JP2004138016A - Exhaust particulate filter for internal combustion engine - Google Patents

Exhaust particulate filter for internal combustion engine Download PDF

Info

Publication number
JP2004138016A
JP2004138016A JP2002305406A JP2002305406A JP2004138016A JP 2004138016 A JP2004138016 A JP 2004138016A JP 2002305406 A JP2002305406 A JP 2002305406A JP 2002305406 A JP2002305406 A JP 2002305406A JP 2004138016 A JP2004138016 A JP 2004138016A
Authority
JP
Japan
Prior art keywords
exhaust
cellulose
particulate filter
filter
exhaust particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002305406A
Other languages
Japanese (ja)
Inventor
Akiko Miyahara
宮原 晶子
Katsuhiro Shibata
柴田 勝弘
Hidetoshi Ito
伊藤 秀俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002305406A priority Critical patent/JP2004138016A/en
Publication of JP2004138016A publication Critical patent/JP2004138016A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase exhaust particulate capture efficiency under a condition immediately after shipping or immediately after replacing an exhaust particulate filter. <P>SOLUTION: An exhaust particulate filter is provided with a filter main body 1 of a honeycomb type monolithic structure using porous ceramics, a cell 2 having an upstream end thereof blocked and a cell 2 having a downstream end blocked are contiguous. Whole surface of the filter main body 1 including the inside of the cell 2 is coated by cellulose 4. Since fine holes of ceramics are partially blocked by cellulose, initial capture efficiency is increased. Cellulose is completely burned by temperature of exhaust gas during operation, and does not have harmful effect on pressure loss after that. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、内燃機関の排気ガス中に含まれる排気微粒子を捕集する排気微粒子フィルタの改良に関する。
【0002】
【従来の技術】
内燃機関、特にディーゼル機関の排気ガス中に比較的多く含まれているスス(Soot)などの排気微粒子を除去するために、従来から、特許文献1、特許文献2に見られるように、DPF(ディーゼルパティキュレートフィルタ)などと呼ばれる排気微粒子フィルタを排気系に介装し、排気微粒子を捕集することが行われている。そして、この種のフィルタは、排気微粒子の捕集に伴って経時的に目詰まりを生じるので、一般に、何らかの手段でもって捕集した排気微粒子を燃焼させ、フィルタから除去するようにしている。なお、捕集した排気微粒子の酸化発熱反応の促進あるいは排気中のCOやHCの除去などのために、触媒金属を担持させた所謂触媒付きの排気微粒子フィルタも多く用いられている。
【0003】
上記排気微粒子フィルタとしては、特許文献1に記載されているような不織布を多数回巻回したもの、特許文献2に記載されているような多孔質セラミックスのハニカム型モノリス構造のもの、などが知られている。
【0004】
【特許文献1】
特開2002−168112号公報
【0005】
【特許文献2】
特開平5−222913号公報
【0006】
【発明が解決しようとする課題】
上記排気微粒子フィルタにおいては、定常的な使用状態の下では、捕集した排気微粒子が完全に燃焼されることはほとんどなく、新品時の状態に比較して、ある程度の量の排気微粒子が残った状態でもって、内燃機関の運転がなされる。そのため、このようなある程度の排気微粒子が残存した状態において、フィルタの圧力損失が適当な値となるように、フィルタの目の粗さ、例えば多孔質セラミックス担体の気孔率が設定されている。定常的な使用状態では、このセラミックス担体の細孔に、排気微粒子が付着ないしは堆積した状態となっており、これが、新たな排気微粒子の捕集に寄与している。
【0007】
従って、排気微粒子フィルタが新品状態であるとき、つまり出荷直後や排気微粒子フィルタを交換した直後などは、気孔率が過大であると言え、排気ガスに含まれている排気微粒子が、排気ガスの流れとともにフィルタを通過しやすいことから、排気微粒子の捕集効率が低いものとなってしまう。図4は、新品の排気微粒子フィルタを内燃機関に装着し、その運転時間の経過に伴う捕集効率の変化を測定した場合の特性の一例を示している。図示するように、初期は捕集効率が非常に低く、ある程度の時間運転した段階(つまり排気微粒子がある程度捕集された状態)で、目標とする捕集効率に到達する。
【0008】
なお、仮に、新品時から十分に高い捕集効率が得られるように気孔率を小さく設定すると、定常的な使用状態の下では、圧力損失が過大となりやすい。
【0009】
【課題を解決するための手段】
そこで、この発明では、内燃機関の排気系に介装されて排気ガス中の排気微粒子を捕集する内燃機関の排気微粒子フィルタにおいて、予め可燃性の有機物を塗布し、初期の捕集効率を高めるようにした。
【0010】
上記有機物としては、例えば、セルロースや澱粉などを用いることができ、運転中に徐々に燃焼除去されるように、例えば、200℃〜400℃の排気温度により燃焼可能なものであることが望ましい。
【0011】
つまり、本発明では、排気微粒子が捕集されるフィルタ表面に予めセルロース等の有機物を塗布しておくことで、フィルタの細孔が狭められ、あるいは部分的に埋められる形となって、排気ガスが通過しにくくなり、かつ排気微粒子の捕集効率が高まる。そして、この有機物は、内燃機関の運転中に、排気微粒子フィルタを通過する排気の熱によって徐々に燃焼し、いずれ完全に焼失する。従って、焼失後は、排気微粒子フィルタの圧力損失に悪影響を与えることはない。つまり、定常的な使用状態の下での圧力損失を悪化させることなく、排気微粒子が堆積していない初期の捕集効率が高められる。
【0012】
なお、有機物として比較的低い温度では焼失しない材料を選択したとしても、排気微粒子フィルタに捕集された排気微粒子が燃焼除去される際には、排気微粒子フィルタが十分に高温となるので、遅くとも、この段階で確実に焼失する。
【0013】
【発明の効果】
この発明に係る内燃機関の排気微粒子フィルタによれば、定常的な使用状態の下での圧力損失を何ら悪化させることなく、初期の排気微粒子の捕集効率を高めることができ、出荷直後あるいは排気微粒子フィルタ交換直後から良好な排気微粒子捕集性能を得ることができる。
【0014】
【発明の実施の形態】
以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0015】
図1は、ディーゼル機関の排気微粒子の捕集に用いられる排気微粒子フィルタつまりディーゼルパティキュレートフィルタとして構成した本発明の一実施例を示しており、この実施例では、多孔質セラミックスを用いたハニカム型モノリス構造のフィルタとして構成されている。全体として円柱状をなすセラミックス製のフィルタ本体1は、その軸方向に沿って、多数の微細な通路つまり多数のセル2を有し、各セル2が、薄い壁3で仕切られている。そして、多数のセル2の中の一部のものは、フィルタの上流端で閉塞(いわゆる目封じ、目詰め)され、残りのものは、フィルタの下流端で閉塞されている。典型的には、上流端が閉塞されたセル2と下流端が閉塞されたセル2とが、互いに隣接して交互に配置されている。従って、下流端が閉塞されたセル2に流入した排気ガスは、多孔質の壁3を通って隣接するセル2に流入し、このセル2の開口した下流端から流出することになる。排気ガスに含まれていた排気微粒子は、主に、排気ガスが多孔質の壁3を通過する際に、ここで捕集除去される。
【0016】
本発明においては、フィルタ本体1のセル2内部を含む表面全体に、可燃性有機物として、セルロース4が塗布されている。具体的には、コーティング液として、水に粉体状セルロースを混合し、このコーティング液中にフィルタ本体1を浸漬して、全体をコーティングし、乾燥させてある。なお、図1では、セラミックスの表面を完全に覆う層状にセルロースの層4が図示されているが、これは模式的に示したものであり、セルロースの濃度あるいはセルロースの性状などによっては、セル2の内側表面が部分的に露出した状態となっていても良い。
【0017】
このようにコーティングされたセルロースは、セル2の内側表面の細孔内に入り込み、細孔を部分的に塞ぐようになるので、フィルタ本体1の実質的な気孔率が小さくなる。
【0018】
次に、より具体的な実施例を説明する。本発明の評価のために、表1に示すように、実施例1〜12および比較例1〜3の排気微粒子フィルタを試作した。いずれもフィルタ本体1の形状(寸法)およびセル構造は、同一である。比較例1に対し、比較例2は、セラミックスの気孔率を異ならせたもので、比較例3は、セラミックスの材質を変更したものである。実施例1〜3は、比較例1と同じフィルタ本体1を備え、かつセルロースのコーティングを行ったものであり、それぞれ、コーティング液におけるセルロース濃度を、1g/L、3g/L、5g/L、と変化させたものである。実施例4〜6は、比較例2と同じフィルタ本体1を備えており、同様に、セルロース濃度を3段階に変化させたものである。実施例7〜9は、比較例3と同じフィルタ本体1を備えており、同様に、セルロース濃度を3段階に変化させたものである。また、実施例10〜12は、比較例2と同じフィルタ本体1を用い、これに触媒金属(Pt)を含むウォッシュコート(W/C)層をコーティングした、いわゆる触媒付きの排気微粒子フィルタについて、同様にセルロースのコーティングを行った例を示している。
【0019】
そして、これらの排気微粒子フィルタを、内燃機関に装着し、図2に示すように、運転時間の経過に伴う捕集効率の変化を測定した。なお、このときの排気微粒子フィルタ入口における排気温度は、図示するように、200℃一定である。前述したように、捕集効率は、一般に排気微粒子フィルタにおける排気微粒子の捕集に伴って高くなっていくが、運転開始後、5分の時点の捕集効率を、「初期捕集率」とし、表1にまとめた。なお、図2に示す捕集効率の特性は、セルロースを具備しない比較例の特性例である。そして、60分間運転した段階での捕集効率を、「安定後捕集率」とし、表1にまとめた。また、この60分後の段階での圧力損失を、上流側での排圧として測定した。
【0020】
次に、上記のように60分間運転して排気微粒子を捕集した排気微粒子フィルタを、セルロースを焼却除去するために、400℃の排気温度下に20分間晒した後に、再度、図2に示す上述した要領で試験を行い、運転開始後5分の時点の捕集効率を「焼成後捕集率」として測定し、かつ同時に、圧力損失(排圧)を測定して、表1にまとめた。
【0021】
【表1】

Figure 2004138016
【0022】
この表1に示すように、セルロースを塗布しておくことで、初期捕集率が明らかに向上する。そして、焼成後つまりセルロースが焼失した後は、圧力損失は、セルロースを塗布しない各比較例と全く変わらないレベルとなる。触媒付きの排気微粒子フィルタにおいても、セルロースを塗布することで、同様の効果が得られた。また、セルロース量についてみると、1g/Lの少量のセルロースでも明らかに効果があるが、3g/Lの濃度にまでセルロース量を増やせば、さらに高い効果が得られる。これ以上セルロース量を増やしても、初期捕集率は殆ど向上しない。従って、3g/Lの濃度でコーティングすることが望ましい。
【0023】
本実施例で用いられたセルロースは、排気温度が200℃でも焼失が始まり、排気温度が400℃であれば、完全に焼失する。図3は、セルロースを塗布した実施例と塗布しない比較例とで、上述した試験と同様の試験を行って、その間の排圧の変化を示したものである。図示するように、セルロースを塗布した実施例は、比較例に比べて、初期の排圧は高い。その後、実施例、比較例ともに、排気微粒子の捕集に伴って排圧が高くなっていくが、ある段階でセルロースが焼失し始めることから、実施例の排圧上昇は緩慢となる。そして、排気温度が400℃となると、セルロースが焼失するとともに、排気微粒子の一部が燃焼除去されるので、排圧が急激に低下する。400℃で20分経過した時点では、実施例と比較例の排圧はほぼ一致し、従って、セルロースはほぼ完全に焼失している。
【0024】
以上、本発明を、多孔質セラミックスを用いたハニカム型モノリス構造の排気微粒子フィルタに適用した実施例について説明したが、本発明は、これに限定されず、金属製モノリス担体やセラミックス繊維もしくは金属繊維の不織布を用いたものなど、種々の形式の排気微粒子フィルタに適用することが可能である。
【図面の簡単な説明】
【図1】この発明の一実施例を示す排気微粒子フィルタ要部の拡大図。
【図2】比較例および実施例に対する試験の説明図。
【図3】実施例と比較例との排圧変化を対比して示す特性図。
【図4】従来の排気微粒子フィルタにおける捕集効率の経時的変化を示す特性図。
【符号の説明】
1…フィルタ本体
2…セル
4…セルロース[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in an exhaust particulate filter that collects exhaust particulates contained in exhaust gas of an internal combustion engine.
[0002]
[Prior art]
Conventionally, in order to remove soot (soot) contained in exhaust gas of an internal combustion engine, particularly a diesel engine in a relatively large amount, exhaust gas such as soot has been conventionally used as disclosed in Patent Documents 1 and 2 (DPF). 2. Description of the Related Art An exhaust particulate filter called a diesel particulate filter) is interposed in an exhaust system to collect exhaust particulates. Since this type of filter is clogged with the passage of time with the collection of exhaust particulates, the collected exhaust particulates are generally burned by some means and removed from the filter. In addition, a so-called catalyst-equipped exhaust particulate filter carrying a catalytic metal is often used to promote the oxidative exothermic reaction of the collected exhaust particulates or to remove CO and HC in the exhaust.
[0003]
Examples of the exhaust particulate filter include those obtained by winding a nonwoven fabric many times as described in Patent Document 1 and those having a honeycomb type monolithic structure of porous ceramics described in Patent Document 2. Have been.
[0004]
[Patent Document 1]
JP, 2002-168112, A
[Patent Document 2]
JP-A-5-222913
[Problems to be solved by the invention]
In the above-mentioned exhaust particulate filter, the collected exhaust particulates are hardly completely burned under a steady use condition, and a certain amount of exhaust particulates remains as compared with a state of a new article. In this state, the operation of the internal combustion engine is performed. Therefore, the roughness of the filter, for example, the porosity of the porous ceramics carrier, is set so that the pressure loss of the filter becomes an appropriate value in a state where such a certain amount of exhaust particulates remains. In a steady state of use, exhaust fine particles adhere or accumulate in the pores of the ceramic carrier, and this contributes to the collection of new exhaust fine particles.
[0007]
Therefore, when the exhaust particulate filter is in a new state, that is, immediately after shipment or immediately after replacement of the exhaust particulate filter, it can be said that the porosity is excessive, and the exhaust particulate contained in the exhaust gas is reduced by the flow of the exhaust gas. At the same time, the filter easily passes through the filter, so that the efficiency of trapping exhaust particulates is low. FIG. 4 shows an example of the characteristics when a new exhaust particulate filter is mounted on an internal combustion engine and the change in the collection efficiency with the elapse of the operation time is measured. As shown in the figure, the trapping efficiency is very low at the beginning, and reaches the target trapping efficiency at the stage of operating for a certain period of time (that is, in a state where exhaust particulates are trapped to some extent).
[0008]
Incidentally, if the porosity is set small so that a sufficiently high collection efficiency can be obtained from the time of new product, the pressure loss tends to be excessive under a steady use condition.
[0009]
[Means for Solving the Problems]
Therefore, according to the present invention, in an exhaust particulate filter of an internal combustion engine that is interposed in an exhaust system of an internal combustion engine and collects exhaust particulates in exhaust gas, a combustible organic substance is applied in advance to increase an initial collection efficiency. I did it.
[0010]
As the organic substance, for example, cellulose or starch can be used, and it is desirable that the organic substance can be burned at an exhaust temperature of, for example, 200 ° C. to 400 ° C. so as to be gradually burned and removed during operation.
[0011]
That is, in the present invention, by applying an organic substance such as cellulose on the surface of the filter from which the exhaust particulates are collected, the pores of the filter are narrowed or partially filled, and the exhaust gas is exhausted. Are difficult to pass through, and the efficiency of collecting exhaust particulates increases. Then, during the operation of the internal combustion engine, the organic matter gradually burns due to the heat of the exhaust gas passing through the exhaust particulate filter, and eventually burns off completely. Therefore, after burning out, there is no adverse effect on the pressure loss of the exhaust particulate filter. That is, the initial collection efficiency in which the exhaust fine particles are not deposited can be increased without deteriorating the pressure loss under a steady use condition.
[0012]
Even if a material that does not burn off at a relatively low temperature as an organic substance is selected, when the exhaust particulates collected by the exhaust particulate filter are burned and removed, the exhaust particulate filter becomes sufficiently high in temperature. At this stage it will surely burn out.
[0013]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the exhaust particulate filter of an internal combustion engine according to the present invention, it is possible to enhance the initial exhaust particulate collection efficiency without deteriorating the pressure loss under a steady use state, and Good exhaust particulate collection performance can be obtained immediately after replacing the particulate filter.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 shows an embodiment of the present invention configured as an exhaust particulate filter used for collecting exhaust particulates of a diesel engine, that is, a diesel particulate filter. In this embodiment, a honeycomb type filter using porous ceramics is used. The filter is configured as a monolithic filter. The ceramic filter body 1 having a columnar shape as a whole has a large number of fine passages, that is, a large number of cells 2 along the axial direction thereof, and each cell 2 is partitioned by a thin wall 3. Some of the cells 2 are closed (so-called plugging and clogging) at the upstream end of the filter, and the others are closed at the downstream end of the filter. Typically, the cells 2 whose upstream ends are closed and the cells 2 whose downstream ends are closed are alternately arranged adjacent to each other. Therefore, the exhaust gas flowing into the cell 2 whose downstream end is closed flows into the adjacent cell 2 through the porous wall 3 and flows out from the open downstream end of the cell 2. Exhaust particulates contained in the exhaust gas are mainly collected and removed here when the exhaust gas passes through the porous wall 3.
[0016]
In the present invention, the entire surface including the inside of the cell 2 of the filter body 1 is coated with cellulose 4 as a combustible organic substance. Specifically, powdery cellulose is mixed with water as a coating liquid, and the filter body 1 is immersed in the coating liquid to coat the entirety and dry. In FIG. 1, the cellulose layer 4 is shown as a layer that completely covers the surface of the ceramics, but this is a schematic illustration, and depending on the concentration of cellulose or the properties of cellulose, the cell 2 may be used. May be partially exposed.
[0017]
The cellulose coated in this way enters the pores on the inner surface of the cell 2 and partially blocks the pores, so that the substantial porosity of the filter body 1 is reduced.
[0018]
Next, more specific examples will be described. For evaluation of the present invention, as shown in Table 1, exhaust particulate filters of Examples 1 to 12 and Comparative Examples 1 to 3 were produced as trials. In each case, the shape (dimensions) and cell structure of the filter main body 1 are the same. Comparative Example 2 is different from Comparative Example 1 in that the porosity of the ceramics is different, and Comparative Example 3 is one in which the material of the ceramics is changed. In Examples 1 to 3, the same filter body 1 as in Comparative Example 1 was provided, and cellulose coating was performed. The cellulose concentrations in the coating solution were 1 g / L, 3 g / L, 5 g / L, It was changed. Examples 4 to 6 have the same filter main body 1 as Comparative Example 2, and similarly have the cellulose concentration changed in three stages. Examples 7 to 9 include the same filter main body 1 as Comparative Example 3, and similarly have the cellulose concentration changed in three stages. In Examples 10 to 12, the so-called catalyst-equipped exhaust particulate filter using the same filter body 1 as Comparative Example 2 and coating the same with a wash coat (W / C) layer containing a catalyst metal (Pt) was used. An example in which cellulose coating is performed similarly is shown.
[0019]
Then, these exhaust particulate filters were mounted on an internal combustion engine, and as shown in FIG. 2, a change in the collection efficiency with the elapse of the operation time was measured. The exhaust gas temperature at the exhaust particulate filter inlet at this time is constant at 200 ° C. as shown in the figure. As described above, the trapping efficiency generally increases with the trapping of the exhaust particulates in the exhaust particulate filter, but the trapping efficiency at 5 minutes after the start of operation is defined as the “initial trapping rate”. , And Table 1. In addition, the characteristic of the collection efficiency shown in FIG. 2 is a characteristic example of a comparative example having no cellulose. Then, the collection efficiency at the stage of operation for 60 minutes is referred to as “post-stable collection rate” and is summarized in Table 1. The pressure loss at the stage after 60 minutes was measured as the exhaust pressure on the upstream side.
[0020]
Next, after the exhaust particulate filter that has been operated for 60 minutes as described above to collect the exhaust particulates is exposed to an exhaust temperature of 400 ° C. for 20 minutes in order to incinerate and remove cellulose, the filter is again shown in FIG. The test was conducted in the manner described above, and the collection efficiency at 5 minutes after the start of operation was measured as the “collection rate after firing”, and at the same time, the pressure loss (discharge pressure) was measured. .
[0021]
[Table 1]
Figure 2004138016
[0022]
As shown in Table 1, the initial collection rate is clearly improved by applying cellulose. Then, after firing, that is, after the cellulose is burned off, the pressure loss is at a level which is completely the same as that of each comparative example in which no cellulose is applied. The same effect was obtained in the exhaust particulate filter with a catalyst by applying cellulose. Regarding the amount of cellulose, even a small amount of cellulose of 1 g / L has a clear effect, but a higher effect can be obtained by increasing the amount of cellulose to a concentration of 3 g / L. Even if the amount of cellulose is further increased, the initial collection rate hardly improves. Therefore, it is desirable to coat at a concentration of 3 g / L.
[0023]
The cellulose used in the present example starts burning even at an exhaust temperature of 200 ° C, and completely burns off at an exhaust temperature of 400 ° C. FIG. 3 shows the change in the exhaust pressure during the same test as the above-described test in the example where cellulose was applied and the comparative example where no cellulose was applied. As shown in the figure, the example in which cellulose was applied has a higher initial exhaust pressure than the comparative example. Thereafter, in both the example and the comparative example, the exhaust pressure increases with the collection of the exhaust fine particles. However, since the cellulose starts burning at a certain stage, the increase in the exhaust pressure in the example becomes slow. When the exhaust temperature reaches 400 ° C., the cellulose is burned off, and a part of the exhaust fine particles is burned off, so that the exhaust pressure drops sharply. At the time when 20 minutes have passed at 400 ° C., the exhaust pressures of the example and the comparative example are almost the same, and therefore, the cellulose is almost completely burned off.
[0024]
As described above, the embodiment in which the present invention is applied to an exhaust particulate filter having a honeycomb type monolith structure using porous ceramics has been described. However, the present invention is not limited to this, and the present invention is not limited thereto. It can be applied to various types of exhaust particulate filters such as those using nonwoven fabrics.
[Brief description of the drawings]
FIG. 1 is an enlarged view of a main part of an exhaust particulate filter showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a test for a comparative example and an example.
FIG. 3 is a characteristic diagram showing a change in exhaust pressure between an example and a comparative example.
FIG. 4 is a characteristic diagram showing a change over time in the collection efficiency of a conventional exhaust particulate filter.
[Explanation of symbols]
1: Filter body 2: Cell 4: Cellulose

Claims (4)

内燃機関の排気系に介装されて排気ガス中の排気微粒子を捕集する内燃機関の排気微粒子フィルタにおいて、予め可燃性の有機物を塗布したことを特徴とする内燃機関の排気微粒子フィルタ。An exhaust particulate filter for an internal combustion engine which is interposed in an exhaust system of an internal combustion engine and collects exhaust particulates in exhaust gas, wherein a combustible organic substance is applied in advance. 上記有機物は、セルロースであることを特徴とする請求項1に記載の内燃機関の排気微粒子フィルタ。The exhaust particulate filter for an internal combustion engine according to claim 1, wherein the organic substance is cellulose. コーティング液として、1g/L以上の濃度となるように水中にセルロースを混合し、これを塗布したことを特徴とする請求項2に記載の内燃機関の排気微粒子フィルタ。The exhaust particulate filter for an internal combustion engine according to claim 2, wherein cellulose is mixed in water so as to have a concentration of 1 g / L or more as a coating liquid, and the mixture is applied. 上記有機物は、200℃〜400℃の排気温度により燃焼可能なものであることを特徴とする請求項1に記載の内燃機関の排気微粒子フィルタ。The exhaust particulate filter for an internal combustion engine according to claim 1, wherein the organic matter is combustible at an exhaust temperature of 200C to 400C.
JP2002305406A 2002-10-21 2002-10-21 Exhaust particulate filter for internal combustion engine Pending JP2004138016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305406A JP2004138016A (en) 2002-10-21 2002-10-21 Exhaust particulate filter for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305406A JP2004138016A (en) 2002-10-21 2002-10-21 Exhaust particulate filter for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004138016A true JP2004138016A (en) 2004-05-13

Family

ID=32452514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305406A Pending JP2004138016A (en) 2002-10-21 2002-10-21 Exhaust particulate filter for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004138016A (en)

Similar Documents

Publication Publication Date Title
JP4971166B2 (en) Honeycomb catalyst body, precoat carrier for manufacturing honeycomb catalyst body, and method for manufacturing honeycomb catalyst body
JP3387290B2 (en) Exhaust gas purification filter
EP1371826A2 (en) Filter catalyst for purifying exhaust gases
WO2012046484A1 (en) Exhaust gas purification device
KR100747088B1 (en) Dpf with improving heat durability
WO2008066167A1 (en) Ceramic honeycomb filter and method for manufacturing the same
WO2007032825A1 (en) Diesel exhaust article and catalyst compositions therefor
JP2010269205A (en) Catalyst for cleaning exhaust gas
JP2012172597A (en) Exhaust purification filter
KR20090071604A (en) Washcoated particulate filter substrate
JP4949696B2 (en) Diesel exhaust gas purification filter
JP2009509742A (en) Method for obtaining a homogeneous filtration structure for catalyst application
JP2001327818A (en) Ceramic filter and filtration device
WO2014178633A1 (en) Gasoline particulate filter for gasoline direct injection engine
JP4006645B2 (en) Exhaust gas purification device
JP2004130231A (en) Honeycomb structure, its production method, and exhaust gas cleaning system using the honeycomb structure
JP2004076717A (en) Exhaust gas purification filter, exhaust gas purification catalyst, and its manufacturing method
JPH09276708A (en) Catalyst for cleaning of exhaust gas from diesel engine
JP2006233935A (en) Exhaust emission control device
JP2004188303A (en) Ceramic honeycomb filter
JP2002119867A (en) Catalytic structural body for purifying waste gas
JP2009228618A (en) Exhaust emission control device
JP2004255299A (en) Filter for supporting catalyst, solvent drying method and method for supporting catalyst on filter using the method
JP2006077672A (en) Exhaust emission control filter and exhaust emission control device
JP2007244950A (en) Particulate filter type exhaust gas cleaning catalyst and particulate filter