviates from the center, regardless of the deviation, the generated displacement and the increased volume in the cavity are stable with little change. It is also possible to realize a device that has been implemented.

 前記目的を達成するための本発明の構成とは、セラミック基板に形成されたキャビティ上の薄肉部外表面上に、非圧電/電歪作動部を設け、その非圧電/電歪作動部の周囲の所定範囲に圧電/電歪作動部を形成して成ることにある。 The configuration of the present invention for achieving the above object is to provide a non-piezoelectric / electrostrictive operating portion on the outer surface of a thin portion on a cavity formed in a ceramic substrate, In which a piezoelectric / electrostrictive operating portion is formed in a predetermined range.

 具体的には、前記非圧電/電歪作動部が少なくとも二箇所以上の圧電/電歪作動部により挾まれて成る構成である。 Specifically, the non-piezoelectric / electrostrictive operating portion is sandwiched by at least two or more piezoelectric / electrostrictive operating portions.

 又、前記非圧電/電歪作動部の全周を圧電/電歪作動部により囲んで成る構成でもよい。 Also, a configuration may be adopted in which the entire periphery of the non-piezoelectric / electrostrictive operating section is surrounded by a piezoelectric / electrostrictive operating section.

 そして、前記目的を達成するための本発明の別の構成とは、セラミック基板に形成されたキャビティ上の薄肉部外表面上に、下部電極膜非形成部を設け、その下部電極膜非形成部の周囲の所定範囲に下部電極膜を設け、その下部電極膜上に圧電/電歪膜及び上部電極膜を順次積層形成して成ることにある。 Another aspect of the present invention for achieving the object is that a lower electrode film non-forming portion is provided on a thin portion outer surface on a cavity formed in a ceramic substrate, and the lower electrode film non-forming portion is provided. , A lower electrode film is provided in a predetermined area around the lower electrode film, and a piezoelectric / electrostrictive film and an upper electrode film are sequentially formed on the lower electrode film.

 具体的には、前記下部電極膜非形成部が少なくとも二箇所以上の下部電極膜により挾まれて成る構成である。 Specifically, the lower electrode film non-forming portion is sandwiched by at least two or more lower electrode films.

 又、前記下部電極膜非形成部の全周を下部電極膜により囲んで成る構成でもよい。 Further, a configuration in which the entire periphery of the lower electrode film non-formed portion is surrounded by the lower electrode film may be adopted.

 尚、本発明の効果をより一層高めるためには前記下部電極膜及び圧電/電歪膜及び上部電極膜で構成される部分(以下、圧電/電歪作動部と略称する)の端部をセラミック基板の厚肉部外表面上にかかるように設けることが望ましい。 In order to further enhance the effect of the present invention, the end of a portion composed of the lower electrode film, the piezoelectric / electrostrictive film, and the upper electrode film (hereinafter abbreviated as a piezoelectric / electrostrictive operating portion) is formed of ceramic. It is desirable to provide so as to cover the outer surface of the thick part of the substrate.

 又、前記セラミック基板が、完全安定化若しくは部分安定化された酸化ジルコニウムを主成分とする材料で構成されていることが望ましい。 It is preferable that the ceramic substrate is made of a completely stabilized or partially stabilized material mainly composed of zirconium oxide.

 更に、前記圧電/電歪膜がマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料、若しくはニッケルニオブ酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料、若しくはニッケルタンタル酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料、若しくはマグネシウムタンタル酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料で構成されていることが望ましい。 Further, the piezoelectric / electrostrictive film may be made of a material mainly containing a component composed of lead magnesium niobate, lead zirconate, and lead titanate, or a material composed of lead nickel niobate, lead magnesium niobate, lead zirconate, and lead titanate. Or a material mainly composed of lead nickel tantalate and lead magnesium niobate and lead zirconate and lead titanate; or a material mainly composed of lead magnesium tantalate and lead magnesium niobate and zirconate It is desirable to be made of a material mainly containing a component composed of lead and lead titanate.

 そして更に、前記キャビティ上の薄肉部の肉厚が50μm以下であることが望ましい。 更 に Further, it is desirable that the thin portion on the cavity has a thickness of 50 μm or less.

[作用] 
 非圧電/電歪作動部の周囲の所定範囲に設けられた圧電/電歪作動部の上部電極膜及び下部電極膜に電圧を印加すると圧電/電歪膜に電界誘起歪が発生し、その横効果により圧電/電歪作動部が下方向(キャビティ方向)へ屈曲変位しようとする。
 しかし、セラミック基板の薄肉部両側の厚肉部付近の各圧電/電歪作動部の端部は、厚肉部によって下方向への屈曲変位が阻止される。従って、圧電/電歪作動部は、圧電/電歪膜の厚肉部付近を支点として薄肉部側の端部が上方(キャビティと反対方向)へ持ち上げられる。即ち、素子全体として上方に変位する。
[Action]
When a voltage is applied to the upper electrode film and the lower electrode film of the piezoelectric / electrostrictive operating portion provided in a predetermined range around the non-piezoelectric / electrostrictive operating portion, an electric field-induced strain is generated in the piezoelectric / electrostrictive film, and the electric field-induced strain is generated. Due to the effect, the piezoelectric / electrostrictive operating portion is bent downward (toward the cavity).
However, bending ends of the piezoelectric / electrostrictive operating portions near the thick portions on both sides of the thin portion of the ceramic substrate are prevented from bending downward by the thick portions. Therefore, in the piezoelectric / electrostrictive operating portion, the end on the thin portion side is lifted upward (in the direction opposite to the cavity) with the vicinity of the thick portion of the piezoelectric / electrostrictive film as a fulcrum. That is, the element as a whole is displaced upward.

 前記非圧電/電歪作動部が少なくとも二箇所以上の圧電/電歪作動部により挾まれて成る構成では、各圧電/電歪作動部の上部電極膜及び下部電極膜に電圧を印加することにより、各圧電/電歪作動部は、圧電/電歪膜の厚肉部付近を支点として薄肉部側の端部が上方(キャビティと反対方向)へ持ち上げられる。即ち、素子全体として上方に変位する。 In the configuration in which the non-piezoelectric / electrostrictive operating portion is sandwiched by at least two or more piezoelectric / electrostrictive operating portions, a voltage is applied to the upper electrode film and the lower electrode film of each piezoelectric / electrostrictive operating portion. In each of the piezoelectric / electrostrictive operating portions, the end on the thin portion side is lifted upward (in the direction opposite to the cavity) with the vicinity of the thick portion of the piezoelectric / electrostrictive film as a fulcrum. That is, the element as a whole is displaced upward.

 又、前記非圧電/電歪作動部の全周を圧電/電歪作動部により囲んで成る構成でも、圧電/電歪作動部の上部電極膜及び下部電極膜に電圧を印加することにより、圧電/電歪作動部は、圧電/電歪膜の厚肉部付近を支点として薄肉部側の端部が上方(キャビティと反対方向)へ持ち上げられる。即ち、素子全体として上方に変位する。 Further, even in a configuration in which the entire periphery of the non-piezoelectric / electrostrictive operating section is surrounded by the piezoelectric / electrostrictive operating section, by applying a voltage to the upper electrode film and the lower electrode film of the piezoelectric / electrostrictive operating section, The / electrostrictive operating portion is lifted upward (in the direction opposite to the cavity) on the thin portion side with the vicinity of the thick portion of the piezoelectric / electrostrictive film as a fulcrum. That is, the element as a whole is displaced upward.

 そして、セラミック基板に形成されたキャビティ上の薄肉部外表面上に下部電極膜非形成部を設け、その下部電極膜非形成部周囲の所定範囲に下部電極膜を設け、その下部電極膜上に圧電/電歪膜及び上部電極膜を順次積層形成して成る構成においては、上部電極膜及び下部電極膜に電圧を印加することにより、下部電極膜を設けたセラミック基板上の圧電/電歪作動部が圧電/電歪膜の厚肉部付近を支点として、薄肉部側の端部が上方(キャビティと反対方向)へ持ち上げられる。即ち、素子全体として上方に変位する。 Then, a lower electrode film non-formed portion is provided on the thin portion outer surface on the cavity formed in the ceramic substrate, a lower electrode film is provided in a predetermined range around the lower electrode film non-formed portion, and the lower electrode film is formed on the lower electrode film. In a configuration in which a piezoelectric / electrostrictive film and an upper electrode film are sequentially laminated, a voltage is applied to the upper electrode film and the lower electrode film, so that the piezoelectric / electrostrictive operation on the ceramic substrate provided with the lower electrode film is performed. The portion is lifted upward (in the direction opposite to the cavity) on the thin portion side with the vicinity of the thick portion of the piezoelectric / electrostrictive film as a fulcrum. That is, the element as a whole is displaced upward.

 前記下部電極膜非形成部が少なくとも二箇所以上の下部電極膜により挾まれて成る構成では、上部電極膜及び下部電極膜に電圧を印加することにより、各下部電極膜を設けたセラミック基板上の圧電/電歪作動部が、それぞれ圧電/電歪膜の厚肉部付近を支点として、薄肉部側の端部が上方(キャビティと反対方向)へ持ち上げられる。即ち、素子全体として上方に変位する。 In a configuration in which the lower electrode film non-formed portion is sandwiched by at least two or more lower electrode films, a voltage is applied to the upper electrode film and the lower electrode film to form the lower electrode film on the ceramic substrate provided with each lower electrode film. The piezoelectric / electrostrictive operating portion is lifted upward (in the direction opposite to the cavity) on the thin portion side with the vicinity of the thick portion of the piezoelectric / electrostrictive film as a fulcrum. That is, the element as a whole is displaced upward.

 又、前記下部電極膜非形成部の全周を下部電極膜により囲んで成る構成でも、上部電極膜及び下部電極膜に電圧を印加することにより、下部電極膜を設けたセラミック基板上の圧電/電歪作動部が圧電/電歪膜の厚肉部付近を支点として、薄肉部側の端部が上方(キャビティと反対方向)へ持ち上げられる。即ち、素子全体として上方に変位する。 Further, even in a configuration in which the entire periphery of the lower electrode film non-formed portion is surrounded by a lower electrode film, a voltage is applied to the upper electrode film and the lower electrode film to form a piezoelectric / electrode on the ceramic substrate provided with the lower electrode film. The electrostriction actuating portion is lifted upward (in the direction opposite to the cavity) at the thin portion side end with the vicinity of the thick portion of the piezoelectric / electrostrictive film as a fulcrum. That is, the element as a whole is displaced upward.

 尚、圧電/電歪とは、圧電又は電歪両者の何れかを選択し得ることを意味し、圧電/電歪膜と称した場合は圧電膜又は電歪膜を、圧電/電歪作動部と称した場合は圧電作動部又は電歪作動部を意味するものとする。 Incidentally, the term “piezoelectric / electrostrictive” means that either piezoelectric or electrostrictive can be selected. When called “piezoelectric / electrostrictive film”, the piezoelectric film or the electrostrictive film is used as a piezoelectric / electrostrictive operating section. When it is referred to, it means a piezoelectric actuator or an electrostrictive actuator.

 本発明によれば、上下電極膜間に圧電膜層の分極処理時の印加電圧と正負が同じになるように電圧を印加した時にセラミック基板に形成されたキャビティ上の薄肉部をキャビティの開口部と反対方向へ湾曲させ、キャビティ内の体積を増加することができる(キャビティ内に負圧を発生させることができる)。而も圧電膜の分極特性を損なわないため素子が本来有する特性を減殺してしまうことがない。又、電歪膜を用いた場合には、印加電圧の極性に関係なく薄肉部をキャビティの開口部と反対方向へ湾曲させることができる。更に圧電/電歪作動部の形成位置がずれても、ずれない場合と略同等の変位量を得ることができるため、素子製造上の歩留向上を図ることができる。 According to the present invention, when a voltage is applied between the upper and lower electrode films so that the applied voltage is the same as the applied voltage during the polarization processing of the piezoelectric film layer, the thin portion on the cavity formed on the ceramic substrate when the voltage is applied is changed to the opening of the cavity. In the opposite direction to increase the volume in the cavity (a negative pressure can be generated in the cavity). In addition, since the polarization characteristics of the piezoelectric film are not impaired, the characteristics inherent to the element are not reduced. When an electrostrictive film is used, the thin portion can be curved in a direction opposite to the opening of the cavity regardless of the polarity of the applied voltage. Furthermore, even if the formation position of the piezoelectric / electrostrictive operation portion is shifted, a displacement amount substantially equal to that when there is no shift can be obtained, so that the yield in element manufacturing can be improved.

 以下、本発明の素子について図面を参照しながら詳細に説明する。尚、理解を容易にするため、各図面を通して同様の構造や機能を有するものには同一の符号を付すものとする。 Hereinafter, the device of the present invention will be described in detail with reference to the drawings. To facilitate understanding, the same reference numerals are given to components having the same structure and function throughout the drawings.

 図1は本発明の素子の一実施例を示す断面説明図、図2(a) は複数のキャビティを有するセラミック基板上の各キャビティに圧電/電歪作動部を形成した素子の外観斜視図、同図(b) はそのA−A断面説明図をそれぞれ示す。(1) は素子、(2) 及び(3) は圧電/電歪作動部をそれぞれ示す。圧電/電歪作動部(2) はキャビティ(5b)を有するセラミック基板(5) の薄肉部(5a)上に膜形成された下部電極膜(2a)上に圧電/電歪膜(2b)及び上部電極膜(2c)を順次積層形成することにより一体形成され、圧電/電歪作動部(3) も同様に下部電極膜(3a)上に圧電/電歪膜(3b)及び上部電極膜(3c)を順次積層形成することにより一体形成される。各圧電/電歪作動部はそれぞれの一端をセラミック基板(5) の厚肉部(5c)の外表面上にかかるように薄肉部(5a)上に設けられ、各下部電極膜(2a),(3a)は相互間に適宜間隔を保って設けられている。(4) は両圧電/電歪作動部(2) ,(3)と上部電極膜(2c),(3c)間に絶縁性、信頼性の向上を目的として形成された樹脂層であり、圧電/電歪作動部(2) と(3) に挾まれた部分の(8) が非圧電/電歪作動部である。 FIG. 1 is an explanatory cross-sectional view showing one embodiment of the device of the present invention. FIG. 2 (a) is an external perspective view of a device in which a piezoelectric / electrostrictive operating portion is formed in each cavity on a ceramic substrate having a plurality of cavities. FIG. 3B is a sectional view taken along the line AA. (1) shows an element, and (2) and (3) show piezoelectric / electrostrictive operation parts, respectively. The piezoelectric / electrostrictive operating part (2) is composed of a piezoelectric / electrostrictive film (2b) and a lower electrode film (2a) formed on a thin portion (5a) of a ceramic substrate (5) having a cavity (5b). The upper electrode film (2c) is integrally formed by sequentially laminating the upper electrode film (2c), and the piezoelectric / electrostrictive operating section (3) also has a piezoelectric / electrostrictive film (3b) and an upper electrode film (3b) on the lower electrode film (3a). 3c) is integrally formed by sequentially laminating. Each piezoelectric / electrostrictive operating portion is provided on a thin portion (5a) such that one end of the piezoelectric / electrostrictive operating portion extends on an outer surface of a thick portion (5c) of a ceramic substrate (5), and each lower electrode film (2a), (3a) is provided at appropriate intervals between them. (4) is a resin layer formed between the piezoelectric / electrostrictive actuators (2) and (3) and the upper electrode films (2c) and (3c) for the purpose of improving insulation and reliability. The portion (8) sandwiched between the / electrostrictive operating portions (2) and (3) is the non-piezoelectric / electrostrictive operating portion.

 図3は本発明の素子の動作を示す断面説明図である。ここでは(2b)及び(3b)に圧電膜を用い、(2) 及び(3) をそれぞれ圧電作動部とする。同図(a)において上部電極膜(2c)及び(3c)と下部電極膜(2a)及び(3a)に、圧電膜(2b)及び(3b)の分極処理時の印加電圧と正負が同じになるように電圧を印加すると、電界誘起歪が発生し、その横効果によって圧電膜(2b)がキャビティ(5b)側へ屈曲変位しようとする。しかし、圧電作動部(2) の一端は、薄肉部(5a)両側の剛性の高い厚肉部(5c)外表面上に形成され、他端は剛性の低い薄肉部(5a)上に形成されているため、圧電膜(2b)の厚肉部(5c)に近い部分は屈曲変位し難く、薄肉部(5a)側の部分は屈曲変位し易い。即ち、圧電膜(2b)は厚肉部(5c)側を支点として変位量の大きい薄肉部(5a)側が上方(キャビティ(5b)と反対側)へ持ち上がろうとし、これに伴って薄肉部(5a)が図3(b) に示すように上方へ凸状に湾曲する。この時、もう一方の圧電作動部(3) も同様に湾曲するため、セラミック基板(5) の薄肉部(5a)全体が上方へ凸状に湾曲した形状となる。而も、両圧電作動部(2) 及び(3)の変位による相乗効果によって図15に示した従来の素子と同等の変位を上方に得ることができる。尚、(2b)及び(3b)に電歪膜を用いた場合には、印加電圧の極性とは関係なく圧電膜を用いた場合と同様の原理に従って素子の変位を得ることができる。又、本発明の素子によれば素子が上方向へ変位する結果キャビティの体積は増大することになるため、例えば図示のように孔(7) をキャビティ底部に貫通形成したり、図2に示すように隣接するキャビティ(5b)間に連通するように厚肉部(5c)に形成し、流体を吸引するポンプとして利用することもできる。 FIG. 3 is an explanatory sectional view showing the operation of the device of the present invention. Here, a piezoelectric film is used for (2b) and (3b), and (2) and (3) are piezoelectric actuators, respectively. In the same figure (a), the upper and lower electrode films (2c) and (3c) and the lower electrode films (2a) and (3a) have the same polarity as the applied voltage during the polarization processing of the piezoelectric films (2b) and (3b). When a voltage is applied so as to generate electric field, an electric field-induced strain is generated, and the transverse effect causes the piezoelectric film (2b) to bend toward the cavity (5b). However, one end of the piezoelectric actuating portion (2) is formed on the outer surface of the thick rigid portion (5c) on both sides of the thin portion (5a), and the other end is formed on the thin rigid portion (5a). Therefore, the portion near the thick portion (5c) of the piezoelectric film (2b) is hardly bent and displaced, and the portion on the thin portion (5a) side is easily bent and displaced. That is, the piezoelectric film (2b) tends to lift upward on the thin portion (5a) side (the opposite side to the cavity (5b)) with a large displacement with the thick portion (5c) side as a fulcrum. The portion (5a) curves upwardly convex as shown in FIG. 3 (b). At this time, the other piezoelectric actuator (3) also bends in the same manner, so that the entire thin portion (5a) of the ceramic substrate (5) has a shape curved upwardly convex. Also, a displacement equivalent to that of the conventional element shown in FIG. 15 can be obtained upward by the synergistic effect of the displacement of the two piezoelectric actuators (2) and (3). In the case where the electrostrictive film is used in (2b) and (3b), the displacement of the element can be obtained according to the same principle as the case where the piezoelectric film is used regardless of the polarity of the applied voltage. Further, according to the element of the present invention, the volume of the cavity is increased as a result of the element being displaced upward, so that, for example, a hole (7) is formed through the bottom of the cavity as shown in FIG. In this way, the thick portion (5c) is formed so as to communicate between the adjacent cavities (5b), and can be used as a pump for sucking a fluid.

 図4は本発明の素子を形成する圧電/電歪作動部の形成位置がずれた場合の動作を示す断面説明図である。同図(a) に示すように両圧電/電歪作動部(2),(3) がセラミック基板(5) の右側厚肉部(5c)方向へずれて形成されているが、前記実施例同様に各上部電極膜(2c),(3c) 及び各下部電極膜(2a),(3a) に所定の電圧を印加すれば、同図(b) に示すように薄肉部(5a)を上方へ凸状に湾曲させることができる。この場合、右側の厚肉部(5c)へずれた圧電/電歪作動部(3)の変位量が、厚肉部(5c)へずれ込んだ分だけ小さくなるが、薄肉部(5a)側へずれた圧電/電歪作動部(2) の変位量が、ずれた分だけ大きくなるため、結果として圧電/電歪作動部(2) の増加した変位量が、圧電/電歪作動部(3) の不足した変位量を補う形となり、ずれることなく形成された場合と略同等の変位量を得ることができる。このように、本発明の構成の副次的効果として膜形成位置のずれをある程度許容しても素子の特性に影響がないため、素子製造上の歩留を向上させることができる利点がある。 FIG. 4 is a cross-sectional explanatory view showing the operation when the formation position of the piezoelectric / electrostrictive operating portion forming the element of the present invention is shifted. As shown in FIG. 7A, both piezoelectric / electrostrictive actuating parts (2) and (3) are formed so as to be shifted toward the right thick part (5c) of the ceramic substrate (5). Similarly, when a predetermined voltage is applied to each of the upper electrode films (2c) and (3c) and each of the lower electrode films (2a) and (3a), the thin portion (5a) is moved upward as shown in FIG. It can be curved in a convex shape. In this case, the displacement of the piezoelectric / electrostrictive operating part (3) shifted to the thick part (5c) on the right side is reduced by the amount shifted to the thick part (5c), but to the thin part (5a) side. Since the displacement of the displaced piezoelectric / electrostrictive operating section (2) increases by the amount of the displacement, as a result, the increased displacement of the piezoelectric / electrostrictive operating section (2) increases. ) Compensates for the insufficient displacement amount, and a displacement amount substantially equal to that when formed without displacement can be obtained. As described above, even if the film formation position is allowed to some extent as a secondary effect of the configuration of the present invention, the characteristics of the element are not affected, and thus there is an advantage that the yield in element manufacturing can be improved.

 図5は本発明の素子の別の構成を示す断面説明図である。この素子(14)の特徴は、前記実施例の素子と異なり、薄肉部(5a)上に設けた下部電極膜非形成部(9) を下部電極膜(15a),(16a) で挾み、それら下部電極膜(15a),(16a) を覆う圧電/電歪膜(17)及び上部電極膜(18)を共通に形成したところにある。このように、圧電/電歪膜を一枚にすることによって、前記実施例のように個別に形成する場合と比較し、素子の製造が容易となり、コストダウンを図ることができる。しかし、素子中央部にも圧電/電歪膜(17)がある分、中央部に樹脂層がある素子よりも素子の剛性が増すため、その変位量は例えば図1に示す圧電/電歪膜が分離している素子の変位量よりは少なくなる。 FIG. 5 is an explanatory sectional view showing another configuration of the element of the present invention. The feature of this element (14) is that, unlike the element of the above embodiment, the lower electrode film non-formed portion (9) provided on the thin portion (5a) is sandwiched between the lower electrode films (15a) and (16a). The piezoelectric / electrostrictive film (17) covering the lower electrode films (15a) and (16a) and the upper electrode film (18) are formed in common. In this way, by using only one piezoelectric / electrostrictive film, the manufacture of the element becomes easier and the cost can be reduced as compared with the case where the piezoelectric / electrostrictive films are individually formed as in the above embodiment. However, since the piezoelectric / electrostrictive film (17) is also provided in the central portion of the device, the rigidity of the device is increased as compared with the device having the resin layer in the central portion. Is smaller than the displacement of the separated element.

 図6は圧電/電歪作動部(15)及び(16)それぞれの厚肉部(5c)側の一端が厚肉部(5c)の外表面上にかかっていない本発明の素子の別の実施例を示す断面説明図である。このような構造においても前記同様の原理により圧電/電歪作動部(15)及び(16)を全体として上方(キャビティ(5b)と反対方向)に変位させることができる。但し、変位量においては変位時の各圧電/電歪作動部(15),(16)の支点が剛性の低い薄肉部(5a)上となるため各圧電/電歪作動部の厚肉部(5c)側の一端が厚肉部(5c)の外表面上にかかっている構造の素子よりは小さくなる。 FIG. 6 shows another embodiment of the element of the present invention in which one end of each of the piezoelectric / electrostrictive actuating parts (15) and (16) on the thick part (5c) side does not cover the outer surface of the thick part (5c). It is sectional explanatory drawing which shows an example. Even in such a structure, the piezoelectric / electrostrictive operating portions (15) and (16) can be displaced upward (in the direction opposite to the cavity (5b)) as a whole by the same principle as described above. However, since the fulcrum of each piezoelectric / electrostrictive operating part (15), (16) at the time of displacement is on the thin part (5a) having low rigidity, the thick part ( The element is smaller than the element having a structure in which one end on the 5c) side is on the outer surface of the thick portion (5c).

 図7はセラミック基板上に複数の素子(1),・・(1) を形成した例の断面説明図である。図示のように、複数の素子の内、必要な素子のみを作動させ、スイッチングに用いることができる。 FIG. 7 is a sectional explanatory view of an example in which a plurality of elements (1),... (1) are formed on a ceramic substrate. As shown in the figure, only necessary elements among a plurality of elements can be operated and used for switching.

 又、図8の素子(19)のように、圧電/電歪作動部及び薄肉部を予め上方へ凸状に湾曲形成させておくことによって、低い応力でも薄肉部(5a)を容易に上方へ湾曲させることもできる。 Also, as in the element (19) in FIG. 8, the piezoelectric / electrostrictive operating portion and the thin portion are curved in a convex shape in advance so that the thin portion (5a) can be easily moved upward even with a low stress. It can also be curved.

 図9は、セラミック基板の厚肉部(5c)に薄肉部(5a)の厚みより深い溝(6) を形成した素子の断面説明図である。この構成によって圧電/電歪作動部周辺の基板剛性が低くなり、薄肉部(5a)が変位し易くなる。従って、基板が圧電/電歪作動部の熱収縮の挙動に追随し易くなることから、圧電/電歪作動部をセラミック基板と一体化するための熱処理過程において発生する基板材料と圧電/電歪膜材料との熱膨張率差に起因する残留応力や圧電/電歪膜の焼成収縮を妨げる力を低く抑えることが可能となり、圧電/電歪膜材料が本来有する材料特性を十分引出すことができる。而も、隣接する素子間に溝が形成されているため、隣接するキャビティの薄肉部同士が相互に引っ張り合う力を緩衝することができるとともに、他の素子の変位による干渉も小さくすることができるため、素子本来の変位を引出すことが可能となる。尚、溝の形状は本実施例のようにV字形に形成されたものの外、基板面に対して鉛直方向に形成されたものや台形などの形状でもよく、溝の本数も適宜変更可能である。 FIG. 9 is an explanatory cross-sectional view of a device in which a groove (6) deeper than the thin portion (5a) is formed in the thick portion (5c) of the ceramic substrate. With this configuration, the rigidity of the substrate around the piezoelectric / electrostrictive operating portion is reduced, and the thin portion (5a) is easily displaced. Therefore, since the substrate easily follows the behavior of the thermal contraction of the piezoelectric / electrostrictive operating portion, the substrate material and the piezoelectric / electrostrictive generated in the heat treatment process for integrating the piezoelectric / electrostrictive operating portion with the ceramic substrate are facilitated. It is possible to suppress the residual stress due to the difference in thermal expansion coefficient from the film material and the force that hinders the firing / shrinkage of the piezoelectric / electrostrictive film to a low level, so that the material characteristics inherent to the piezoelectric / electrostrictive film material can be sufficiently obtained. . In addition, since grooves are formed between adjacent elements, it is possible to buffer the force of the thin portions of adjacent cavities pulling each other, and to reduce interference due to displacement of other elements. Therefore, it is possible to draw out the original displacement of the element. The shape of the groove is not limited to the V-shaped shape as in the present embodiment, but may be a shape formed in a direction perpendicular to the substrate surface or a trapezoidal shape, and the number of grooves may be appropriately changed. .

 図10は本発明の素子の別の構成を示す説明図である。同図(a) は素子(23)を上側から見た平面図、同図(b) は同図(a) のB−B断面図を示す。この素子(23)の特徴は、前記各実施例の素子とは異なり、1つのキャビティ(5b)の薄肉部(5a)上に相対向する4つの圧電/電歪作動部(24), ・・(24)を形成し、圧電/電歪作動部(24)を形成していない薄肉部(5a)上を非圧電/電歪作動部(11)としていることにある。そして、各圧電/電歪作動部(24)の上部電極膜(24c) 及び下部電極膜(24a) に電圧をそれぞれ印加すると、各圧電/電歪作動部(24)は、圧電/電歪膜(24b) の基板厚肉部(5c)付近を支点として、薄肉部(5a)側の端部が接点(22)方向(キャビティ(5b)と反対方向)へ持ち上げられる。即ち、素子(23)は接点(22)を頂点として全体が盛り上がるように変位する。尚、キャビティ(5b)の形状が、円柱形状、断面長円の円柱形状等であっても前記四角柱形状の場合と同様にキャビティ薄肉部の少なくとも2箇所以上に非圧電/電歪作動部を挾むように若しくは囲むように圧電/電歪作動部を配置することにより素子全体を盛り上がるように変位させることができる。 FIG. 10 is an explanatory view showing another configuration of the element of the present invention. FIG. 2A is a plan view of the element 23 viewed from above, and FIG. 2B is a cross-sectional view taken along line BB of FIG. The feature of this element (23) is that, unlike the element of each of the above embodiments, four piezoelectric / electrostrictive operating parts (24) opposed to each other on a thin part (5a) of one cavity (5b),. (24) is formed, and the non-piezoelectric / electrostrictive operating portion (11) is formed on the thin portion (5a) where the piezoelectric / electrostrictive operating portion (24) is not formed. When a voltage is applied to each of the upper electrode film (24c) and the lower electrode film (24a) of each piezoelectric / electrostrictive operating portion (24), each piezoelectric / electrostrictive operating portion (24) With the vicinity of the substrate thick part (5c) of (24b) as a fulcrum, the end on the thin part (5a) side is lifted in the direction of the contact (22) (the direction opposite to the cavity (5b)). That is, the element (23) is displaced so that the contact (22) is a vertex and the whole is raised. Even if the shape of the cavity (5b) is a columnar shape, a columnar shape having an oblong cross section, or the like, a non-piezoelectric / electrostrictive operating portion is provided in at least two or more places of the cavity thin portion as in the case of the quadrangular prism shape. By disposing the piezoelectric / electrostrictive operating portion so as to sandwich or surround it, the entire element can be displaced so as to rise.

 図11は本発明の素子の別の実施例を示す説明図である。同図(a)は素子(25)を上側から見た平面図、同図(b) は同図(a) のC−C断面図を示す。この素子(25)の特徴は、1つのキャビティ薄肉部に対して1つの圧電/電歪作動部から成る構成ではあるものの、円柱形状のキャビティ(5b)の薄肉部(5a)の上部周縁に沿って圧電/電歪作動部(26)を形成し、その圧電/電歪作動部(26)で囲まれた内部を非圧電/電歪作動部(11)とする構成にある。そして、上部電極膜(26c) 及び下部電極膜(26a) に電圧を印加すると、素子(25)は、接点(22)を頂点として盛り上がるように変位する。尚、キャビティの形状が、四角柱形状、断面長円の円柱形状等であっても前記円柱形状の場合と同様に、キャビティの上部周縁に沿って圧電/電歪作動部を配置することにより素子全体を盛り上がるように変位させることができる。又、図10に示す素子(23)の(24b) 及び図11に示す素子(25)の(26b) に圧電膜を用いた場合は、圧電膜の分極処理時の印加電圧と同じ極性で電圧を印加することにより素子の変位を得ることができ、電歪膜を用いた場合は印加電圧の極性とは関係なく圧電膜を用いた場合と同様の原理に従って素子の変位を得ることができる。 FIG. 11 is an explanatory view showing another embodiment of the device of the present invention. FIG. 11A is a plan view of the element 25 as viewed from above, and FIG. 10B is a cross-sectional view taken along the line CC of FIG. The feature of this element (25) is that it has a configuration in which one piezoelectric / electrostrictive operating portion is provided for one cavity thin portion, but along the upper peripheral edge of the thin portion (5a) of the cylindrical cavity (5b). Thus, a piezoelectric / electrostrictive operating section (26) is formed, and the inside surrounded by the piezoelectric / electrostrictive operating section (26) is used as a non-piezoelectric / electrostrictive operating section (11). Then, when a voltage is applied to the upper electrode film (26c) and the lower electrode film (26a), the element (25) is displaced so as to swell with the contact (22) as a vertex. Even when the shape of the cavity is a quadrangular prism, a column having an oblong cross section, or the like, the piezoelectric / electrostrictive operating portion is arranged along the upper peripheral edge of the cavity as in the case of the cylindrical shape. It can be displaced so that the whole swells. When a piezoelectric film is used for (24b) of the element (23) shown in FIG. 10 and (26b) of the element (25) shown in FIG. 11, a voltage having the same polarity as the applied voltage at the time of polarization processing of the piezoelectric film is used. Is applied, the displacement of the element can be obtained when the electrostrictive film is used, and the displacement of the element can be obtained according to the same principle as when the piezoelectric film is used regardless of the polarity of the applied voltage.

 上記各実施例では上部電極膜上に接点(22)を形成した場合について説明したが、図12に示すように接点を形成せず、上部電極膜を接点に代えて用いることもできる。この素子の場合も変位の原理及び方法は前記各実施例と同様である。 In the above embodiments, the case where the contact (22) is formed on the upper electrode film has been described. However, as shown in FIG. 12, the contact may not be formed and the upper electrode film may be used instead of the contact. In the case of this element, the principle and method of displacement are the same as those of the above embodiments.

 又、図13に示すように上部電極膜を分割した圧電/電歪作動部(28),(28) を形成し、両圧電/電歪作動部間には樹脂を形成しない素子構造としても、前記各実施例の素子と同様の原理及び方法により、素子を上方へ変位させることができる。 Also, as shown in FIG. 13, the piezoelectric / electrostrictive operating portions (28), (28) in which the upper electrode film is divided are formed, and an element structure in which no resin is formed between the piezoelectric / electrostrictive operating portions, The element can be displaced upward by the same principle and method as the element of each of the above embodiments.

 更に、図14に示すように上部電極膜を分割し、圧電/電歪膜を共用にした圧電/電歪作動部(29),(29) を形成した素子構造でも、前記各実施例の素子と同様の原理及び方法により、素子を上方へ変位させることができる。
 尚、図12〜図14に示す素子は、前記図10又は図11に示す素子構造とすることもでき、キャビティの形状は、四角柱形状、円柱形状、断面長円の円柱形状等でもよい。
Further, as shown in FIG. 14, the element structure in which the upper electrode film is divided and the piezoelectric / electrostrictive operating portions (29), (29) sharing the piezoelectric / electrostrictive film are formed may be used. The element can be displaced upward by the same principle and method.
The elements shown in FIGS. 12 to 14 may have the element structure shown in FIG. 10 or FIG. 11, and the shape of the cavity may be a quadrangular prism, a cylinder, a column having an oblong cross section, or the like.

 ところで、前述の圧電/電歪作動部の寸法並びに材料構成については、それぞれ対となる圧電/電歪作動部間で一致させても構わないが、本願に記載の範囲内で異なる寸法構成並びに材料構成の圧電/電歪作動部対を用いて、フィルタ、トランス等を形成することもできる。 By the way, the dimensions and the material composition of the piezoelectric / electrostrictive operating portions described above may be the same between the paired piezoelectric / electrostrictive operating portions, but different dimensions, configurations and materials within the range described in the present application. A filter, a transformer, and the like can also be formed using the piezoelectric / electrostrictive operation section pair having the configuration.

 又、振動板となるキャビティの薄肉部(5a)の肉厚は、圧電/電歪作動部の高速応答性と大きな変位を得るために、一般に50μm以下、好ましくは30μm以下、更に好ましくは10μm以下に形成される。 The thickness of the thin portion (5a) of the cavity serving as the diaphragm is generally 50 μm or less, preferably 30 μm or less, and more preferably 10 μm or less, in order to obtain high-speed response and large displacement of the piezoelectric / electrostrictive operating portion. Formed.

 更に、本発明の素子を形成する圧電/電歪膜は、図1等に示すように下部電極膜を覆い、且つ端部がセラミック基板上へ張り出す大きさに形成されているが、これによって圧電/電歪膜端部を下部電極膜端部に合わせるという精密な位置合わせが不要となり、容易に短絡防止を図ることができる。 Further, the piezoelectric / electrostrictive film forming the element of the present invention covers the lower electrode film as shown in FIG. 1 and the like, and is formed in such a size that an end protrudes above the ceramic substrate. Precise positioning of aligning the end of the piezoelectric / electrostrictive film with the end of the lower electrode film becomes unnecessary, and short circuit can be easily prevented.

 又更に、本発明の素子の圧電/電歪膜の材料特性を十分発揮させるためには、セラミック基板が、完全安定化若しくは部分安定化された酸化ジルコニウムを主成分とする材料で構成されていることが望ましい。 Further, in order to sufficiently exhibit the material characteristics of the piezoelectric / electrostrictive film of the element of the present invention, the ceramic substrate is made of a completely stabilized or partially stabilized material mainly composed of zirconium oxide. It is desirable.

 そして、酸化ジルコニウムを完全安定化若しくは部分安定化させるためには、一般に知られているように、アルカリ土類又は希土類の酸化物を用いることができるが、好適には酸化イットリウム、酸化セリウム、酸化マグネシウム、酸化カルシウムの内、少なくとも一つが用いられる。その含有量は、酸化イットリウムは 1モル%〜30モル%、酸化セリウムでは 6モル%〜50モル%、酸化マグネシウムや酸化カルシウムは、 5モル%〜40モル%とすることが好ましいが、その中でも特に酸化イットリウムは、 2モル%〜 4モル%とすることが望ましい。なぜならば、それらの範囲で酸化イットリウムが添加された酸化ジルコニウムは、その結晶層が部分安定化され、特に強度、靱性、信頼性において優れた基板特性を示すからである。 In order to completely or partially stabilize zirconium oxide, as is generally known, an alkaline earth or rare earth oxide can be used. Preferably, yttrium oxide, cerium oxide, At least one of magnesium and calcium oxide is used. The content of yttrium oxide is preferably 1 mol% to 30 mol%, that of cerium oxide is 6 mol% to 50 mol%, and that of magnesium oxide and calcium oxide is 5 mol% to 40 mol%. In particular, yttrium oxide is desirably 2 mol% to 4 mol%. This is because zirconium oxide to which yttrium oxide is added in such a range has its crystal layer partially stabilized, and exhibits excellent substrate characteristics particularly in strength, toughness, and reliability.

 又、基板材料中に粘土等の焼結助剤を添加してもよいが、少なくとも、薄肉部を構成するセラミック基板中には、酸化珪素、酸化ホウ素、酸化リン、酸化ゲルマニウム等のガラス化し易い材料が、 1重量%以上含有されないように、助剤の組成や添加量を調整することが望ましい。なぜならば、前記ガラス化し易い材料が基板に含有されていると圧電/電歪膜との熱処理時に反応が生じ易く、圧電/電歪膜の組成の制御が困難となるためである。 Also, a sintering aid such as clay may be added to the substrate material, but at least in the ceramic substrate constituting the thin portion, silicon oxide, boron oxide, phosphorus oxide, germanium oxide, etc. are easily vitrified. It is desirable to adjust the composition and amount of the auxiliary agent so that the material is not contained in an amount of 1% by weight or more. This is because if the substrate contains the material that is easily vitrified, a reaction is likely to occur during heat treatment with the piezoelectric / electrostrictive film, and it is difficult to control the composition of the piezoelectric / electrostrictive film.

 ところで、そのようなセラミック基板は、その上に形成される圧電/電歪作動部の作動特性、換言すればそこにおいて発生する歪み、力を有効に受け、又、その逆の作用を有効に行なうために、Raにて表わされる表面粗さが0.03〜0.9 μmの範囲内となるように調整される。このような表面粗さ:Raの調整は、又、薄い基板の強度を確保する上においても有効である。 By the way, such a ceramic substrate effectively receives the operating characteristics of the piezoelectric / electrostrictive operating portion formed thereon, in other words, the strain and force generated therein, and effectively performs the opposite operation. Therefore, the surface roughness represented by Ra is adjusted to be in the range of 0.03 to 0.9 μm. Such adjustment of the surface roughness Ra is also effective in securing the strength of a thin substrate.

 そして、そのようなセラミック基板上に所定の下部電極膜、上部電極膜、及び圧電/電歪膜を設けて圧電/電歪作動部を形成するには、公知の各種の膜形成手法が適宜に採用され、例えばスクリーン印刷、スプレー、ディッピング、塗布等の厚膜形成手法、イオンビーム、スパッタリング、真空蒸着、イオンプレーティング、CVD、メッキ等の薄膜形成手法が適宜に選択される。特に、圧電/電歪膜を形成するには、スクリーン印刷、スプレー、ディッピング、塗布等による厚膜形成手法が好適に採用されることとなる。なぜならば、それらの厚膜形成手法によれば、平均粒子径0.01μm以上 5μm以下の、好ましくは0.05μm以上 3μm以下の圧電/電歪材料のセラミック粒子を主成分とするペーストやスラリーを用いてセラミック基板上に膜形成することができ、良好な素子特性が得られるからである。又、そのような膜の形状としては、スクリーン印刷法やフォトリソグラフィ法等を用いてパターン形成する外、レーザー加工法や、スライシング、超音波加工等の機械加工法を用い、不必要な部分を除去して、パターン形成しても良い。 In order to form a piezoelectric / electrostrictive operating portion by providing a predetermined lower electrode film, an upper electrode film, and a piezoelectric / electrostrictive film on such a ceramic substrate, various known film forming techniques are appropriately used. For example, a method of forming a thick film such as screen printing, spraying, dipping, or coating, and a method of forming a thin film such as ion beam, sputtering, vacuum deposition, ion plating, CVD, or plating are appropriately selected. In particular, in order to form a piezoelectric / electrostrictive film, a thick film forming method by screen printing, spraying, dipping, coating, or the like is suitably adopted. This is because, according to those thick film forming techniques, a paste or slurry containing, as a main component, a ceramic particle of a piezoelectric / electrostrictive material having an average particle diameter of 0.01 μm or more and 5 μm or less, preferably 0.05 μm or more and 3 μm or less is used. This is because a film can be formed on the ceramic substrate, and good device characteristics can be obtained. In addition, as for the shape of such a film, in addition to pattern formation using a screen printing method, a photolithography method, or the like, a laser processing method, a slicing, a mechanical processing method such as an ultrasonic processing is used, and unnecessary portions are formed. It may be removed and a pattern may be formed.

 尚、ここで作製される素子の構造や膜状の圧電/電歪作動部の形状は、何等限定されるものではなく、用途に応じて、如何なる形状でも採用可能であり、例えば三角形、四角形等の多角形、円、楕円、円環等の円形、櫛状、格子状又はこれらを組み合わせた特殊形状であっても何等差し支えない。 The structure of the element manufactured here and the shape of the film-shaped piezoelectric / electrostrictive operating portion are not limited at all, and any shape can be adopted according to the application, for example, a triangle, a square, etc. , A circular shape such as a circle, an ellipse, a ring, a comb shape, a lattice shape, or a special shape obtained by combining these shapes.

 又、このようにしてセラミック基板上に上記方法で膜形成された各膜は、それぞれの膜の形成の都度、熱処理されて、基板と一体構造となるようにしても良く、又、全部の膜を形成した後、同時に熱処理して、各膜が同時に基板に一体的に結合されるようにしても良い。尚、このような膜形成手法により電極膜を形成する場合には、一体化するために必ずしも熱処理を必要としないことがある。例えば、上部電極膜を形成する前に、下部電極膜との絶縁性を確実にするため、素子周りに絶縁樹脂などで絶縁コートを行なう場合があるが、その場合には、上部電極膜の形成には熱処理を必要としない蒸着、スパッタリングや鍍金などの方法が採用される。 In addition, each film thus formed on the ceramic substrate by the above method may be heat-treated each time the film is formed, so that the film becomes an integral structure with the substrate. May be formed and then heat-treated at the same time so that each film is simultaneously integrally bonded to the substrate. When an electrode film is formed by such a film forming technique, heat treatment may not always be required for integration. For example, before forming the upper electrode film, in order to ensure insulation with the lower electrode film, there may be a case where an insulating coat is applied around the element with an insulating resin or the like. For such a method, a method such as vapor deposition, sputtering, or plating that does not require heat treatment is employed.

 更に、このように形成された膜と基板とを一体化するための熱処理温度としては、一般に900 °C 〜1400°C 程度の温度が採用され、好ましくは1000°C 〜1400°C の範囲の温度が有利に選択される。又、圧電/電歪膜を熱処理する場合には、高温時に圧電/電歪層の組成が不安定とならにように圧電/電歪材料の蒸発源と共に、雰囲気制御を行ないながら、熱処理することが好ましい。又、圧電/電歪膜上に適当な覆蓋部材を載置して、その表面が焼成雰囲気に直接に露呈されないようにして、焼成する手法を採用することも推奨される。その場合、覆蓋部材としては、基板と同様な材料系のものが用いられることとなる。 Further, as a heat treatment temperature for integrating the thus formed film and the substrate, a temperature of about 900 ° C. to 1400 ° C. is generally adopted, and preferably in a range of 1000 ° C. to 1400 ° C. The temperature is advantageously chosen. When the piezoelectric / electrostrictive film is subjected to heat treatment, the heat treatment is performed while controlling the atmosphere together with the evaporation source of the piezoelectric / electrostrictive material so that the composition of the piezoelectric / electrostrictive layer becomes unstable at a high temperature. Is preferred. It is also recommended to employ a baking method in which an appropriate cover member is placed on the piezoelectric / electrostrictive film so that its surface is not directly exposed to the baking atmosphere. In this case, a material similar to the substrate is used as the cover member.

 上記の方法にて作製される圧電/歪作動部を構成する下部電極膜の材料としては、前記熱処理温度並びに焼成温度程度の高温酸化雰囲気に耐えられる導体であれば、特に規制されるものではなく、例えば金属単体であっても、合金であっても良く、又、絶縁性セラミックスと、金属や合金との混合物であっても、更には導電性セラミックスであっても、何等差し支えない。而も、より好ましくは、白金、パラジウム、ロジウム等の高融点貴金属類、或は、銀−パラジウム、銀−白金、白金−パラジウム等の合金を主成分とする電極材料、白金とセラミック基板材料とのサーメット材料、白金と圧電/電歪材料とのサーメット材料、白金と基板材料と圧電/電歪材料とのサーメット材料が好適に用いられ、その中でも、更に好ましくは、白金を主成分とする材料が望ましい。又、電極に添加する材料として、酸化珪素等のガラスは、圧電/電歪膜との熱処理中に反応が生じ易く、アクチュエータ特性を低下させる原因となり易いため、その使用を避けることが望ましい。尚、電極中に添加せしめる基板材料としては、 5〜30体積%程度、圧電/電歪材料としては 5〜20体積%程度であることが好ましい。一方、上部電極膜材料に関しては、特に制限されるものではなく、金、クロム、銅等のスパッタ膜、或いは金ないし銀のレジネート印刷膜でも良い。 The material of the lower electrode film constituting the piezoelectric / strain operating portion manufactured by the above method is not particularly limited as long as it is a conductor that can withstand a high temperature oxidizing atmosphere at about the heat treatment temperature and the firing temperature. For example, a simple metal or an alloy may be used, and a mixture of an insulating ceramic and a metal or an alloy, or a conductive ceramic may be used. More preferably, platinum, palladium, an electrode material mainly containing an alloy such as silver-palladium, silver-platinum, platinum-palladium or the like, or a platinum and ceramic substrate material. Cermet material, platinum and a piezoelectric / electrostrictive material, and platinum, a substrate material and a piezoelectric / electrostrictive cermet material are preferably used. Among them, a material containing platinum as a main component is more preferable. Is desirable. Further, as a material to be added to the electrode, glass such as silicon oxide easily reacts during heat treatment with the piezoelectric / electrostrictive film and tends to cause a decrease in actuator characteristics. Therefore, it is desirable to avoid using glass. Preferably, the substrate material added to the electrode is about 5 to 30% by volume, and the piezoelectric / electrostrictive material is about 5 to 20% by volume. On the other hand, the material of the upper electrode film is not particularly limited, and may be a sputtered film of gold, chromium, copper, or the like, or a resinate printed film of gold or silver.

 そして、このような導体材料を用いて形成される電極膜は、一般に下部電極膜は20μm以下、好ましくは 5μm以下、上部電極膜は 1μm以下、好ましくは 0.5μm以下の肉厚において形成されることとなる。 In general, the electrode film formed using such a conductive material is formed so that the lower electrode film has a thickness of 20 μm or less, preferably 5 μm or less, and the upper electrode film has a thickness of 1 μm or less, preferably 0.5 μm or less. It becomes.

 又、圧電/電歪作動部を構成する圧電/電歪材料としては、圧電効果又は電歪効果等の電界誘起歪を示す材料であれば、何れの材料であっても採用され得るものであり、結晶質の材料であっても、非晶質の材料であっても良く、又、半導体材料であっても、誘電体セラミックス材料や強誘電体セラミックス材料であっても、何等差し支えなく、更には分極処理が必要な材料であっても、又、それが不必要な材料であってもよいのである。 Further, as the piezoelectric / electrostrictive material constituting the piezoelectric / electrostrictive operating portion, any material can be adopted as long as it shows an electric field induced strain such as a piezoelectric effect or an electrostrictive effect. It may be a crystalline material, an amorphous material, a semiconductor material, a dielectric ceramic material or a ferroelectric ceramic material. May be a material that requires a polarization treatment or a material that does not require a polarization treatment.

 而も、本発明に用いられる圧電/電歪材料としては、好ましくは、ジルコン酸チタン酸鉛(PZT系)を主成分とする材料、チタン酸鉛を主成分とする材料、ジルコン酸鉛を主成分とする材料、更にはマグネシウムニオブ酸鉛(PMN系)を主成分とする材料、ニッケルニオブ酸鉛(PNN系)を主成分とする材料、マグネシウムタングステン酸鉛を主成分とする材料、マンガンニオブ酸鉛を主成分とする材料、アンチモンスズ酸鉛を主成分とする材料、亜鉛ニオブ酸鉛を主成分とする材料、マグネシウムタンタル酸鉛を主成分とする材料、ニッケルタンタル酸鉛を主成分とする材料、更には、これらの複合材料等が用いられる。尚、前述した材料に、ランタン、バリウム、ニオブ、亜鉛、セリウム、カドミウム、クロム、コバルト、アンチモン、鉄、イットリウム、タンタル、タングステン、ニッケル、マンガン、リチウム、ストロンチウム、マグネシウム、カルシウム、ビスマス等の酸化物や、それらの他の化合物を添加物として含有せしめた材料、例えばPZT系を主成分とする材料にランタンを加え、PLZT系となるように、前記材料に上述の添加物を適宜に加えても、何等差し支えない。尚、酸化珪素等のガラス材料の添加は避けるべきである。なぜならば、PZT系等の鉛系圧電/電歪材料はガラスと反応し易いために、所望の圧電/電歪膜組成への制御が困難となり、アクチュエータ特性のバラツキ並びに低下を惹起するからである。 The piezoelectric / electrostrictive material used in the present invention is preferably a material mainly composed of lead zirconate titanate (PZT), a material mainly composed of lead titanate, or lead zirconate. Material as a component, furthermore, a material mainly containing lead magnesium niobate (PMN-based), a material mainly containing lead nickel niobate (PNN-based), a material mainly containing lead magnesium tungstate, manganese niobium Lead acid-based material, Lead antimony stannate-based material, Lead zinc niobate-based material, Lead magnesium tantalate-based material, Nickel lead tantalate-based Materials, and further, a composite material of these materials and the like are used. In addition, oxides such as lanthanum, barium, niobium, zinc, cerium, cadmium, chromium, cobalt, antimony, iron, yttrium, tantalum, tungsten, nickel, manganese, lithium, strontium, magnesium, calcium, bismuth, etc. Alternatively, lanthanum may be added to a material containing such other compounds as an additive, for example, a material mainly containing PZT, and the above-mentioned additive may be appropriately added to the material so that the material becomes PLZT. No problem. Note that the addition of a glass material such as silicon oxide should be avoided. This is because a lead-based piezoelectric / electrostrictive material such as PZT easily reacts with glass, making it difficult to control the composition of a desired piezoelectric / electrostrictive film, causing variations and deterioration in actuator characteristics. .

 これらの圧電/電歪材料の中でも、マグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料、若しくはニッケルニオブ酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料、若しくはニッケルタンタル酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛とから成る成分を主成分とする材料、若しくはマグネシウムタンタル酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料が好ましく、更にその中でも特にマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料が、その熱処理中における基板材料との反応が特に少ないことから、例えば、圧電/電歪膜の張り出し部とセラミック基板との結合状態を圧電/電歪作動部が必要とされる性能に影響を与えない程度に低く抑えることができる外、成分の偏析が起き難く、組成を保つための処理が好適に行なわれ得、目的とする組成及び結晶構造が得られ易い等、高い圧電定数を有することと併せて有利に用いられ、スクリーン印刷、スプレー、ディッピング、塗布等の厚膜形成手法で圧電/電歪膜を形成する場合の材料として推奨される。
 尚、多成分系圧電/電歪材料の場合、成分の組成によって圧電/電歪特性が変化するが、本発明で好適に採用されるマグネシウムニオブ酸鉛−ジルコン酸鉛−チタン酸鉛の3成分系材料では、擬立方晶−正方晶−菱面体晶の相境界付近の組成が好ましく、特にマグネシウムニオブ酸鉛:15モル%〜50モル%、ジルコン酸鉛:10モル%〜45モル%、チタン酸鉛:30モル%〜45モル%の組成が、高い圧電定数と電気機械結合係数を有することから、有利に採用される。
Among these piezoelectric / electrostrictive materials, a material mainly containing a component composed of lead magnesium niobate, lead zirconate and lead titanate, or lead nickel niobate, lead magnesium niobate, lead zirconate and lead titanate Or a material mainly composed of a component consisting of lead nickel tantalate and lead magnesium niobate and lead zirconate and lead titanate, or a material mainly composed of lead magnesium tantalate and lead magnesium niobate and A material mainly composed of components composed of lead zirconate and lead titanate is preferable, and among them, a material mainly composed of components composed of lead magnesium niobate and lead zirconate and lead titanate is particularly preferable during the heat treatment. Since the reaction with the substrate material is particularly small, for example, the tension of the piezoelectric / electrostrictive film In addition to keeping the bonding state between the metal part and the ceramic substrate low enough not to affect the required performance of the piezoelectric / electrostrictive operating part, the segregation of components is unlikely to occur, and the process for maintaining the composition is difficult. It is advantageously used in combination with having a high piezoelectric constant, such as being able to be suitably carried out and easily obtaining a target composition and a crystal structure, and is used in a thick film forming technique such as screen printing, spraying, dipping, coating or the like. It is recommended as a material for forming an electrostrictive film.
In the case of a multi-component piezoelectric / electrostrictive material, although the piezoelectric / electrostrictive characteristics change depending on the composition of the components, three components of lead magnesium niobate-lead zirconate-lead titanate which are preferably employed in the present invention. In the system material, the composition near the phase boundary of pseudo-cubic-tetragonal-rhombohedral is preferable. In particular, lead magnesium niobate: 15 mol% to 50 mol%, lead zirconate: 10 mol% to 45 mol%, titanium Lead acid: A composition of 30 mol% to 45 mol% is advantageously employed because of its high piezoelectric constant and electromechanical coupling coefficient.

 更に、上記の如くして形成される電極膜と圧電/電歪膜から構成される圧電/電歪作動部の厚さとしては、一般に100 μm以下とされ、又、圧電/電歪膜の厚さとしては、低作動電圧で大きな変位等を得るために、好ましくは50μm以下、更に好ましくは 3μm以上40μm以下とされることが望ましい。 Furthermore, the thickness of the piezoelectric / electrostrictive operating portion composed of the electrode film and the piezoelectric / electrostrictive film formed as described above is generally 100 μm or less, and the thickness of the piezoelectric / electrostrictive film is In order to obtain a large displacement or the like at a low operating voltage, the thickness is preferably 50 μm or less, more preferably 3 μm or more and 40 μm or less.

Figure 2004140397
Figure 2004140397

 この表1に示す実験結果から、本発明の素子によれば、図15に示した従来構造の素子が下方へ変位した場合の変位量と同等の変位量で素子を上方へ変位させることができ、その変位量も安定していることが分る。尚、この実験に使用した本発明の素子構造は、図3と同じ構造であり、セラミック基板の薄肉部の厚みは10μm、下部電極膜の厚みは 5μm、圧電/電歪膜の厚みは30μmである。これらの膜はスクリーン印刷にてパターン形成し、焼成により基板と一体化し、上部電極膜はAuをスパッタリングにより形成した。又、変位の測定は印加電圧30Vでレーザー変位計により評価した。 From the experimental results shown in Table 1, according to the element of the present invention, the element can be displaced upward by the same amount of displacement when the element of the conventional structure shown in FIG. 15 is displaced downward. It can be seen that the displacement is stable. The element structure of the present invention used in this experiment was the same as that shown in FIG. 3, and the thickness of the thin portion of the ceramic substrate was 10 μm, the thickness of the lower electrode film was 5 μm, and the thickness of the piezoelectric / electrostrictive film was 30 μm. is there. These films were patterned by screen printing, integrated with the substrate by firing, and the upper electrode film was formed by sputtering Au. The displacement was measured with an applied voltage of 30 V using a laser displacement meter.

 尚、上記実施例では本発明をリレーとして用いた場合を中心に説明したが、本発明の範囲を逸脱しない限り他の用途に用いることもでき、又、変更、修正、改良を加えることもできる。 In the above embodiment, the present invention is mainly described as a case where the present invention is used as a relay. However, the present invention can be used for other applications without departing from the scope of the present invention, and can be changed, modified, and improved. .

本発明の素子の断面説明図である。FIG. 3 is an explanatory cross-sectional view of the device of the present invention. (a) は本発明の素子が複数形成されたセラミック基板の説明図、(b) は図2(a) のA−A断面説明図である。2A is an explanatory diagram of a ceramic substrate on which a plurality of elements of the present invention are formed, and FIG. 2B is an explanatory diagram of an AA cross section of FIG. 本発明の素子の動作を示す説明図である。FIG. 3 is an explanatory diagram showing the operation of the device of the present invention. 圧電作動部の形成位置がずれた場合の説明図である。FIG. 4 is an explanatory diagram when a formation position of a piezoelectric operating portion is shifted. 一対の下部電極膜を一枚の圧電膜で覆った本発明の素子を示す説明図である。FIG. 3 is an explanatory view showing an element of the present invention in which a pair of lower electrode films are covered with one piezoelectric film. 各圧電作動部の一端が厚肉部の外表面上にかかっていない本発明の素子を示す説明図である。It is explanatory drawing which shows the element of this invention in which one end of each piezoelectric operation part does not hang on the outer surface of a thick part. 本発明の素子が複数形成されたセラミック基板において、任意の素子を作動させる場合を示す説明図である。It is explanatory drawing which shows the case where an arbitrary element is operated in the ceramic substrate in which the element of this invention formed two or more. 圧電作動部及び薄肉部を予め上方へ凸状に湾曲させて形成した本発明の素子を示す説明図である。It is explanatory drawing which shows the element of this invention which formed the piezoelectric operation part and the thin-walled part in the upward convex shape beforehand. 厚肉部に溝を形成した本発明の素子を示す説明図である。It is explanatory drawing which shows the element of this invention which formed the groove | channel in the thick part. 薄肉部の4箇所に圧電作動部を形成した本発明の素子を示す説明図である。It is explanatory drawing which shows the element of this invention which formed the piezoelectric operation part in four places of the thin part. 薄肉部上部の周縁に圧電作動部を形成した本発明の素子を示す説明図である。It is explanatory drawing which shows the element of this invention which formed the piezoelectric operation part in the periphery of the thin part upper part. 接点を形成しない素子を示す説明図である。It is explanatory drawing which shows the element which does not form a contact. 上部電極膜が分割した素子を示す説明図である。FIG. 3 is an explanatory diagram showing an element in which an upper electrode film is divided. 上部電極膜が分割し、圧電/電歪膜を共有した素子を示す説明図である。FIG. 4 is an explanatory diagram showing an element in which an upper electrode film is divided and shares a piezoelectric / electrostrictive film. 従来構造の素子の動作を示す説明図である。FIG. 4 is an explanatory view showing the operation of an element having a conventional structure. 圧電作動部の形成位置がずれた従来構造の素子の動作を示す説明図である。It is explanatory drawing which shows the operation | movement of the element of the conventional structure in which the formation position of the piezoelectric operation part shifted.

符号の説明Explanation of reference numerals

 1,14,19,20,23,25・・素子、2,3,15,16,21,24,26,28,29・・圧電/電歪作動部、2a,3a,15a,16a,21a,24a,26a・・下部電極膜、2b,3b,17,21b,24b,26b・・圧電/電歪膜、2c,3c,18,21c,24c,26c・・上部電極膜、4・・樹脂層、5・・セラミック基板、5a・・薄肉部、5b・・キャビティ、5c・・厚肉部、6・・溝、7・・孔、8,11・・非圧電/電歪作動部、9・・下部電極膜非形成部、22・・接点。 1,14,19,20,23,25... Element, 2,3,15,16,21,24,26,28,29..piezoelectric / electrostrictive operating section, 2a, 3a, 15a, 16a, 21a , 24a, 26a ··· lower electrode film, 2b, 3b, 17, 21b, 24b, 26b ··· piezoelectric / electrostrictive film, 2c, 3c, 18, 21c, 24c, 26c · · · upper electrode film, 4 · · · resin Layer, 5 ceramic substrate, 5a thin section, 5b cavity, 5c thick section, 6 groove, 7 hole, 8, 11 non-piezoelectric / electrostrictive operating section, 9 ..The lower electrode film non-formed portion, 22.

Claims (4)

 セラミック基板に形成されたキャビティ上の薄肉部外表面上に、下部電極膜非形成部を設け、その下部電極膜非形成部の周囲の所定範囲に下部電極膜を設け、その下部電極膜上に圧電/電歪膜及び上部電極膜を順次積層形成して成り、且つ、前記下部電極膜非形成部の全周を下部電極膜により囲んで成る圧電/電歪膜型素子。 A lower electrode film non-formed portion is provided on the thin portion outer surface on the cavity formed in the ceramic substrate, a lower electrode film is provided in a predetermined range around the lower electrode film non-formed portion, and the lower electrode film is provided on the lower electrode film. A piezoelectric / electrostrictive film type device comprising a piezoelectric / electrostrictive film and an upper electrode film sequentially laminated, and wherein the entire periphery of the lower electrode film-free portion is surrounded by a lower electrode film.  前記セラミック基板が完全安定化若しくは部分安定化された酸化ジルコニウムを主成分とする材料から構成された請求項1に記載の圧電/電歪膜型素子。 2. The piezoelectric / electrostrictive film element according to claim 1, wherein the ceramic substrate is made of a completely stabilized or partially stabilized material containing zirconium oxide as a main component.  前記圧電/電歪膜がマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料、若しくはニッケルニオブ酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料、若しくはニッケルタンタル酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料、若しくはマグネシウムタンタル酸鉛及びマグネシウムニオブ酸鉛及びジルコン酸鉛及びチタン酸鉛から成る成分を主成分とする材料から構成された請求項1または請求項2に記載の圧電/電歪膜型素子。 A material in which the piezoelectric / electrostrictive film is mainly composed of a component composed of lead magnesium niobate, lead zirconate and lead titanate, or a component composed of lead nickel niobate, lead magnesium niobate, lead zirconate and lead titanate Or a material mainly containing a component consisting of lead nickel tantalate and lead magnesium niobate and lead zirconate and lead titanate, or lead magnesium tantalate and lead magnesium niobate and lead zirconate and 3. The piezoelectric / electrostrictive film element according to claim 1, wherein the piezoelectric / electrostrictive film element is made of a material mainly containing a component composed of lead titanate.  前記キャビティ上の薄肉部の肉厚が50μm以下である請求項1〜請求項3のいずれかに記載の圧電/電歪膜型素子。 4. The piezoelectric / electrostrictive film type device according to claim 1, wherein the thickness of the thin portion on the cavity is 50 μm or less.
JP2003420036A 1993-11-26 2003-12-17 Piezoelectric/electrostrictive film element Pending JP2004140397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420036A JP2004140397A (en) 1993-11-26 2003-12-17 Piezoelectric/electrostrictive film element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29680493 1993-11-26
JP2003420036A JP2004140397A (en) 1993-11-26 2003-12-17 Piezoelectric/electrostrictive film element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24165394A Division JP3521499B2 (en) 1993-11-26 1994-10-05 Piezoelectric / electrostrictive film type element

Publications (1)

Publication Number Publication Date
JP2004140397A true JP2004140397A (en) 2004-05-13

Family

ID=32472349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420036A Pending JP2004140397A (en) 1993-11-26 2003-12-17 Piezoelectric/electrostrictive film element

Country Status (1)

Country Link
JP (1) JP2004140397A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001770A1 (en) * 2007-06-27 2008-12-31 Alps Electric Co., Ltd. Electrostriction actuator
US7851970B2 (en) * 2006-12-22 2010-12-14 The Charles Stark Draper Laboratory, Inc. Structures for crystal packaging including flexible membranes
JP2011076725A (en) * 2009-09-29 2011-04-14 Fujifilm Corp Piezoelectric mems element, and manufacturing method thereof
US8484823B2 (en) 2009-08-28 2013-07-16 The Charles Stark Draper Laboratory, Inc. Methods and apparatus for mounting a crystal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140618U (en) * 1986-02-28 1987-09-04
JPS63142227A (en) * 1986-12-05 1988-06-14 Nec Corp Laminated type piezoelectric element
JPS63179753A (en) * 1987-01-20 1988-07-23 Nec Corp Drop on-demand ink jet head
JPS63292032A (en) * 1987-05-26 1988-11-29 Ngk Insulators Ltd Pressure detector
JPH0394089U (en) * 1990-01-11 1991-09-25
JPH0499636A (en) * 1990-08-20 1992-03-31 Seiko Epson Corp Ink jet head

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140618U (en) * 1986-02-28 1987-09-04
JPS63142227A (en) * 1986-12-05 1988-06-14 Nec Corp Laminated type piezoelectric element
JPS63179753A (en) * 1987-01-20 1988-07-23 Nec Corp Drop on-demand ink jet head
JPS63292032A (en) * 1987-05-26 1988-11-29 Ngk Insulators Ltd Pressure detector
JPH0394089U (en) * 1990-01-11 1991-09-25
JPH0499636A (en) * 1990-08-20 1992-03-31 Seiko Epson Corp Ink jet head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851970B2 (en) * 2006-12-22 2010-12-14 The Charles Stark Draper Laboratory, Inc. Structures for crystal packaging including flexible membranes
WO2009001770A1 (en) * 2007-06-27 2008-12-31 Alps Electric Co., Ltd. Electrostriction actuator
JPWO2009001770A1 (en) * 2007-06-27 2010-08-26 アルプス電気株式会社 Electrostrictive actuator
US8484823B2 (en) 2009-08-28 2013-07-16 The Charles Stark Draper Laboratory, Inc. Methods and apparatus for mounting a crystal
JP2011076725A (en) * 2009-09-29 2011-04-14 Fujifilm Corp Piezoelectric mems element, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3521499B2 (en) Piezoelectric / electrostrictive film type element
US5852337A (en) Piezoelectric film-type element
US5210455A (en) Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion
JP2665106B2 (en) Piezoelectric / electrostrictive film element
JP3120260B2 (en) Piezoelectric / electrostrictive film type element
US6518690B2 (en) Piezoelectric/electrostrictive film type elements and process for producing the same
US7180226B2 (en) Piezoelectric/electrostrictive device
JPH06350155A (en) Piezoelectric/electrostriction film type element
US6404109B1 (en) Piezoelectric/electrostrictive device having increased strength
US20110120843A1 (en) Piezoelectric bimorph switch
EP1291317A2 (en) Ceramic MEMS device
JP3482101B2 (en) Piezoelectric film type element
JP3126212B2 (en) Piezoelectric / electrostrictive film type element
JP3891190B2 (en) Piezoelectric element, piezoelectric device and angular velocity sensor
JP3009945B2 (en) Piezoelectric / electrostrictive film type element
JP2004140397A (en) Piezoelectric/electrostrictive film element
JP3283386B2 (en) Piezoelectric film type element, its processing method and its driving method
JP2002009359A (en) Integrated piezoelectric/electrostrictive film type element exhibiting excellent durability and its manufacturing method
JP3272004B2 (en) Piezoelectric / electrostrictive film type element
JP4756013B2 (en) Piezoelectric / electrostrictive device
EP1294030A2 (en) Piezoelectric/electrostrictive device
JP4562756B2 (en) Piezoelectric / electrostrictive device
JP4015909B2 (en) Piezoelectric / electrostrictive device
JPH06120578A (en) Thick film actuator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213