JP2004138423A - Apparatus for measuring unbalance in rotor material and method for measuring unbalance - Google Patents

Apparatus for measuring unbalance in rotor material and method for measuring unbalance Download PDF

Info

Publication number
JP2004138423A
JP2004138423A JP2002301372A JP2002301372A JP2004138423A JP 2004138423 A JP2004138423 A JP 2004138423A JP 2002301372 A JP2002301372 A JP 2002301372A JP 2002301372 A JP2002301372 A JP 2002301372A JP 2004138423 A JP2004138423 A JP 2004138423A
Authority
JP
Japan
Prior art keywords
spindle
rotating body
body material
rotation axis
unbalance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301372A
Other languages
Japanese (ja)
Other versions
JP3989814B2 (en
Inventor
Takashi Ito
伊藤 孝
Hidemi Kawashiri
河尻 秀美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Castings Co Ltd
Original Assignee
Daido Castings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Castings Co Ltd filed Critical Daido Castings Co Ltd
Priority to JP2002301372A priority Critical patent/JP3989814B2/en
Publication of JP2004138423A publication Critical patent/JP2004138423A/en
Application granted granted Critical
Publication of JP3989814B2 publication Critical patent/JP3989814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Balance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the unbalance of a rotor in an element stage such as after casting in a manufacturer. <P>SOLUTION: An apparatus comprises a spindle 11 for supporting a rotary table 2 for rotation, a vibration detector 18 for detecting the amount vibration in a perpendicular direction of the shaft of the rotating spindle 11, an encoder 17 for detecting the rotation of the spindle 11, and a retaining tool 3 that is provided on the rotary table 2 and retains the rotor material 4 so that the rotary axis coincides with a rotary axis Ax of the spindle 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はタービンホイール等の回転体のアンバランスを素材段階で測定することができるアンバランス測定装置および測定方法に関するものである。
【0002】
【従来の技術】
800℃以上の高温に晒されるターボチャージャのタービンホイール等は耐熱合金の鋳造品で製造されることが多い。そして、10万rpm以上で高速回転する際の騒音を低減するためにタービンホイールの回転アンバランスは可能な限り小さくする必要がある。ところで従来は、このような回転体のアンバランス測定を鋳造直後の素材段階で行うことができず、ユーザにおいて回転体素材に必要な加工を行って軸体に組付けた後に、実際に軸体と一体に回転させてアンバランス測定を行っている。
【0003】
【発明が解決しようとする課題】
しかしこれでは、メーカにおける鋳造段階で生じたアンバランスなのか、ユーザでの加工等により生じたアンバランスなのか区別が困難で、アンバランス解消のための対策を立て難いという問題があった。
【0004】
そこで、本発明はこのような課題を解決するもので、メーカにおける鋳造後等の素材段階で回転体のアンバランス測定を可能とすることにより、ユーザに対してアンバランスの充分小さい素材製品を提供することができる回転体素材のアンバランス測定装置と測定方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために本第1発明のアンバランス測定装置(1)では、回転テーブル(2)を支持して回転させられるスピンドル(11)と、回転するスピンドル(11)の軸直方向の振動量を検出する振動検出手段(18)と、スピンドル(11)の回転を検出する回転検出手段(17)と、回転テーブル(2)上に設けられて、回転体素材(4)を、その回転軸がスピンドル(11)の回転軸(Ax)に一致するように保持する保持治具(3)とを具備している。
【0006】
本第1発明においては、回転するスピンドルの各回転角における軸直方向の振動量を検出することにより、回転体素材のアンバランスを測定することができる。これにより、ユーザにおける加工前の、素材段階での回転体のアンバランスを正確に測定することができるから、メーカにおいてアンバランス解消対策を容易に講じることが可能となる。
【0007】
本第2発明では、上記保持治具(3)を、回転テーブル(2)上に設けられて上記回転軸(Ax)に向けて径方向の内外方へ同期して同量移動させられ、回転体素材(4)にその回転軸と同心に形成された周面(42)に先端が当接ないし近接する、回転軸(Ax)周りに間隔を置いて配置された複数のブロック状チャック(32)と、回転体素材(4)をチャック(32)の上側面に押しつけて位置決めする押え部材(34)とで構成する。なお、上記「周面」は全周に亙って連続する面である必要はない。
【0008】
本第2発明において、各チャックを径方向の内方へ移動させると、これらチャックの先端が回転体素材に形成された周面に当接して、回転体素材はその回転軸がスピンドルの回転軸に一致するように移動させられ、かつ、この状態でチャックによって回転体素材が保持される。
【0009】
本第3発明では、上記保持治具(3)を、上記回転軸(Ax)に軸心を一致させて設けたシリンダ部材(51)と、シリンダ部材(51)内に上下方向へ移動自在に配設され、付勢部材(52)によってシリンダ部材(51)外へ付勢させられるとともに、上端面を凹球面状の受け面(53a)としたピストン部材(53)と、回転テーブル(2)上に設けられて回転軸(Ax)に向けて径方向の内外方へ同期して同量移動させられ、シリンダ部材(51)の外周面に当接する、回転軸(Ax)周りに間隔を置いて配置された複数のブロック状チャック(32)と、回転体素材(4)の凸部(42)を受け面(53a)に押しつけて位置決めする押え部材(34)とで構成する。
【0010】
本第3発明において、押え部材で回転体素材を受け面に押しつけると、付勢部材の付勢力によって受け面が適度な荷重で回転体素材の凸部に当接し、受け面の凹球面中心方向へ凸部が適当に滑り移動して回転体素材の回転軸がスピンドルの回転軸に一致させられるとともに、この状態で回転体素材が位置決めされる。
【0011】
本第4発明のアンバランス測定方法では、スピンドル(11)に支持された回転テーブル(2)上に、回転体素材(4)を、その回転軸がスピンドル(11)の回転軸(Ax)に一致するように保持し、回転するスピンドル(11)の各回転角における軸直方向の振動量を検出することにより回転体素材(4)のアンバランスを測定する。本第4発明によっても本第1発明と同様の作用効果が得られる。
【0012】
なお、上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0013】
【発明の実施の形態】
(第1実施形態)
図1にはアンバランス測定装置の構成を模式的に示す。測定装置1内には垂直姿勢で回転自在に支持されたスピンドル11が設けてあり、当該スピンドル11は、これに設けたプーリ12に懸架したベルト13によってモータ14に連結されて、一定速度で回転させられる(図1の矢印)。なお、スピンドル11は軸直方向へ一定範囲で移動可能である。スピンドル11にはギヤ15,16を介してエンコーダ17が連結されて、スピンドル11の一回転毎に基準信号Saが出力される。また、スピンドル11の軸直方向の振動量を検出する公知の振動検出器18が付設されて、振動量に応じた振動信号18aが出力される。これら基準信号Saと振動信号18aは詳細を後述する演算器19に入力している。スピンドル11には回転テーブル2が軸心を一致させて支持固定されており、回転テーブル2は測定装置1の頂板10上に露出している。この回転テーブル2上に回転体素材を保持するための詳細を後述する保持治具3が配設してある。なお、回転テーブル2を含む本測定装置の主要部は(株)長浜製作所製の立形バランシングマシンを利用して実現することができる。
【0014】
保持治具3の斜視図を図2に示し、その側面図を図3に示す。保持治具3は軸心を一致させて回転テーブル2に固定された円柱形の基体31を備えている。当該基体31の上面にはスピンドル11の回転軸Ax周りに等間隔で三ヶ所に、径方向へ延びるスライド溝311が形成されて、これらスライド溝311内に、下面に歯形(図示略)が形成された直方体ブロック状のチャック32が摺動可能に配設されている。各チャック32の上面には図3に示すように、回転体素材としての、鋳造されたままで未加工のタービンホイール素材(以下、ホイール素材という)4の翼体41下面が載置されて、その回転軸が垂直になった水平姿勢で支持されている。なお、各チャック32の内端にはチャック本体の断面形状よりも小径の押し突起321が突出形成されている(図3)。
【0015】
3つのチャック32はそれぞれ下面の歯形が基体31内に設置された図略のウェッジブロックの歯形に噛合し、各ウェッジブロックがスラストリング(図示略)によって同時に周方向へ移動させられると、各チャック32は同位置から同期して同量だけ径方向の内外方へスライド溝311内を移動させられる。そこで、回転体素材4を上面で支持しつつ3つのチャック32を径方向の内方へ移動させると、図3に示すように各チャック32の押し突起321の先端が、ホイール素材4の下面中心に形成された軸体接合用の円筒状ボス部42の外周面に当接して、ホイール素材4を基体31の中心に向けて移動させ、ホイール素材4の回転軸がスピンドル11の回転軸Axに一致した状態でホイール素材4を保持する。なお、この時の保持力、すなわち押し突起321の締め付けトルクは、ボス部42の変形を生じない限度で最適の大きさとする必要があり、例えば10N・mとする。
【0016】
上記基体31上にはこれを径方向へ横断するように、両端の縦梁331とこれら縦梁331の上端間に架設された横梁332よりなる門形の架台33が設けてあり、横梁332の中央に、外周にネジ部を形成した押え棒34が上下方向へ貫通して設けられている。押え棒34の位置はスピンドル11の回転軸Axに一致しており、押え棒34を下降させてその先端をホイール素材4の上面中心に当接させてホイール素材4をチャック32の上面との間で位置決めする。なお、このような保持治具3の主要部はドイツ国フォルカート(FORKARDT)社製のチャック具を利用して実現することができる。
【0017】
このような構造のアンバランス測定装置1において、ホイール素材4を保持治具3で位置決めした状態で回転テーブル2を定速で回転させ、振動検出器18でスピンドル11の軸直方向の振動量を検出する。その一例を図4に示す。ホイール素材4にアンバランスがあると、エンコーダ17の基準信号Saが入力する回転位置を位相角0°として(図4(2))、位相角θ1,θ2でそれぞれ振動量が正負のピーク値M1,M2を示すようになる(図4(1))。これを図5(1)にグラフで示す。図5(1)でピーク値M1,M2を示す点P1,P2間の位相角はそれぞれθ1,θ2であり、その差(θ2−θ1)が180°にならないのは、ホイール素材4のアンバランスに、スピンドル11等の回転機構部のアンバランスが加わっているからである。そこで演算器19(図1)では、点P1,P2を結ぶ線の中間点Pmの座標を算出して、これが原点に来る(図5(2))ように補償演算をする。これにより新たな点P1´,P2´(図5(3))間の位相差は180°となり、この時の原点から点P1´(ないし点P2´)までの距離Umがアンバランスの大きさ(g・cm)を示し、位相角θが、0°位置からのアンバランスの方向を示す。
【0018】
このようにして、ユーザにおける加工前の、鋳造後の素材段階でタービンホイールのアンバランスを正確に測定することができるから、メーカにおける鋳造段階で、アンバランス解消対策を容易に立てることが可能となる。なお、本実施形態において、各チャック32の押し突起321をホイール素材4のボス部42外周に圧接させるのに代えて、押し突起321が実質的にボス部42外周に当接することなくこれに近接することにより当該ボス部42を位置決めするようにしても良い。これによれば、ボス部42の変形のおそれを避けることができる。
【0019】
(第2実施形態)
図6には保持治具3の他の例を示す。本実施形態では、第1実施形態で説明した基体31上の3つのチャック32でホイール素材4を直接保持するのに代えて、上記チャック32で芯出し具5を保持する。すなわち、芯出し具5は上方へ開放する円筒状のシリンダ部材51を備えており、当該シリンダ部材51内には下部にゴムクッション体52が配設してある。ゴムクッション52上には、シリンダ部材51の内面に接して上下方向へ摺動可能にピストン部材53が位置しており、ピストン部材53の上端はシリンダ部材51の開口から上方へ突出している。ピストン部材53の上端部は拡径し、その上面は周縁部を除いて凹球面状の受け面53aとなっている。なお、各チャック32の上面には所定高さのスペーサ板34が接合されている。他の構造は第1実施形態と同様である。
【0020】
ピストン部材53の上記受け面53a上にホイール素材4下面から突出する凸部としてのボス部42を載せ、この状態で、第1実施形態で説明した押え棒34の先端でホイール素材4の上面を押さえると、背後のゴムクッション52の弾性によって上記受け面53aが適度な荷重でボス部42に当接し、この状態でピストン部材53が押し下げられる。この過程で、受け面53aの凹球面中心方向へボス部42が適当に滑り移動してホイール素材4の回転軸がスピンドルの回転軸Axに一致させられるとともに、ホイール素材4の翼体41下面がスペーサ板34の上面に当接してホイール素材4が水平姿勢で位置決めされる。このような保持治具によれば、ボス部42にチャック34を圧接させる必要がないからボス部42の変形を生じるおそれがない。
【0021】
【発明の効果】
以上のように、本発明の回転体素材のアンバランス測定装置および測定方法によれば、メーカにおける鋳造後等の素材段階で回転体のアンバランス測定が可能となり、この結果、ユーザに対してアンバランスの充分小さい素材製品を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における、アンバランス測定装置の構成を模式的に示す図である。
【図2】保持治具の斜視図である。
【図3】保持治具の側面図である。
【図4】回転テーブルの回転に伴うスピンドルの振動量変化を示す図である。
【図5】スピンドルの振動のピーク値とその位相角を説明する図である。
【図6】本発明の第2実施形態における、保持治具の断面図である。
【符号の説明】
1…アンバランス測定装置、11…スピンドル、17…エンコーダ、18…振動検出器、2…回転テーブル、3…保持治具、32…チャック、34…押え棒、4…タービンホイール素材、42…ボス部、51…シリンダ部材、52…ゴムクッション、53…ピストン部材、53a…受け面、Ax…回転軸。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an unbalance measuring device and a measuring method capable of measuring an unbalance of a rotating body such as a turbine wheel at a material stage.
[0002]
[Prior art]
Turbocharger turbine wheels and the like that are exposed to a high temperature of 800 ° C. or more are often manufactured from cast products of heat-resistant alloys. In order to reduce noise when rotating at a high speed of 100,000 rpm or more, it is necessary to minimize the rotational imbalance of the turbine wheel. By the way, conventionally, such an unbalance measurement of the rotating body cannot be performed at the material stage immediately after casting, and after the user performs necessary processing on the rotating body material and assembles the shaft body, the shaft body is actually Unbalance measurement is performed by rotating together with.
[0003]
[Problems to be solved by the invention]
However, in this case, it is difficult to distinguish whether the imbalance is caused by a casting process in a manufacturer or an imbalance caused by processing by a user or the like, and there is a problem that it is difficult to take measures for eliminating the imbalance.
[0004]
Therefore, the present invention solves such a problem, and provides a material product having a sufficiently small unbalance for a user by enabling a manufacturer to measure the unbalance of a rotating body at a material stage such as after casting. It is an object of the present invention to provide an apparatus and a method for measuring unbalance of a rotating body material that can be performed.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the unbalance measuring device (1) according to the first aspect of the present invention includes a spindle (11) supported and rotated by a rotary table (2), and a spindle (11) in a direction perpendicular to the axis of the rotating spindle (11). Vibration detecting means (18) for detecting the amount of vibration, rotation detecting means (17) for detecting the rotation of the spindle (11), and a rotating body material (4) provided on the rotating table (2) A holding jig (3) for holding the rotating shaft so as to coincide with the rotating shaft (Ax) of the spindle (11);
[0006]
In the first aspect, the unbalance of the rotating body material can be measured by detecting the amount of vibration in the direction perpendicular to the axis at each rotation angle of the rotating spindle. This allows the user to accurately measure the unbalance of the rotating body at the material stage before processing, so that the manufacturer can easily take measures to eliminate the unbalance.
[0007]
In the second invention, the holding jig (3) is provided on the rotary table (2), and is synchronously moved inward and outward in the radial direction toward the rotary shaft (Ax) by the same amount. A plurality of block-like chucks (32) spaced at a distance around a rotation axis (Ax), the tip of which abuts or approaches a peripheral surface (42) formed concentrically with the rotation axis of the body material (4). ) And a pressing member (34) for pressing the rotating body material (4) against the upper surface of the chuck (32) to position the rotating body material (4). The “peripheral surface” need not be a surface that is continuous over the entire circumference.
[0008]
In the second aspect of the present invention, when each chuck is moved inward in the radial direction, the tips of these chucks come into contact with the peripheral surface formed on the rotating body material, and the rotating body has its rotating shaft rotated by the rotating shaft of the spindle. The rotating body material is held by the chuck in this state.
[0009]
In the third aspect of the invention, the holding jig (3) is provided with a cylinder member (51) provided so as to have the same axis as the rotation axis (Ax), and the holding jig (3) is vertically movable within the cylinder member (51). A piston member (53) which is disposed and urged out of the cylinder member (51) by an urging member (52), and has a concave spherical receiving surface (53a) at an upper end surface; and a rotary table (2). The cylinder member (51) is synchronously moved radially inward and outward toward the rotation axis (Ax) by the same amount, and is spaced around the rotation axis (Ax) in contact with the outer peripheral surface of the cylinder member (51). A plurality of block-shaped chucks (32) arranged in a horizontal direction, and a pressing member (34) for positioning by pressing the convex portion (42) of the rotating body material (4) against the receiving surface (53a).
[0010]
In the third aspect of the present invention, when the pressing member presses the rotating body material against the receiving surface, the receiving surface abuts on the convex portion of the rotating body material with an appropriate load by the urging force of the urging member, and the concave surface of the receiving surface faces the concave spherical surface. The convex portion slides and moves appropriately so that the rotation axis of the rotator material coincides with the rotation axis of the spindle, and the rotator material is positioned in this state.
[0011]
In the unbalance measuring method according to the fourth aspect of the present invention, the rotating body material (4) is placed on the rotating table (2) supported by the spindle (11), and the rotating axis of the rotating body material (4) is set to the rotating axis (Ax) of the spindle (11). The unbalance of the rotating body material (4) is measured by detecting the amount of vibration in the direction perpendicular to the axis at each rotation angle of the rotating spindle (11) while holding the same so as to match. According to the fourth invention, the same operation and effect as those of the first invention can be obtained.
[0012]
In addition, the code | symbol in the said parenthesis shows the correspondence with the concrete means described in embodiment mentioned later.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 schematically shows the configuration of the unbalance measuring device. A spindle 11 rotatably supported in a vertical position is provided in the measuring device 1. The spindle 11 is connected to a motor 14 by a belt 13 suspended on a pulley 12 provided on the spindle 11, and rotates at a constant speed. (Arrows in FIG. 1). Note that the spindle 11 can be moved within a certain range in the direction perpendicular to the axis. An encoder 17 is connected to the spindle 11 via gears 15 and 16, and outputs a reference signal Sa for each rotation of the spindle 11. A known vibration detector 18 for detecting the amount of vibration of the spindle 11 in the direction perpendicular to the axis is provided, and a vibration signal 18a corresponding to the amount of vibration is output. The reference signal Sa and the vibration signal 18a are input to an arithmetic unit 19 described in detail later. The rotary table 2 is supported and fixed to the spindle 11 so that the axes thereof are aligned with each other, and the rotary table 2 is exposed on the top plate 10 of the measuring device 1. A holding jig 3, which will be described in detail later, for holding the rotating body material on the turntable 2 is provided. The main part of the measuring apparatus including the rotary table 2 can be realized by using a vertical balancing machine manufactured by Nagahama Seisakusho Co., Ltd.
[0014]
FIG. 2 shows a perspective view of the holding jig 3 and FIG. 3 shows a side view thereof. The holding jig 3 includes a columnar base 31 fixed to the rotary table 2 so that the axes thereof are aligned. Three slide grooves 311 extending in the radial direction are formed on the upper surface of the base 31 at equal intervals around the rotation axis Ax of the spindle 11, and a tooth profile (not shown) is formed on the lower surface in the slide grooves 311. The cuboid block-shaped chuck 32 is slidably disposed. As shown in FIG. 3, on the upper surface of each chuck 32, a lower surface of a blade body 41 of a cast and unprocessed turbine wheel material (hereinafter, referred to as a wheel material) 4 as a rotating body material is placed. It is supported in a horizontal position where the rotation axis is vertical. At the inner end of each chuck 32, a push projection 321 smaller in diameter than the cross-sectional shape of the chuck body is formed so as to protrude (FIG. 3).
[0015]
Each of the three chucks 32 has a tooth profile on the lower surface meshed with a tooth profile of a not-shown wedge block installed in the base 31, and when each wedge block is simultaneously moved in a circumferential direction by a thrust ring (not shown), each chuck is moved. Reference numeral 32 is moved in the slide groove 311 inward and outward in the radial direction by the same amount in synchronization with the same position. Therefore, when the three chucks 32 are moved inward in the radial direction while supporting the rotating body material 4 on the upper surface, the tip of the push protrusion 321 of each chuck 32 is moved to the center of the lower surface of the wheel material 4 as shown in FIG. The wheel material 4 is moved toward the center of the base 31 by contacting the outer peripheral surface of the cylindrical boss portion 42 for joining the shaft body formed on the shaft member, and the rotation axis of the wheel material 4 is adjusted to the rotation axis Ax of the spindle 11. The wheel blank 4 is held in a state where they match. Note that the holding force at this time, that is, the tightening torque of the push protrusion 321 needs to be set to an optimal size as long as the boss portion 42 is not deformed, and is set to, for example, 10 N · m.
[0016]
On the base 31, a gate-shaped mount 33 composed of vertical beams 331 at both ends and a horizontal beam 332 erected between the upper ends of the vertical beams 331 is provided so as to cross the same in the radial direction. At the center, a presser bar 34 having a screw portion formed on the outer periphery is provided so as to penetrate vertically. The position of the presser bar 34 coincides with the rotation axis Ax of the spindle 11, and the presser bar 34 is moved down so that the tip of the presser bar 34 contacts the center of the upper surface of the wheel blank 4 so that the wheel blank 4 is held between the upper surface of the chuck 32. Position with. The main part of the holding jig 3 can be realized by using a chuck made by FORKARDT, Germany.
[0017]
In the unbalance measuring device 1 having such a structure, the rotary table 2 is rotated at a constant speed while the wheel blank 4 is positioned by the holding jig 3, and the vibration detector 18 detects the amount of vibration of the spindle 11 in the direction perpendicular to the axis. To detect. An example is shown in FIG. If the wheel material 4 is unbalanced, the rotation position where the reference signal Sa of the encoder 17 is input is set to a phase angle of 0 ° (FIG. 4 (2)), and the peak value M1 of the phase angle θ1 and θ2 where the vibration amount is positive and negative respectively. , M2 (FIG. 4 (1)). This is shown graphically in FIG. In FIG. 5A, the phase angles between the points P1 and P2 indicating the peak values M1 and M2 are θ1 and θ2, respectively, and the difference (θ2−θ1) does not become 180 ° because of the unbalance of the wheel material 4. In addition, the imbalance of the rotation mechanism such as the spindle 11 is added. Therefore, the computing unit 19 (FIG. 1) calculates the coordinates of the intermediate point Pm of the line connecting the points P1 and P2, and performs the compensation calculation so that the coordinates come to the origin (FIG. 5 (2)). As a result, the phase difference between the new points P1 ′ and P2 ′ (FIG. 5 (3)) becomes 180 °, and the distance Um from the origin to the point P1 ′ (or point P2 ′) at this time is the magnitude of the imbalance. (G · cm), and the phase angle θ indicates the direction of imbalance from the 0 ° position.
[0018]
In this way, the unbalance of the turbine wheel can be accurately measured at the raw material stage after casting before processing by the user, so that it is possible to easily take measures to eliminate the unbalance at the casting stage at the manufacturer. Become. In the present embodiment, instead of pressing the pushing protrusion 321 of each chuck 32 against the outer periphery of the boss portion 42 of the wheel blank 4, the pushing protrusion 321 approaches the outer periphery of the boss portion 42 without substantially contacting the outer periphery of the boss portion 42. By doing so, the boss portion 42 may be positioned. According to this, the risk of deformation of the boss portion 42 can be avoided.
[0019]
(2nd Embodiment)
FIG. 6 shows another example of the holding jig 3. In the present embodiment, instead of directly holding the wheel blank 4 with the three chucks 32 on the base 31 described in the first embodiment, the centering device 5 is held by the chuck 32. That is, the centering tool 5 includes a cylindrical cylinder member 51 that is opened upward, and a rubber cushion body 52 is disposed in the lower portion of the cylinder member 51. A piston member 53 is located on the rubber cushion 52 so as to be slidable in the vertical direction in contact with the inner surface of the cylinder member 51, and the upper end of the piston member 53 projects upward from the opening of the cylinder member 51. The upper end of the piston member 53 is enlarged in diameter, and the upper surface thereof is a concave spherical receiving surface 53a excluding the peripheral edge. A spacer plate 34 having a predetermined height is joined to the upper surface of each chuck 32. Other structures are the same as in the first embodiment.
[0020]
The boss 42 as a convex projecting from the lower surface of the wheel material 4 is placed on the receiving surface 53a of the piston member 53, and in this state, the upper surface of the wheel material 4 is held by the tip of the pressing rod 34 described in the first embodiment. When pressed, the elasticity of the rubber cushion 52 at the back causes the receiving surface 53a to come into contact with the boss portion 42 with an appropriate load, and the piston member 53 is pushed down in this state. In this process, the boss portion 42 slides appropriately toward the center of the concave spherical surface of the receiving surface 53a, so that the rotation axis of the wheel material 4 coincides with the rotation axis Ax of the spindle, and the lower surface of the wing body 41 of the wheel material 4 The wheel blank 4 is positioned in a horizontal posture in contact with the upper surface of the spacer plate 34. According to such a holding jig, there is no need to press the chuck 34 against the boss portion 42, so that there is no possibility that the boss portion 42 is deformed.
[0021]
【The invention's effect】
As described above, according to the apparatus and method for measuring unbalance of a rotating body material of the present invention, it is possible to measure the unbalance of a rotating body at a material stage such as after casting in a manufacturer, and as a result, unbalance is imposed on a user. A material product having a sufficiently small balance can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a configuration of an unbalance measuring device according to a first embodiment of the present invention.
FIG. 2 is a perspective view of a holding jig.
FIG. 3 is a side view of the holding jig.
FIG. 4 is a diagram showing a change in a vibration amount of a spindle accompanying rotation of a rotary table.
FIG. 5 is a diagram illustrating a peak value of vibration of a spindle and its phase angle.
FIG. 6 is a sectional view of a holding jig according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Unbalance measuring device, 11 ... Spindle, 17 ... Encoder, 18 ... Vibration detector, 2 ... Rotary table, 3 ... Holding jig, 32 ... Chuck, 34 ... Holding rod, 4 ... Turbine wheel material, 42 ... Boss Reference numeral 51 denotes a cylinder member, 52 denotes a rubber cushion, 53 denotes a piston member, 53a denotes a receiving surface, and Ax denotes a rotating shaft.

Claims (4)

回転テーブルを支持して回転させられるスピンドルと、回転する前記スピンドルの軸直方向の振動量を検出する振動検出手段と、前記スピンドルの回転を検出する回転検出手段と、前記回転テーブル上に設けられて、回転体素材を、その回転軸が前記スピンドルの回転軸に一致するように保持する保持治具とを具備する回転体素材のアンバランス測定装置。A spindle that supports and rotates the rotary table, vibration detection means for detecting an amount of vibration of the rotating spindle in a direction perpendicular to the axis, rotation detection means for detecting rotation of the spindle, and And a holding jig for holding the rotating body material such that the rotation axis thereof coincides with the rotation axis of the spindle. 前記保持治具を、回転テーブル上に設けられて前記回転軸に向けて径方向の内外方へ同期して同量移動させられ、前記回転体素材にその回転軸と同心に形成された周面に先端が当接ないし近接する、前記回転軸周りに間隔を置いて配置された複数のブロック状チャックと、前記回転体素材を前記チャックの上側面に押しつけて位置決めする押え部材とで構成した請求項1に記載の回転体素材のアンバランス測定装置。The holding jig is provided on a rotary table, and is synchronously moved inward and outward in the radial direction toward the rotating shaft by the same amount, and a peripheral surface formed concentrically with the rotating shaft on the rotating body material. A plurality of block-shaped chucks whose tips contact or approach each other at intervals around the rotation axis, and a pressing member that presses the rotating body material against an upper surface of the chuck to position the chuck. Item 2. An apparatus for measuring unbalance of a rotating body material according to Item 1. 前記保持治具を、前記回転軸に軸心を一致させて設けたシリンダ部材と、前記シリンダ部材内に上下方向へ移動自在に配設され、付勢部材によって前記シリンダ部材外へ付勢させられるとともに、上端面を凹球面状の受け面としたピストン部材と、前記回転テーブル上に設けられて前記回転軸に向けて径方向の内外方へ同期して同量移動させられ、前記シリンダ部材の外周面に当接する、前記回転軸周りに間隔を置いて配置された複数のブロック状チャックと、前記回転体素材の凸部を前記受け面に押しつけて位置決めする押え部材とで構成した請求項1に記載の回転体素材のアンバランス測定装置。The holding jig is disposed movably in the up and down direction within the cylinder member provided with a cylinder member provided in such a manner that the axis of the holding jig coincides with the rotation axis, and is urged out of the cylinder member by an urging member. A piston member having an upper end surface having a concave spherical receiving surface, and a piston member provided on the rotary table and synchronously moved radially inward and outward toward the rotary shaft by the same amount. 2. A structure comprising a plurality of block-shaped chucks abutting on the outer peripheral surface and spaced apart around the rotation axis, and a pressing member for pressing a convex portion of the rotating body material against the receiving surface to position the rotating body material. 4. An apparatus for measuring unbalance of a rotating body material according to claim 1. スピンドルに支持された回転テーブル上に、回転体素材を、その回転軸が前記スピンドルの回転軸に一致するように保持し、モータによって回転させられる前記スピンドルの各回転角における軸直方向の振動量を検出することにより回転体素材のアンバランスを測定することを特徴とする回転体素材のアンバランス測定方法A rotary body material is held on a rotary table supported by a spindle such that its rotation axis coincides with the rotation axis of the spindle, and the amount of vibration in the direction perpendicular to the axis at each rotation angle of the spindle rotated by a motor. Measuring the unbalance of the rotating body material by detecting the unbalance of the rotating body material
JP2002301372A 2002-10-16 2002-10-16 Unbalance measuring device and unbalance measuring method for rotating body material Expired - Fee Related JP3989814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301372A JP3989814B2 (en) 2002-10-16 2002-10-16 Unbalance measuring device and unbalance measuring method for rotating body material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301372A JP3989814B2 (en) 2002-10-16 2002-10-16 Unbalance measuring device and unbalance measuring method for rotating body material

Publications (2)

Publication Number Publication Date
JP2004138423A true JP2004138423A (en) 2004-05-13
JP3989814B2 JP3989814B2 (en) 2007-10-10

Family

ID=32449734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301372A Expired - Fee Related JP3989814B2 (en) 2002-10-16 2002-10-16 Unbalance measuring device and unbalance measuring method for rotating body material

Country Status (1)

Country Link
JP (1) JP3989814B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065966B2 (en) * 2002-12-05 2006-06-27 Hitachi, Ltd. Position control method by motor drive and control unit
EP3037799A1 (en) * 2014-12-23 2016-06-29 Honeywell International Inc. Turbocharger wheel balance-test jig

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065966B2 (en) * 2002-12-05 2006-06-27 Hitachi, Ltd. Position control method by motor drive and control unit
EP3037799A1 (en) * 2014-12-23 2016-06-29 Honeywell International Inc. Turbocharger wheel balance-test jig

Also Published As

Publication number Publication date
JP3989814B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
KR20090129361A (en) Tire testing machine and tire testing method
CN101435733B (en) Laser balance adjusting device
JP5449889B2 (en) Method and apparatus for quantitatively detecting unbalanced state and method for detecting clamped state of workpiece
WO2012043121A1 (en) Imbalance correction method and imbalance correction amount calculation device for rotor
JP2009236571A (en) Apparatus and method for measuring rotational accuracy for bearings
JPH0446197Y2 (en)
KR20150088924A (en) Roundness measuring system of large bearing
CN105424279B (en) The method for detecting bearing retainer unbalancing value
JPWO2022085744A5 (en)
CN208759384U (en) A kind of positioning mechanism of disk part by performing
JP2004138423A (en) Apparatus for measuring unbalance in rotor material and method for measuring unbalance
US20140239568A1 (en) Rotary table for machine tool
JP2000205854A (en) Method for measuring size of machine part
JPS63210437A (en) Jig and method for correcting unbalance of cylindrical rotary body
JP2003194653A (en) Measuring method and correction method of unbalance of body of rotation device therefor
JPH02259445A (en) Method for correcting accuracy of tire uniformity machine
JPH10299501A (en) Manufacture of turbocharger and device therefor
CN104019781A (en) Measuring head capable of measuring radius height and contraaperture parallelism of bearing bush at the same time
JPH10291260A (en) Accuracy inspecting device for bead setter for tire forming machine
JP4276124B2 (en) Mass centering method and apparatus
CN219870131U (en) Crankshaft static balance gauge
JP3880669B2 (en) Unbalance measuring device
JP5499412B2 (en) Vibration amplitude and phase detection method in rotating device, vibration amplitude and phase detecting device in rotating device
JP2003245854A (en) Grinding wheel fitting device
JPH059632Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3989814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees