JP2004137926A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2004137926A
JP2004137926A JP2002301622A JP2002301622A JP2004137926A JP 2004137926 A JP2004137926 A JP 2004137926A JP 2002301622 A JP2002301622 A JP 2002301622A JP 2002301622 A JP2002301622 A JP 2002301622A JP 2004137926 A JP2004137926 A JP 2004137926A
Authority
JP
Japan
Prior art keywords
guide portion
main bearing
bearing
main
hermetic compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301622A
Other languages
Japanese (ja)
Other versions
JP3977223B2 (en
Inventor
Kosuke Tsuboi
坪井 康祐
Hironari Akashi
明石 浩業
Makoto Katayama
片山 誠
Takahide Nagao
長尾 崇秀
Takashi Kakiuchi
垣内 隆志
Junta Kawabata
川端 淳太
Akihiko Kubota
窪田 昭彦
Takeshi Kojima
小島 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002301622A priority Critical patent/JP3977223B2/en
Publication of JP2004137926A publication Critical patent/JP2004137926A/en
Application granted granted Critical
Publication of JP3977223B2 publication Critical patent/JP3977223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce sliding loss in a hermetic compressor. <P>SOLUTION: A first guide part 117 whose diameter holds an axial center in common with a main bearing 115 is arranged on a flange 116 extended in the radial direction of the main spindle of the main bearing 115, and also a second guide part 118 whose diameter holds an axial center in common with an auxiliary bearing 114 is arranged in a cylinder block 111. The first guide part 117 is fitted to the second guide part 118 so as to restrict a degree of freedom, thereby the axial center of the auxiliary bearing 114 is approximately matched with the axial center of the main bearing 115, loads are distributed equally, and the sliding loss can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫、エアーコンディショナー、冷凍冷蔵装置等に用いられる密閉型圧縮機に関するものである。
【0002】
【従来の技術】
近年、家庭用冷凍冷蔵庫等の冷凍装置に使用される密閉型圧縮機については、消費電力の低減や静音化が強く望まれている。こうした中、潤滑油の低粘度化や、インバーター駆動による圧縮機の低回転化(例えば、家庭用冷蔵庫の場合、1200r/min程度)が進んできている。
【0003】
一方、オゾン破壊係数がゼロであるR134aやR600aに代表される温暖化係数の低い自然冷媒である炭化水素系冷媒等への対応が前提となってきている。
【0004】
また、過去より採用されていたシャフトを2ヵ所以上で保持する両持ち軸受という方法は、摺動ロスを減らし、また運転時の振動、騒音を低減する要素技術として有効である。
【0005】
従来の密閉型圧縮機としては、別体の副軸受を圧縮部上部にねじで固定したものがある(例えば、特許文献1参照。)。
【0006】
以下、図面を参照しながら、上述した従来の密閉型圧縮機について説明する。
【0007】
図6は従来の密閉型圧縮機の縦断面図である。図7は従来の密閉形圧縮機の上側容器を外した状態の要部上面図である。
【0008】
図6、図7において、密閉容器1で囲まれた密閉容器内空間2には、巻線部3aを保有する固定子3と回転子4からなる電動要素5と、電動要素5によって駆動される圧縮要素6を収容する。密閉容器1内に潤滑油8を貯溜する。
【0009】
シャフト10は、回転子5を圧入固定した主軸部11および主軸部11に対し偏心して形成された偏心部12の他、主軸部11と同軸に設けられた副軸部13を有する。
【0010】
シリンダブロック15は、略円筒形の圧縮室16を有すると共に主軸部11を軸支する主軸受17を有し、上方に副軸部13を軸支する副軸受19が3本のねじ20で固定されており、ピストン19はシリンダブロック15の圧縮室16に往復摺動自在に挿入され、偏心部12との間を連結手段21とピストンピン22によって連結されている。
【0011】
以上のように構成された密閉型圧縮機について以下その動作を説明する。
【0012】
電動要素5の回転子4はシャフト10を回転させ、偏心部12の回転運動が連結手段21を介してピストン19に伝えられることでピストン19は圧縮室16内を往復運動する。それにより、冷媒ガスは冷却システム(図示せず)から圧縮室16内へ吸入・圧縮された後、再び冷却システムへと吐き出される。
【0013】
ここで、両持ち軸受の摺動ロス減のメカニズムに関して説明する。
【0014】
圧縮機運転中にピストン19の圧縮荷重が連結手段21を介して偏心部12へと伝達される。ここで、両持ち軸受タイプはピストン19からの圧縮荷重のかかる偏心部12(作用点)を中心にして上下両方の軸受で荷重を受けるため、軸受には上下でほぼ均等な荷重が配分され、また、内周でこじりが生ずる片持ち軸受タイプと異なり面当たりとなるため、シャフト10摺動部の荷重分布が均等となることで面圧が下がり、片持ちタイプよりも摺動長を短くすることができる。その結果、摺動ロスが減少し、圧縮機の効率向上が図れるといった長所を備える。
【0015】
【特許文献1】
特開昭61−118571号公報
【0016】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、主軸受17とシリンダブロック15が一体の構造となっているため、主軸受17にシリンダブロック15と異なる材料を用いることができず、更なる高エネルギー効率を得るために摩擦係数を下げ、摺動ロスを減らすことができないという可能性があった。
【0017】
また、上記従来の構成では、シリンダブロック15の材質と線膨張係数の異なる材質からなる副軸受18とした場合、運転時の温度上昇により、副軸受18の軸心が主軸受17の軸心からずれるため、均等に荷重が配分されず、摺動ロスが減少せず、金属接触による摺動ロスが発生する可能性があった。
【0018】
また、上記従来の構成では、3本のねじ20のみで固定するため、副軸受18の軸心が主軸受17の軸心と一致せず均等に荷重が配分されず、摺動ロスが減少しない可能性があった。
【0019】
また、上記従来の構成では、圧縮要素6を組み立てる際に副軸受18をシリンダブロック15に固定する際に、シャフト10を回転させながら組み立てるといった方法で、略軸心を出さなければならず、組み立ての効率が悪かった。
【0020】
また、上記従来の構成では、副軸受18をシリンダブロック15に固定する際に、組み立て時のばらつきからくるエネルギー効率のばらつきが発生する可能性があった。
【0021】
本発明は上記従来の課題を解決するもので、エネルギー効率が高くて、組み立て性がよい密閉型圧縮機を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、略円筒形の圧縮室を備えたシリンダブロックと、前記シリンダブロックと一体に形成され、前記副軸部を軸支する副軸受と、前記シリンダブロックに固定され前記主軸部を軸支するアルミニウム材からなる主軸受とを備え、前記主軸受の主軸の半径方向に延出されたフランジに径が前記主軸受と軸心を共有する第一の案内部を設けると共に前記シリンダブロックに径が前記副軸受と軸心を共有する第二の案内部を設け、前記第一の案内部を前記第二の案内部に嵌合したものである。
【0023】
上記構成により請求項1に記載の発明では、第一の案内部と第二の案内部とが嵌合し自由度を制限するので、副軸受の軸心が主軸受の軸心と略一致し、均等に荷重が配分され、摺動ロスが減少するという作用を有する。また、摩擦係数の低くなるアルミニウム材を主軸受に用い、主軸受をシリンダブロックと別体構造としたので主軸受にシリンダブロックと異なる材料を用いることができ、更なる高エネルギー効率を得るために摩擦係数を下げ、摺動ロスを減らすことができるという作用を有する。また、運転時に温度上昇したとき主軸受が軸心を中心として半径方向に均等に膨張するため、運転時温度上昇により、副軸受の軸心が主軸受の軸心からずれることを防ぎ、均等に荷重が配分し、摺動ロスが減少し、金属接触による摺動ロスを発生させないという作用を有する。
【0024】
請求項2に記載の発明は、請求項1記載の発明に、更に、第一の案内部の内径面と、第二の案内部の外径面とが隣接したものであり、請求項1記載の発明の作用に加えて、シャフトを回転させながら軸心を出す作業が必要なくなるので、組み立ての効率が良くなるという作用を有する。また、運転時は第一の案内部の内径面と、第二の案内部の外径面とが離れるため、運転時の主軸受における摺動部の熱変形を減少させるという作用を有する。
【0025】
請求項3に記載の発明は、請求項1記載の発明に、更に、第一の案内部の外径面と、第二の案内部の内径面とが隣接したものであり、請求項1記載の発明の作用に加えて、シャフトを回転させながら軸心を出す作業が必要なくなるので、組み立ての効率が良くなるという作用を有する。
【0026】
請求項4に記載の発明は、請求項2に記載の発明に、更に、主軸受における第一の案内部の内周側に設けられ前記主軸受と軸心を共有する溝を備えたものであり、請求項2記載の発明の作用に加えて、主軸受における溝の付近、特に固定される付近で変形を吸収するので、運転時の主軸受における摺動部の熱変形を更に減少させるという作用を有する。
【0027】
請求項5に記載の発明は、請求項3に記載の発明に、更に、主軸受における第一の案内部の内周側に設けられ前記主軸受と軸心を共有する溝を備えたものであり、請求項3記載の発明の作用に加えて、主軸受における溝の付近全周で、変形を吸収するので、運転時の主軸受における摺動部の熱変形を減少させるという作用を有する。
【0028】
請求項6に記載の発明は、請求項2に記載の発明に、更に、第一の案内部が、第二の案内部に軽圧入されているものであり、請求項2記載の発明の作用に加えて、軽圧入で第一の案内部にかかる外向き半径方向の力によりわずかに起こる変形をフランジで吸収し、第一の案内部と第二の案内部との加工精度で軸心が決まるので、副軸受の軸心が主軸受の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという作用を有する。また、ばらつき要因となる第一の案内部と第二の案内部の隙間をなくしたので、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという作用を有する。
【0029】
請求項7に記載の発明は、請求項3に記載の発明に、更に、第一の案内部が、第二の案内部に軽圧入されているものであり、請求項3記載の発明の作用に加えて、軽圧入で第一の案内部にかかる内向き半径方向の力によりわずかに起こる変形をフランジで吸収し、第一の案内部と第二の案内部との加工精度で軸心が決まるので、副軸受の軸心が主軸受の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという作用を有する。また、ばらつき要因となる第一の案内部と第二の案内部の隙間をなくしたので、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという作用を有する。
【0030】
【発明の実施の形態】
以下、本発明による圧縮機の実施の形態について、図面を参照しながら説明する。
【0031】
(実施の形態1)
図1は、本発明の実施の形態1による密閉型圧縮機の縦断面図である。
【0032】
図1に示すように、密閉容器101は、巻線部102aを保有する固定子102と回転子103からなる電動要素104と、電動要素104によって駆動される圧縮要素105を収容する。
【0033】
圧縮要素105は、偏心軸部106を挟んで上下に同軸状に設けた副軸部107および主軸部108とを有したシャフト109と、略円筒形の圧縮室110を備えた例えば鉄系の鋳物材からなるシリンダブロック111と、圧縮室内110で往復運動するピストン112と、ピストン112と偏心軸部106とを連結する連結手段113として機能するコンロッドと、シリンダブロック111と一体に形成され、副軸部107を軸支する副軸受114と、シリンダブロック111に固定され主軸部108を軸支するアルミニウム材からなる主軸受115とを備えている。
【0034】
主軸受115のシリンダブロック111への固定には、例えば、ねじ、リベット等が使用できる。そして主軸受115のフランジ116に径が主軸受115と軸心を共有する第一の案内部117を設けると共に、シリンダブロック111に径が副軸受114と軸心を共有する第二の案内部118を設け、第一の案内部117を第二の案内部118に嵌合したものである。
【0035】
例えば第一の案内部117は円形状等であり、主軸受115の回転機による機械加工と同時に加工することにより、容易に主軸受115と軸心を共有することができる。
【0036】
例えば第二の案内部118は円形状等であり、副軸部107の回転機による機械加工と同時に加工することにより、容易に副軸部107と軸心を共有することができる。
【0037】
これにより、第一の案内部117と第二の案内部118とが嵌合し自由度を制限するので、副軸受114の軸心が主軸受115の軸心と略一致し、均等に荷重が配分され、摺動ロスを減少させることができる。また、摩擦係数の低くなるアルミニウム材を主軸受115に用い、主軸受115をシリンダブロック111と別体構造としたので主軸受115にシリンダブロック111と異なる材料を用いることができ、更なる高エネルギー効率を得るために摩擦係数を下げ、摺動ロスを減らすことができる。また、運転時に温度上昇したとき主軸受115が軸心を中心として半径方向に均等に膨張するため、運転時の温度上昇により、副軸受114の軸心が主軸受115の軸心からずれることを防ぎ、均等に荷重が配分し、摺動ロスが減少し、金属接触による摺動ロスを発生させないことができる。
【0038】
(実施の形態2)
図2は実施の形態2による密閉型圧縮機におけるシリンダブロックと主軸受の嵌合部付近の要部断面図である。
【0039】
図2に示すように、本実施の形態は、実施の形態1による密閉型圧縮機に、更に、第一の案内部117の内径面119と、第二の案内部118の外径面120とが隣接したものである。第一の案内部117は、例えばフランジ116の外周にシリンダブロック111の方向へ突出するように形成されたリング形状である。第二の案内部118は、例えばシリンダブロック111から主軸受115の方向へ円筒形状で延出されている。
【0040】
これにより、シャフト108を回転させながら軸心を出す作業が必要なくなるので、組み立ての効率が良くすることができる。また、運転時は第一の案内部117の内径面119と、第二の案内部118の外径面120とが離れるため、運転時の主軸受115における摺動部の熱変形を減少させることができる。
【0041】
なお、本実施の形態において第一の案内部117を第二の案内部118に嵌合したが、第一の案内部117が、第二の案内部118に軽圧入されているとしてもよい。
【0042】
第一の案内部117が、第二の案内部118に軽圧入されていることにより、軽圧入で第一の案内部117にかかる外向き半径方向の力によりわずかに起こる変形をフランジ116で吸収し、第一の案内部117と第二の案内部118との加工精度で軸心が決まるので、副軸受114の軸心が主軸受115の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという効果が得られる。また、ばらつき要因となる第一の案内部117と第二の案内部118の隙間をなくしたので、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという効果が得られる。
【0043】
(実施の形態3)
図3は実施の形態3による密閉型圧縮機におけるシリンダブロックと主軸受の嵌合部付近の要部断面図である。
【0044】
図3に示すように、本実施の形態は、実施の形態1による密閉型圧縮機に、更に、第一の案内部117の外径面121と、第二の案内部118の内径面122とが隣接した構成としたものである。
【0045】
第一の案内部117は、例えばフランジ116の外周を研磨により加工したものであり、第二の案内部118は、例えばシリンダブロック111から主軸受115方向へリング状に延出したものである。
【0046】
これにより、シャフト108を回転させながら軸心を出す作業が必要なくなるので、組み立ての効率が良くなるという効果が得られる。
【0047】
なお、本実施の形態において第一の案内部117が、第二の案内部118に軽圧入されているとした場合は、軽圧入で第一の案内部117にかかる内向き半径方向の力によりわずかに起こる変形をフランジ116で吸収し、第一の案内部117と第二の案内部118との加工精度で軸心が決まるので、副軸受114の軸心が主軸受115の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという効果が得られる。
【0048】
また、ばらつき要因となる第一の案内部117と第二の案内部118の隙間をなくしたので、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという効果が得られる。
【0049】
(実施の形態4)
図4は実施の形態4による密閉型圧縮機におけるシリンダブロックと主軸受の嵌合部付近の要部断面図である。
【0050】
図4に示すように、本実施の形態は、実施の形態2による密閉型圧縮機に、主軸受115における第一の案内部117の内周側に設けられ前記主軸受511と軸心を共有する溝123を備えたものである。
【0051】
例えば溝123は、主軸受115におけるフランジ116にリング状に削り出して加工したものである。
【0052】
これにより、主軸受115における溝123の付近、特にねじ、リベット等で固定される付近で変形を吸収するので、運転時の主軸受115における摺動部の熱変形を更に減少させるという効果がえられる。
【0053】
(実施の形態5)
図5は実施の形態5による密閉型圧縮機におけるシリンダブロックと主軸受の嵌合部付近の要部断面図である。
【0054】
図5に示すように、本実施の形態は、実施の形態2による密閉型圧縮機に、主軸受115における第一の案内部117の内周側に設けられ前記主軸受115と軸心を共有する溝124を備えたものである。
【0055】
例えば溝124は、主軸受115におけるフランジ116にリング状に削り出して加工したものである。
【0056】
これにより、主軸受115における溝124の付近全周で変形を吸収するので、運転時の主軸受115における摺動部の熱変形を減少させるという効果がえられる。
【0057】
以上、実施の形態1から5においてアルミニウム材からなる主軸受について説明してきたが、主軸受をシリンダブロックの材質と線膨張係数の等しい材質、例えば同じ鋳鉄同士の組み合わせとした場合においても、摺動部の熱変形を減少させる以外の効果が同様に得られることは言うまでもない。
【0058】
【発明の効果】
以上説明したように請求項1に記載の発明は、副軸受の軸心が主軸受の軸心と略一致し、均等に荷重が配分され、摺動ロスが減少するという効果がある。また、主軸受にシリンダブロックと異なる材料を用いることができ、更なる高エネルギー効率をえるための摩擦係数を下げ、摺動ロスを減らすという効果がある。また、運転時の温度上昇により、副軸受の軸心が主軸受の軸心からずれることを防ぎ、均等に荷重が配分し、摺動ロスが減少し、金属接触による摺動ロスを発生させないという効果がある。
【0059】
請求項2に記載の発明は、請求項1に記載の発明の効果に加えて、更に、組み立ての効率が良くなるという効果がある。また、運転時の主軸受における摺動部の熱変形を減少させるという効果がある。
【0060】
請求項3に記載の発明は、請求項1に記載の発明の効果に加えて、更に、組み立ての効率が良くなるという効果がある。
【0061】
請求項4に記載の発明は、請求項2に記載の発明の効果に加えて、更に、運転時の主軸受における摺動部の熱変形を更に減少させるという効果がある。
【0062】
請求項5に記載の発明は、請求項3に記載の発明の効果に加えて、更に、運転時の主軸受における摺動部の熱変形を減少させるという効果がある。
【0063】
請求項6に記載の発明は、請求項2に記載の発明の効果に加えて、更に、副軸受の軸心が主軸受の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという効果がある。また、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという効果がある。
【0064】
請求項7に記載の発明は、請求項3に記載の発明の効果に加えて、更に、副軸受の軸心が主軸受の軸心と精度よく一致し、均等に荷重が配分され、摺動ロスが減少するという効果がある。また、組み立て時のばらつきからくるエネルギー効率のばらつきの発生を抑えるという効果がある。
【図面の簡単な説明】
【図1】本発明による実施の形態1による密閉型圧縮機の縦断面図
【図2】本発明による実施の形態2による密閉型圧縮機の要部断面図
【図3】本発明による実施の形態3による密閉型圧縮機の要部断面図
【図4】本発明による実施の形態4による密閉型圧縮機の要部断面図
【図5】本発明による実施の形態5による密閉型圧縮機の要部断面図
【図6】従来の密閉型圧縮機の縦断面図
【図7】従来の密閉型圧縮機の上面図
【符号の説明】
106 偏心軸部
107 副軸部
108 主軸部
109 シャフト
110 圧縮室
111 シリンダブロック
114 副軸受
115 主軸受
116 フランジ
117 第一の案内部
118 第二の案内部
119,122 内径面
120,121 外径面
123,124 溝
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hermetic compressor used for a refrigerator, an air conditioner, a refrigerator, or the like.
[0002]
[Prior art]
2. Description of the Related Art In recent years, for hermetic compressors used in refrigeration systems such as home refrigerators, it has been strongly desired to reduce power consumption and reduce noise. Under these circumstances, the viscosity of lubricating oil has been reduced, and the rotation of a compressor driven by an inverter has been reduced (for example, in the case of a household refrigerator, about 1200 r / min).
[0003]
On the other hand, it has been premised that a natural refrigerant having a low global warming coefficient represented by R134a or R600a having an ozone depletion coefficient of zero is used, such as a hydrocarbon-based refrigerant.
[0004]
The method of using a double-sided bearing that holds a shaft at two or more locations, which has been adopted in the past, is effective as an elemental technology for reducing sliding loss and vibration and noise during operation.
[0005]
As a conventional hermetic compressor, there is one in which a separate auxiliary bearing is fixed to the upper portion of a compression section with a screw (for example, see Patent Document 1).
[0006]
Hereinafter, the conventional hermetic compressor described above will be described with reference to the drawings.
[0007]
FIG. 6 is a longitudinal sectional view of a conventional hermetic compressor. FIG. 7 is a main part top view of the conventional hermetic compressor with the upper container removed.
[0008]
6 and 7, an electric space 5 surrounded by an airtight container 1 is driven by an electric element 5 including a stator 3 having a winding part 3 a and a rotor 4, and an electric element 5. It houses the compression element 6. The lubricating oil 8 is stored in the closed container 1.
[0009]
The shaft 10 has a main shaft portion 11 to which the rotor 5 is press-fitted and fixed, an eccentric portion 12 formed eccentrically with respect to the main shaft portion 11, and a sub shaft portion 13 provided coaxially with the main shaft portion 11.
[0010]
The cylinder block 15 has a substantially cylindrical compression chamber 16 and a main bearing 17 that supports the main shaft portion 11. A sub bearing 19 that supports the sub shaft portion 13 is fixed upward with three screws 20. The piston 19 is reciprocally slidably inserted into the compression chamber 16 of the cylinder block 15, and is connected to the eccentric portion 12 by a connecting means 21 and a piston pin 22.
[0011]
The operation of the hermetic compressor configured as described above will be described below.
[0012]
The rotor 4 of the electric element 5 rotates the shaft 10, and the rotational movement of the eccentric part 12 is transmitted to the piston 19 via the connecting means 21, so that the piston 19 reciprocates in the compression chamber 16. Thereby, the refrigerant gas is sucked and compressed from the cooling system (not shown) into the compression chamber 16, and then is discharged again to the cooling system.
[0013]
Here, a mechanism for reducing the sliding loss of the double-ended bearing will be described.
[0014]
During the operation of the compressor, the compression load of the piston 19 is transmitted to the eccentric portion 12 via the connecting means 21. Here, in the double-supported bearing type, since the load is received by both the upper and lower bearings centering on the eccentric portion 12 (action point) to which the compressive load from the piston 19 is applied, a substantially uniform load is distributed to the bearings vertically. In addition, since the bearing comes into contact with the surface, unlike the cantilever bearing type in which the inner circumference is twisted, the load distribution of the sliding portion of the shaft 10 becomes uniform, thereby reducing the surface pressure and shortening the sliding length as compared with the cantilever type. be able to. As a result, the sliding loss is reduced and the compressor efficiency is improved.
[0015]
[Patent Document 1]
JP-A-61-118571
[Problems to be solved by the invention]
However, in the above-described conventional configuration, since the main bearing 17 and the cylinder block 15 have an integral structure, a material different from that of the cylinder block 15 cannot be used for the main bearing 17, and in order to obtain further high energy efficiency. There is a possibility that the friction coefficient cannot be reduced and the sliding loss cannot be reduced.
[0017]
In the above-described conventional configuration, when the auxiliary bearing 18 is made of a material having a different linear expansion coefficient from the material of the cylinder block 15, the temperature of the auxiliary bearing 18 is shifted from the axis of the main bearing 17 due to a temperature rise during operation. Because of the displacement, the load was not evenly distributed, the sliding loss did not decrease, and there was a possibility that sliding loss due to metal contact occurred.
[0018]
Further, in the above-described conventional configuration, since the fixing is performed only with the three screws 20, the axis of the sub bearing 18 does not coincide with the axis of the main bearing 17, so that the load is not evenly distributed and the sliding loss does not decrease. There was a possibility.
[0019]
Further, in the above-described conventional configuration, when the sub-bearing 18 is fixed to the cylinder block 15 when assembling the compression element 6, the shaft 10 must be rotated to assemble the shaft 10 so that the shaft center is substantially brought out. Was inefficient.
[0020]
Further, in the above-described conventional configuration, when the auxiliary bearing 18 is fixed to the cylinder block 15, there is a possibility that variations in energy efficiency due to variations during assembly may occur.
[0021]
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a hermetic compressor having high energy efficiency and good assemblability.
[0022]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention includes a shaft having an eccentric shaft portion, a sub shaft portion and a main shaft portion provided vertically coaxially with the eccentric shaft portion interposed therebetween, and a substantially cylindrical compression chamber. A cylinder block provided, a sub-bearing formed integrally with the cylinder block and supporting the sub-shaft portion, and a main bearing made of an aluminum material fixed to the cylinder block and supporting the main shaft portion, A first guide portion whose diameter is shared with the main bearing is provided on a flange extending in a radial direction of a main shaft of the main shaft of the main bearing, and a diameter of the cylinder block is shared with the sub-bearing by the first block. A second guide portion is provided, and the first guide portion is fitted to the second guide portion.
[0023]
According to the first aspect of the present invention, since the first guide portion and the second guide portion are fitted to each other to limit the degree of freedom, the axis of the sub bearing substantially coincides with the axis of the main bearing. This has the effect of uniformly distributing the load and reducing the sliding loss. The main bearing is made of an aluminum material with a low coefficient of friction, and the main bearing has a separate structure from the cylinder block, so the main bearing can be made of a material different from that of the cylinder block. This has the effect of reducing the friction coefficient and reducing the sliding loss. In addition, when the temperature rises during operation, the main bearing expands uniformly in the radial direction around the axis, so that the temperature increase during operation prevents the axis of the sub-bearing from deviating from the axis of the main bearing. The load is distributed, the sliding loss is reduced, and the sliding loss due to metal contact is prevented from occurring.
[0024]
According to a second aspect of the present invention, in addition to the first aspect, an inner diameter surface of the first guide portion and an outer diameter surface of the second guide portion are adjacent to each other. In addition to the operation of the invention of the third aspect, since there is no need to perform the operation of extending the axis while rotating the shaft, the assembly efficiency is improved. Further, during operation, the inner diameter surface of the first guide portion and the outer diameter surface of the second guide portion are separated from each other, which has an effect of reducing thermal deformation of the sliding portion of the main bearing during operation.
[0025]
According to a third aspect of the present invention, in addition to the first aspect, an outer diameter surface of the first guide portion and an inner diameter surface of the second guide portion are adjacent to each other. In addition to the operation of the invention of the third aspect, since there is no need to perform the operation of extending the axis while rotating the shaft, the assembly efficiency is improved.
[0026]
According to a fourth aspect of the present invention, in addition to the second aspect of the present invention, a groove is provided on the inner peripheral side of the first guide portion of the main bearing and shares an axis with the main bearing. In addition, in addition to the effect of the invention described in claim 2, since deformation is absorbed in the vicinity of the groove in the main bearing, particularly in the vicinity of being fixed, thermal deformation of the sliding portion in the main bearing during operation is further reduced. Has an action.
[0027]
According to a fifth aspect of the present invention, in addition to the third aspect of the present invention, a groove is provided on the inner peripheral side of the first guide portion of the main bearing and shares a central axis with the main bearing. In addition, in addition to the effect of the third aspect of the present invention, since deformation is absorbed in the entire periphery of the groove in the main bearing, there is an effect that thermal deformation of the sliding portion of the main bearing during operation is reduced.
[0028]
The invention according to claim 6 is the invention according to claim 2, wherein the first guide portion is lightly press-fitted into the second guide portion. In addition, the flange absorbs slight deformation caused by the outward radial force applied to the first guide part by light press-fitting, and the shaft center is adjusted by the processing accuracy of the first guide part and the second guide part. As a result, the shaft center of the sub-bearing is accurately matched with the shaft center of the main bearing, and the load is evenly distributed and the sliding loss is reduced. In addition, since the gap between the first guide portion and the second guide portion, which is a cause of the variation, is eliminated, an effect of suppressing the variation in energy efficiency due to the variation at the time of assembly is provided.
[0029]
According to a seventh aspect of the present invention, in addition to the third aspect, the first guide portion is lightly press-fitted into the second guide portion. In addition, the flange absorbs a slight deformation caused by the inward radial force applied to the first guide part by light press-fitting, and the shaft center is adjusted by the processing accuracy of the first guide part and the second guide part. As a result, the shaft center of the sub-bearing is accurately matched with the shaft center of the main bearing, and the load is evenly distributed and the sliding loss is reduced. In addition, since the gap between the first guide portion and the second guide portion, which is a cause of the variation, is eliminated, an effect of suppressing the variation in energy efficiency due to the variation at the time of assembly is provided.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a compressor according to the present invention will be described with reference to the drawings.
[0031]
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention.
[0032]
As shown in FIG. 1, the closed casing 101 houses an electric element 104 including a stator 102 having a winding part 102 a and a rotor 103, and a compression element 105 driven by the electric element 104.
[0033]
The compression element 105 includes, for example, an iron-based casting provided with a shaft 109 having a sub-shaft portion 107 and a main shaft portion 108 provided coaxially vertically with an eccentric shaft portion 106 interposed therebetween, and a substantially cylindrical compression chamber 110. A cylinder block 111 made of a material, a piston 112 reciprocating in the compression chamber 110, a connecting rod serving as a connecting means 113 connecting the piston 112 and the eccentric shaft portion 106, and a sub shaft formed integrally with the cylinder block 111. A sub-bearing 114 that supports the portion 107 and a main bearing 115 that is fixed to the cylinder block 111 and that supports the main shaft portion 108 made of an aluminum material are provided.
[0034]
For fixing the main bearing 115 to the cylinder block 111, for example, screws, rivets, or the like can be used. The flange 116 of the main bearing 115 is provided with a first guide portion 117 having a diameter sharing the axis with the main bearing 115, and the cylinder block 111 is provided with a second guide portion 118 having a diameter sharing the axis with the sub-bearing 114. And the first guide 117 is fitted to the second guide 118.
[0035]
For example, the first guide portion 117 has a circular shape or the like, and can be easily shared with the main bearing 115 by machining the main bearing 115 at the same time as machining by the rotating machine.
[0036]
For example, the second guide portion 118 has a circular shape or the like, and the shaft center can be easily shared with the sub shaft portion 107 by machining the sub shaft portion 107 at the same time as machining with the rotating machine.
[0037]
As a result, the first guide portion 117 and the second guide portion 118 are fitted to each other to limit the degree of freedom, so that the axis of the sub bearing 114 substantially coincides with the axis of the main bearing 115, and the load is evenly distributed. And the sliding loss can be reduced. In addition, since an aluminum material having a low friction coefficient is used for the main bearing 115 and the main bearing 115 is formed separately from the cylinder block 111, a material different from that of the cylinder block 111 can be used for the main bearing 115, thereby further increasing energy. In order to obtain efficiency, the friction coefficient can be reduced, and the sliding loss can be reduced. Further, when the temperature rises during operation, the main bearing 115 expands uniformly in the radial direction around the axis, so that the axis of the sub-bearing 114 shifts from the axis of the main bearing 115 due to the temperature rise during operation. Thus, the load is evenly distributed, the sliding loss is reduced, and the sliding loss due to metal contact can be prevented.
[0038]
(Embodiment 2)
FIG. 2 is a cross-sectional view of a main part near a fitting portion between a cylinder block and a main bearing in a hermetic compressor according to a second embodiment.
[0039]
As shown in FIG. 2, in the present embodiment, the hermetic-type compressor according to the first embodiment further includes an inner diameter surface 119 of the first guide portion 117 and an outer diameter surface 120 of the second guide portion 118. Are adjacent. The first guide portion 117 has, for example, a ring shape formed on the outer periphery of the flange 116 so as to protrude toward the cylinder block 111. The second guide portion 118 extends, for example, in a cylindrical shape from the cylinder block 111 toward the main bearing 115.
[0040]
This eliminates the need for the operation of extending the axis while rotating the shaft 108, so that the efficiency of assembly can be improved. Further, during operation, since the inner diameter surface 119 of the first guide portion 117 and the outer diameter surface 120 of the second guide portion 118 are separated, thermal deformation of the sliding portion of the main bearing 115 during operation can be reduced. Can be.
[0041]
In the present embodiment, the first guide portion 117 is fitted to the second guide portion 118, but the first guide portion 117 may be lightly pressed into the second guide portion 118.
[0042]
Since the first guide portion 117 is lightly press-fitted into the second guide portion 118, the flange 116 absorbs a slight deformation caused by an outward radial force applied to the first guide portion 117 by light press-fitting. Since the shaft center is determined by the processing accuracy of the first guide portion 117 and the second guide portion 118, the shaft center of the sub-bearing 114 accurately matches the shaft center of the main bearing 115, and the load is evenly distributed. As a result, the effect of reducing the sliding loss is obtained. In addition, since the gap between the first guide portion 117 and the second guide portion 118, which is a cause of variation, is eliminated, the effect of suppressing the variation in energy efficiency due to the variation during assembly can be obtained.
[0043]
(Embodiment 3)
FIG. 3 is a cross-sectional view of a main part near a fitting portion between a cylinder block and a main bearing in a hermetic-type compressor according to a third embodiment.
[0044]
As shown in FIG. 3, in the present embodiment, the hermetic compressor according to the first embodiment further includes an outer diameter surface 121 of a first guide portion 117 and an inner diameter surface 122 of a second guide portion 118. Are adjacent to each other.
[0045]
The first guide portion 117 is formed by, for example, grinding the outer periphery of the flange 116, and the second guide portion 118 is, for example, extending in a ring shape from the cylinder block 111 toward the main bearing 115.
[0046]
This eliminates the need for the operation of extending the axis while rotating the shaft 108, so that the effect of improving the efficiency of assembly is obtained.
[0047]
In the present embodiment, when the first guide portion 117 is lightly press-fitted into the second guide portion 118, an inward radial force applied to the first guide portion 117 by light press-fitting. Slight deformations are absorbed by the flange 116 and the axis is determined by the processing accuracy of the first guide portion 117 and the second guide portion 118. There is obtained an effect that the loads match well, the load is evenly distributed, and the sliding loss is reduced.
[0048]
In addition, since the gap between the first guide portion 117 and the second guide portion 118, which is a cause of variation, is eliminated, the effect of suppressing the variation in energy efficiency due to the variation during assembly can be obtained.
[0049]
(Embodiment 4)
FIG. 4 is a cross-sectional view of a main part near a fitting portion between a cylinder block and a main bearing in a hermetic-type compressor according to a fourth embodiment.
[0050]
As shown in FIG. 4, in the present embodiment, the hermetic compressor according to the second embodiment is provided on the inner peripheral side of the first guide portion 117 in the main bearing 115 and shares the axis with the main bearing 511. The groove 123 is provided.
[0051]
For example, the groove 123 is formed by cutting a flange 116 of the main bearing 115 into a ring shape.
[0052]
As a result, deformation is absorbed in the vicinity of the groove 123 in the main bearing 115, particularly in the vicinity of being fixed with screws, rivets, or the like, so that the thermal deformation of the sliding portion of the main bearing 115 during operation can be further reduced. Can be
[0053]
(Embodiment 5)
FIG. 5 is a cross-sectional view of a main part near a fitting portion between a cylinder block and a main bearing in a hermetic-type compressor according to a fifth embodiment.
[0054]
As shown in FIG. 5, in the present embodiment, the hermetic compressor according to the second embodiment is provided on the inner peripheral side of the first guide portion 117 of the main bearing 115, and shares the axis with the main bearing 115. The groove 124 is provided.
[0055]
For example, the groove 124 is formed by cutting a flange 116 of the main bearing 115 into a ring shape.
[0056]
As a result, the deformation is absorbed around the entire circumference of the groove 124 in the main bearing 115, so that the effect of reducing the thermal deformation of the sliding portion of the main bearing 115 during operation can be obtained.
[0057]
As described above, the main bearing made of aluminum has been described in Embodiments 1 to 5. However, even when the main bearing is made of a material having the same linear expansion coefficient as the material of the cylinder block, for example, a combination of the same cast iron, sliding is performed. It goes without saying that effects other than reducing the thermal deformation of the part can be similarly obtained.
[0058]
【The invention's effect】
As described above, the invention according to claim 1 has an effect that the axis of the auxiliary bearing substantially coincides with the axis of the main bearing, the load is evenly distributed, and the sliding loss is reduced. In addition, a material different from that of the cylinder block can be used for the main bearing, and there is an effect that a friction coefficient for obtaining higher energy efficiency is reduced and a sliding loss is reduced. Also, the temperature rise during operation prevents the axis of the sub bearing from shifting from the axis of the main bearing, distributes the load evenly, reduces sliding loss, and prevents sliding loss due to metal contact. effective.
[0059]
The invention described in claim 2 has an effect that the efficiency of assembly is further improved in addition to the effect of the invention described in claim 1. Further, there is an effect that thermal deformation of a sliding portion of the main bearing during operation is reduced.
[0060]
The invention described in claim 3 has an effect that the efficiency of assembly is further improved in addition to the effect of the invention described in claim 1.
[0061]
The invention described in claim 4 has the effect of further reducing the thermal deformation of the sliding portion in the main bearing during operation, in addition to the effect of the invention described in claim 2.
[0062]
The invention described in claim 5 has the effect of further reducing the thermal deformation of the sliding portion in the main bearing during operation, in addition to the effect of the invention described in claim 3.
[0063]
According to the invention of claim 6, in addition to the effect of the invention of claim 2, the axis of the sub-bearing coincides with the axis of the main bearing with high precision, the load is evenly distributed, and the sliding The effect is that the loss is reduced. In addition, there is an effect that occurrence of variation in energy efficiency due to variation during assembly is suppressed.
[0064]
According to a seventh aspect of the present invention, in addition to the effect of the third aspect, the axis of the sub-bearing coincides with the axis of the main bearing with high accuracy, the load is evenly distributed, and the sliding is performed. The effect is that the loss is reduced. In addition, there is an effect of suppressing the occurrence of energy efficiency variations caused by variations during assembly.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention; FIG. 2 is a sectional view of a main part of a hermetic compressor according to a second embodiment of the present invention; FIG. FIG. 4 is a cross-sectional view of a main part of a hermetic compressor according to a third embodiment. FIG. 4 is a cross-sectional view of a main part of a hermetic compressor according to a fourth embodiment of the present invention. Main part sectional view [Fig. 6] Longitudinal sectional view of conventional hermetic compressor [Fig. 7] Top view of conventional hermetic compressor [Description of reference numerals]
106 Eccentric shaft portion 107 Sub shaft portion 108 Main shaft portion 109 Shaft 110 Compression chamber 111 Cylinder block 114 Sub bearing 115 Main bearing 116 Flange 117 First guide portion 118 Second guide portion 119, 122 Inner diameter surface 120, 121 Outer diameter surface 123, 124 groove

Claims (7)

偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、略円筒形の圧縮室を備えたシリンダブロックと、前記シリンダブロックと一体に形成され、前記副軸部を軸支する副軸受と、前記シリンダブロックに固定され前記主軸部を軸支するアルミニウム材からなる主軸受とを備え、前記主軸受の主軸の半径方向に延出されたフランジに径が前記主軸受と軸心を共有する第一の案内部を設けると共に前記シリンダブロックに径が前記副軸受と軸心を共有する第二の案内部を設け、前記第一の案内部を前記第二の案内部に嵌合した密閉型圧縮機。A shaft having an eccentric shaft portion and a sub shaft portion and a main shaft portion provided vertically coaxially with the eccentric shaft portion interposed therebetween, a cylinder block having a substantially cylindrical compression chamber, and integrally with the cylinder block. A main bearing made of an aluminum material fixed to the cylinder block and supporting the main shaft portion, the sub-bearing supporting the sub-shaft portion, and extending in a radial direction of the main shaft of the main bearing. The flange is provided with a first guide portion having a diameter sharing the axis with the main bearing, and the cylinder block is provided with a second guide portion having a diameter sharing the axis with the sub-bearing, and the first guide is provided. A hermetic compressor having a portion fitted to the second guide portion. 第一の案内部の内径面と、第二の案内部の外径面とが隣接した請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein an inner diameter surface of the first guide portion is adjacent to an outer diameter surface of the second guide portion. 第一の案内部の外径面と、第二の案内部の内径面とが隣接した請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein an outer diameter surface of the first guide portion is adjacent to an inner diameter surface of the second guide portion. 主軸受における第一の案内部の内周側に設けられ前記主軸受と軸心を共有する溝を備えた請求項2に記載の密閉型圧縮機。The hermetic compressor according to claim 2, further comprising a groove provided on an inner peripheral side of the first guide portion of the main bearing and sharing a shaft center with the main bearing. 主軸受における第一の案内部の内周側に設けられ前記主軸受と軸心を共有する溝を備えた請求項3に記載の密閉型圧縮機。4. The hermetic compressor according to claim 3, further comprising a groove provided on an inner peripheral side of the first guide portion of the main bearing and sharing a central axis with the main bearing. 5. 第一の案内部が、第二の案内部に軽圧入されている請求項2に記載の密閉型圧縮機。The hermetic compressor according to claim 2, wherein the first guide portion is lightly press-fitted into the second guide portion. 第一の案内部が、第二の案内部に軽圧入されている請求項3に記載の密閉型圧縮機。The hermetic compressor according to claim 3, wherein the first guide is lightly press-fitted into the second guide.
JP2002301622A 2002-10-16 2002-10-16 Hermetic compressor Expired - Fee Related JP3977223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301622A JP3977223B2 (en) 2002-10-16 2002-10-16 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301622A JP3977223B2 (en) 2002-10-16 2002-10-16 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2004137926A true JP2004137926A (en) 2004-05-13
JP3977223B2 JP3977223B2 (en) 2007-09-19

Family

ID=32449917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301622A Expired - Fee Related JP3977223B2 (en) 2002-10-16 2002-10-16 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP3977223B2 (en)

Also Published As

Publication number Publication date
JP3977223B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
KR100866439B1 (en) Rotary-type compression apparatus and refrigeration cycle apparatus using it
US10309383B2 (en) Bearing arrangement for a reciprocating compressor
JP6214821B2 (en) Hermetic compressor and refrigeration system
JP6469575B2 (en) Hermetic compressor and refrigerator or refrigeration apparatus equipped with the same
CN1083066C (en) Rotative compressor and refrigerator, refriging apparatus and air conditioner using same
JP4429769B2 (en) Hermetic compressor
JP2005155438A (en) Hermetic compressor
US7497671B2 (en) Hermetic compressor
JP2004137926A (en) Hermetic compressor
KR100407960B1 (en) oil suppling apparatus for compressor in the refrigerator
JPH0968165A (en) Reciprocation compressor
JP2012087711A (en) Hermetic compressor
JP2012145053A (en) Hermetic compressor
JP5942080B2 (en) Hermetic compressor
KR20090103578A (en) Reciproating compressor
JP5338967B1 (en) Hermetic compressor and refrigeration system
JP2007132259A (en) Hermetic compressor
JP2005264740A (en) Hermetic compressor
KR0177952B1 (en) Rotary compressor
JP2000297751A (en) Vibration type compressor
KR20030010840A (en) Crankshaft of compressor for refrigerating machine
JP2021076067A (en) Rotary compressor
JP2013044255A (en) Closed compressor and refrigerator using the same
JP2010242565A (en) Hermetic compressor and refrigerator having the same
JP2019138267A (en) Refrigerant compressor and refrigeration device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

RD01 Notification of change of attorney

Effective date: 20051114

Free format text: JAPANESE INTERMEDIATE CODE: A7421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100629

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100629

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120629

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130629

LAPS Cancellation because of no payment of annual fees