JP2004137854A - Driving device for paved road surface circular cutting device - Google Patents

Driving device for paved road surface circular cutting device Download PDF

Info

Publication number
JP2004137854A
JP2004137854A JP2002305877A JP2002305877A JP2004137854A JP 2004137854 A JP2004137854 A JP 2004137854A JP 2002305877 A JP2002305877 A JP 2002305877A JP 2002305877 A JP2002305877 A JP 2002305877A JP 2004137854 A JP2004137854 A JP 2004137854A
Authority
JP
Japan
Prior art keywords
frequency
cutting
speed
calculator
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002305877A
Other languages
Japanese (ja)
Other versions
JP4017072B2 (en
Inventor
Tsuneo Kumaki
熊 木 恒 夫
Shozo Inuyama
犬 山 昭 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JPE Co Ltd
Original Assignee
JPE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JPE Co Ltd filed Critical JPE Co Ltd
Priority to JP2002305877A priority Critical patent/JP4017072B2/en
Publication of JP2004137854A publication Critical patent/JP2004137854A/en
Application granted granted Critical
Publication of JP4017072B2 publication Critical patent/JP4017072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Road Repair (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving device for a paved road surface circular cutting device capable of maintaining the proper number of revolutions and load torque for the change of specification of a cutting diameter in a wide scope and applicable without causing reduction in cutting efficiency. <P>SOLUTION: This driving device 1 for the paved road surface circular cutting device is constituted in such a way that a device 10, in which a plurality of expansible cutting beams 7 are connected with one end of an erected main shaft 6 and cutting edges 9 are attached to tips of the cutting beams 7, respectively, is provided, and the main shaft 6 is rotated and driven by an induction motor 21 to cut a paved road surface into a circular shape by the cutting edges 9. It is provided with a speed detector for detecting the speed of the induction motor 21, a slide frequency computing unit for determining a torque characteristic, a frequency computing unit for determining the frequency of an inverter 23, and a voltage computing unit. The induction motor 21 is driven by the variable frequency inverter 23 which uses computed outputs from the frequency computing unit and the voltage computing unit as a frequency command value and a voltage command value of the inverter 23, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、マンホール等の舗装路面占有物の周辺を円形に切断する舗装路面円形切断装置の駆動装置に関し、特に、切削径の広範囲の仕様変更に対し、切削効率の低下なしに対応できるように可変周波数インバータを介して誘導電動機を駆動する舗装路面円形切断装置の駆動装置に関する。
【0002】
【従来の技術】
従来、この種の円形切断装置としては、特開平6−158612号公報及び特開2002−4215号公報が開示されている。そして、それらの切断装置の駆動装置としては、通常ガソリンエンジンまたは回転数制御無しの誘導電動機等が採用されていた。
【0003】
しかしながら、マンホールのサイズはその種類によって異なるため、切削径の大小に拘わらず回転数を一定で切削すれば、マンホールのサイズが大きくなるにつれ切削効率が低下し、消費電力も増大するので効率的でないという問題があった。また、コンクリート着地時には過大な負荷が掛かるので大容量のモータが必要となるという問題もあった。
【0004】
【所見】
上記問題点を解決するために、この種の円形切断装置の性能特性を実験により確認した。図8に、本発明による駆動装置である3相200V、10A、減速比1/140の誘導電動機(以下、タイプ1と記す)を搭載して、切削径1000mm、回転数56r/minで、かつ、切削刃送り速度を変えて負荷トルクを変化させた場合の実験結果を示す。
図で、●印は実験によって計測した点をプロットしたものである。また、後記する刃先面に作用する押圧力が小さい場合(例えば、100kg以下の場合)には、押圧力不足のため運転中に振動を引起こし、架台の浮き上がり現象がみられた。しかし、押圧力を上げ、ある所定値(例えば120kg)に達すると、この現象は無くなって切削音も良くなり、順調に切削できるようになった。
また、切削速度は、回転数が一定の場合には、押圧力に比例して増加することも確認した。なお、上記押圧力は、負荷トルクと押圧力との関係を示す下記の式により、計測した負荷トルクの値から算出したものである。
T=μP D/2 ・・・・・・・・・・・・・ (1)
ここで、 T:負荷トルク
μ:切削刃面とコンクリートとの摩擦係数
P:切削刃の垂直方向への押圧力(全切削刃面)
D:切削径
(1)式において、押圧力Pを一定(150kg)として、切削径Dを代入すれば、各切削径に対する負荷トルクTが計算出来る。また、切削刃の周速は、早いほど切削速度は速くなるが、上げ過ぎれば運転上からの安全性と消費動力及び切削刃の寿命等の点から好ましくない。
次に、回転数Nと周速vおよび切削径Dとの関係は下記の式により算出される。
N=v×60/πD ・・・・・・・・・・・ (2)
したがって、上記(1)および(2)式より、出力に比例する相当仕事量(T×N)を一定に保つためには、押圧力Pと周速vとを一定にすればよいことになる。上記検討結果から、この種の円形切断装置では、性能特性上で最も効率的な駆動を行うには、周速一定(例えば3〜5m/sec)の回転数で、かつ押圧力が一定の場合には、切削径に比例する負荷トルクTを選べば良いことになる。
【0005】
図9に、以上の考察に基づいて作成した、回転数:負荷トルクの特性曲線を示す。図において、符号40、41、42で示す曲線は、それぞれ、周速3、4おおよび5m/secの場合の特性曲線である。回転数Nは上記(2)式より、負荷トルクTは上記(1)式より算出したものである。この図に、切削径1000mm、1300mm及び1500mmの時のテストデータ(●印)をプロットしたが、曲線40の近傍で、ほぼ、同じ傾向であることが理解できる。
【0006】
一方、本出願によるコアドリルの駆動装置が、特許第2783518号公報に開示されている。これは、誘導電動機の速度を検出する速度検出器と、トルク特性を決定する滑り周波数演算器と、インバータの周波数を決定する周波数演算器と、前記電動機の励磁インダクタンスによってつくられるギャップ磁束数が常に一定となるV/f値が予め回路中に入力されている電圧演算器とを有するコアドリルの駆動装置において、使用条件によって最高速度の周波数を設定してコアドリルの広範囲のビットサイズに対してビット刃面の適正周速に対応できる周波数設定器を設け、前記電動機速度から滑り周波数演算で演算された滑り周波数と周波数に換算した電動機速度を加え合わせる加算器を設け、その加算器からの加算値と前記周波数設定器で設定された最高速度の周波数とを前記周波数演算器と電圧演算器とに入力するように構成し、前記周波数演算器と電圧演算器からの演算出力を前記インバータの周波数指令値および電圧指令値とする可変周波数インバータで駆動される高速回転の誘導電動機と、その減速機とが設けられていることを特徴とするものである。
【0007】
【発明が解決しようとする課題】
本発明は、前記の問題点を解決すべく提案されたものである。すなわち、切削径の広範囲の仕様変更に対して適正な回転数と負荷トルクとが維持でき、かつ切削効率の低下なしに対応でき、また、過負荷にも耐えてモータの損傷を少なくすることができると共に、コンクリート面への接地時に電流を低く保って駆動することができる舗装路面円形切断装置の駆動装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明によれば、立設した主軸の一端に複数の伸縮可能な切削ビームを連結し、それらの切削ビームの各先端部に切削刃を取り付けた送り装置を設け、主軸を誘導電動機で回転駆動してその切削刃で舗装路面を円形に切削する舗装路面円形切断装置の駆動装置において、誘導電動機の速度を検出する速度検出器と、トルク特性を決定する滑り周波数演算器と、インバータの周波数を決定する周波数演算器と、前記誘導電動機の励磁インダクタンスによってつくられるギャップ磁束数が常に一定となるV/f(印加電圧/周波数)値が予め回路中に入力されている電圧演算器とを備えており、そして使用条件によって最高速度の周波数を設定し舗装路面円形切断装置の広範囲の切削径に対して切削刃面の適正周速に対応できる周波数設定器を設け、前記電動機速度から滑り周波数演算器で演算された滑り周波数と周波数に換算した電動機速度とを加え合わせる加算器を設け、その加算器からの加算値と前記周波数設定器で設定された最高速度の周波数とを前記周波数演算器と電圧演算器とに入力するように構成し、前記周波数演算器と電圧演算器とからの演算出力をそれぞれ前記インバータの周波数指令値および電圧指令値とする可変周波数インバータで駆動される高速回転の誘導電動機と、その減速機とを設けている。
【0009】
上記のように構成された舗装路面円形切断装置の駆動装置では、速度検出器で検出された電動機速度が、滑り周波数演算器に入力され、そして、希望する直巻トルク特性に類似したトルク特性となるように滑り周波数が出力される。次に、加算器においてその滑り周波数と前記電動機速度の周波数換算値とが加算され、周波数演算器と電圧演算器とに入力される。その加算値が、最高速度の周波数設定器の設定値以下ではそのままとし、設定値を超える場合はその設定値として出力する。そして、前記周波数演算器と電圧演算器との演算出力を前記インバータの周波数指令値及び電圧指令値としてインバータに入力し、インバータにより高速回転の誘導電動機が駆動される。
このようにして、切削径の仕様変更に対して適正な回転数と負荷トルクとが維持され、切削効率を低下させることなく対応することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、添付図面を参照して説明する。
始めに、舗装路面円形切断装置について、その概要を説明する。図1は、その舗装路面円形切断装置の全体構成を示す正面図である。
図において、舗装路面円形切断装置の駆動装置1は、架台2上に設置され、減速機付高速誘導電動機21と、その制御を行う可変周波数インバータ23とによって構成されており、架台2に鉛直方向に軸支された主軸6を電動機21により減速機5を介して回転駆動し、その主軸6の一端に連結した伸縮可能な2組の切削ビーム7を切削径の増減に伴って伸縮し、回転させている。各切削ビーム7の先端部には送り装置8が設けられ、その送り装置8には、切削刃9が取り付けられており、その切削刃9が、送り用駆動装置10を介して切削面に送ることによって切削が行われる構造となっている。
【0011】
図2に、本発明の実施形態を示す構成ブロック図を示す。図中の各符号は、20は減速機、21は高速回転の誘導電動機、22は速度検出器、23はインバータ、24は周波数演算器、25は電圧演算器、26は滑り周波数演算器、27は最高速度の周波数設定器、28は加算器をそれぞれ示している。また、VINVはインバータ電圧指令値、FINVはインバータ周波数指令値であり、VFMは誘導電動機の速度、VFSは滑り周波数、VFTは使用条件によって決まる最高速度の周波数、VF0は誘導電動機の速度VFMの周波数換算値と滑り周波数VFSとの加算値である。
かかる構成において、誘導電動機21から速度検出器22により電動機速度VFMが検出されて滑り周波数演算器26に入力され、希望するトルク特性となるような滑り周波数VFSが出力されている。次に、加算器28で電動機速度の周波数換算値VFMとその滑り周波数VFSとが加算され、周波数演算器24と電圧演算器25とに入力される。
一方、最高速度の周波数設定器27において使用条件により決まる最高速度の周波数VFTが設定され、周波数演算器24と電圧演算器25とに入力されており、その最高速度の周波数VFTと加算値VF0とからインバータの周波数指令値FINVおよび電圧指令値VINVがそれぞれインバータ23に出力され、インバータによって誘導電動機21が駆動されている。
【0012】
図3および図4は本発明の実施形態の説明図である。図3は誘導電動機の等価回路で、符号r1は1次抵抗、r2は1次換算の2次抵抗、L1は1次漏れインダクタンス、L2は1次換算の2次漏れインダクタンス、L0は励磁インダクタンス、Sはスリップ、I1は電動機電流、V1は端子電圧、fは周波数、E2は2次回路に印加される電圧をそれぞれ示している。
図4は誘導電動機21の各周波数におけるトルク特性を示す。符号30〜33で示すトルク特性曲線は、励磁インダクタンスによって作られる磁束数が常に一定となるV/f値とした時の各周波数における特性曲線である。また、符号34で示す特性曲線は希望するトルク特性曲線、すなわち直巻トルク特性に類似したトルク特性曲線であり、上記特性曲線30〜33とそれぞれ点35〜38で交差し、その時の滑り周波数はそれぞれfs1〜fs4である。
【0013】
図2において、電動機速度VFMが滑り周波数演算器26に入力され、この時滑り周波数演算器26は、図4において、希望されるトルク特性即ち直巻トルク特性に類似したトルク特性が得られるように滑り周波数VFSが出力される。
例えば速度VFMが交差点37にあるためには、fs3の滑り周波数だけ加算して出力する必要がある。かくて、加算器28によって速度VFMの周波数換算値と滑り周波数VFSとが加算され、その加算値VF0が周波数演算器24と電圧演算器25とに入力される。周波数演算器24の回路は一種のリミッタ回路として作用するので、上記加算値VF0が、最高速度の周波数設定器27により設定される最高速度の周波数VFT以下の場合は、そのまま通過させ、最高速度の周波数VFTを超える場合は、最高速度の周波数VFTをそのまま出力する。電圧指令値VINVは低速時においてもトルクが減少しないように、図3の1次抵抗r1と1次漏れインダクタンスL1から計算される1次インピータンス(r1+jωL1)による電圧降下を補償するように、予め電圧演算器25に入力されているV/f値によりインバータ指令値を演算する。
そうすると、励磁インダクタンスL0によってつくられるギャップ磁束数は如何なる周波数においてもー定になるので、低速時においてもトルクは低下しない。演算した値はインバータ23へ電圧指令値VINVとして出力される。インバータ23は前記周波数指令値FINV、電圧指令値VINVを受け誘導電動機21を駆動する。
上記の動作は連続的に行われるので、図4における直巻トルク特性に類似したトルク特性が得られる。この特性は、高速(例えば20000rpmの)誘導電動機の場合、トルク特性曲線の高速域を使用することにより、舗装路面円形切断機の負荷曲線に合ったものとなる。その理由は、励磁電流が低速時の様に充分確保できないためと思われる。
【0014】
図5は、本発明の第1実施例で、前記タイプ1(3相200V、10A、減速比1/140)駆動装置の場合の各回転数におけるトルク、回転数、入口電流および出口(モータ)電流の関係を示す実験データを示している。この図で、実線は特性曲線、2点鎖線43は入口設定電流10A、出口電流が定格値以下であるという条件、すなわち、連続運転可能な点を結ぶ曲線を示す。図に見られるように、負荷トルクの変化に拘わらず、回転数を一定に保つ事が出来るという特徴を持つ。また、低速(例えば10r/min)においても連続運転可能な特性を持ち、コンクリートに着地時など、モータのオーバーロード無しで運転出来る。
【0015】
図6は、本発明の第2実施例で、前記タイプ1と同様の方法でテストした駆動装置:3相200V、15A、減速比1/70(以下、タイプ2と記す)の場合の各回転数におけるトルク、回転数、入口電流及び出口(モータ)電流の関係を示す実験データを示している(駆動装置はパワーアップされている)。図で、実線は特性曲線、2点鎖線44は前記図5の曲線43と同じ条件での結果を示している。
【0016】
次に、本発明の上記第1及び第2実施例について、図5および図6に示したトルク特性曲線43および44を図9上にプロットしたのが図7である。
図7において、右側の切削径1500、1300、1000、800および600mmのトルクラインは、押圧力一定(150kg)の時の負荷トルクの値を示している。例えば、図に示す切削径1000mmの時、回転数は、前記第1実施例の曲線43では62r/min(周速3.3m/sec)、第2実施例の曲線44では110r/min(周速5.9m/sec〉を達成できることを示している。そして、切削径1500〜600mmの何れの切削径においても、切削刃面の押圧力は常に一定(すなわち面圧一定)のため切削刃面摩耗も少なく、周速も駆動装置タイプ1またはタイプ2の選択により、約3〜6m/secと増加できるので穿孔速度の上昇が期待できる。
【0017】
【発明の効果】
本発明の舗装路面円形切断装置の駆動装置は、切削径の広範囲の仕様変更に対し適正な回転数と負荷トルクを維持でき、かつ切削効率の低下無しに対応でき、また、過負荷にも耐えてモータの損傷も少なく、接地時の電流も低く保って駆動できるという効果がある。また、切削径が変わっても、常に入口設定電流を変えず連続運転できるという効果も有している。
【図面の簡単な説明】
【図1】舗装路面円形切断装置の全体配置を示す正面図。
【図2】本発明の実施形態を示す構成ブロック図。
【図3】本発明の実施形態を説明するための誘導電動機の等価回路図。
【図4】本発明の実施形態を説明するための誘導電動機の各周波数におけるトルク特性図。
【図5】本発明の第1実施例の回転数と負荷トルク・入力電流・出力電流の関係を示す特性図。
【図6】本発明の第2実施例の回転数と負荷トルク・入力電流・出口電流の関係を示す特性図。
【図7】本発明の回転数と負荷トルクと切削径の関係を示す特性図。
【図8】切削刃面の押圧力と切削速度の関係を示す実験データ。
【図9】予想特性曲線と実験データとを比較した円形切断装置の回転数と負荷トルクとの比較図。
【符号の説明】
1・・・駆動装置
2・・・架台
5・・・減速機
6・・・主軸
7・・・切削ビーム
8・・・送り装置
9・・・切削刃
10・・・送り用駆動装置
20・・・減速機
21・・・高速回転の誘導電動機
22・・・速度検出器
23・・・インバータ
24・・・周波数演算器
25・・・電圧演算器
26・・・滑り周波数演算器
27・・・最高速度の周波数設定器
28・・・加算器
30〜33・・・各周波数のトルク特性曲線
34・・・希望するトルク特性曲線
35〜38・・各周波数のトルク特性曲線と希望するトルク特性曲線との交点
40〜42・・・トルク特性曲線
43、44・・・第1および第2実施例のトルク特性曲線
VINV・・・インバータ電圧指令値
FINV・・・インバータ周波数指令値
VFM・・・誘導電動機の速度
VFS・・・滑り周波数
VFT・・・最高速度の周波数
VF0・・・ VFM+VFS
r1・・・1次抵抗
r2・・・2次抵抗
L1・・・1次漏れインダクタンス
L2・・・1次抵抗の2次漏れインダクタンス
L0・・・励磁インダクタンス
S・・・スリップ
I1・・・電動機電流
V1・・・端子電圧
f・・・周波数
E2・・・2次回路に印加される電圧
fs1〜fs4・・・滑り周波数
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a driving device for a pavement road surface circular cutting device that circularly cuts the periphery of a pavement road surface occupation object such as a manhole, and in particular, to cope with a wide-range specification change of a cutting diameter without reducing the cutting efficiency. The present invention relates to a driving device for a pavement road surface circular cutting device that drives an induction motor via a variable frequency inverter.
[0002]
[Prior art]
Conventionally, Japanese Patent Application Laid-Open Nos. 6-158612 and 2002-4215 disclose this type of circular cutting device. As a driving device for these cutting devices, a gasoline engine or an induction motor without rotation speed control or the like has been usually employed.
[0003]
However, since the size of the manhole varies depending on its type, if the cutting is performed at a constant rotational speed regardless of the cutting diameter, the cutting efficiency decreases as the size of the manhole increases, and the power consumption increases. There was a problem. There is also a problem that an excessive load is applied at the time of landing on concrete, so that a large-capacity motor is required.
[0004]
[Remarks]
In order to solve the above problems, the performance characteristics of this kind of circular cutting device were confirmed by experiments. In FIG. 8, a three-phase 200 V, 10 A, induction motor having a reduction ratio of 1/140 (hereinafter referred to as type 1), which is a driving device according to the present invention, is mounted, has a cutting diameter of 1000 mm, a rotation speed of 56 r / min, and And the experimental results when the load torque is changed by changing the cutting blade feed speed.
In the figure, the closed circles are plots of points measured by experiments. In addition, when the pressing force acting on the blade tip surface described later is small (for example, 100 kg or less), vibration occurred during operation due to insufficient pressing force, and the phenomenon of lifting of the gantry was observed. However, when the pressing force was increased to reach a certain predetermined value (for example, 120 kg), this phenomenon disappeared, the cutting noise became better, and the cutting could be performed smoothly.
It was also confirmed that the cutting speed increased in proportion to the pressing force when the rotation speed was constant. Note that the above pressing force is calculated from the value of the measured load torque by the following equation showing the relationship between the load torque and the pressing force.
T = μP D / 2 (1)
Here, T: load torque μ: friction coefficient between the cutting blade surface and concrete P: pressing force of the cutting blade in the vertical direction (total cutting blade surface)
D: Cutting diameter In the equation (1), if the pressing force P is fixed (150 kg) and the cutting diameter D is substituted, the load torque T for each cutting diameter can be calculated. Further, the higher the peripheral speed of the cutting blade, the higher the cutting speed. However, if the peripheral speed of the cutting blade is too high, it is not preferable in terms of safety from operation, power consumption, and life of the cutting blade.
Next, the relationship between the rotational speed N, the peripheral speed v, and the cutting diameter D is calculated by the following equation.
N = v × 60 / πD (2)
Therefore, from the above equations (1) and (2), in order to keep the equivalent work (T × N) proportional to the output constant, the pressing force P and the peripheral speed v should be constant. . From the above examination results, in this type of circular cutting device, in order to perform the most efficient driving in terms of performance characteristics, the peripheral speed is constant (for example, 3 to 5 m / sec) and the pressing force is constant. In this case, the load torque T proportional to the cutting diameter may be selected.
[0005]
FIG. 9 shows a characteristic curve of rotation speed: load torque created based on the above considerations. In the drawing, curves indicated by reference numerals 40, 41, and 42 are characteristic curves at peripheral speeds of 3, 4, and 5 m / sec, respectively. The rotational speed N is calculated from the above equation (2), and the load torque T is calculated from the above equation (1). In this figure, test data (marked with ●) at cutting diameters of 1000 mm, 1300 mm and 1500 mm are plotted. It can be understood that the tendency is almost the same near the curve 40.
[0006]
On the other hand, a driving device for a core drill according to the present application is disclosed in Japanese Patent No. 2783518. This is because the speed detector that detects the speed of the induction motor, the slip frequency calculator that determines the torque characteristics, the frequency calculator that determines the frequency of the inverter, and the number of gap magnetic fluxes created by the exciting inductance of the motor are always In a driving device for a core drill having a voltage calculator in which a constant V / f value is previously input into a circuit, a frequency of a maximum speed is set according to a use condition, and a bit bit is set for a wide bit size of the core drill. A frequency setter capable of coping with an appropriate peripheral speed of the surface is provided, and an adder is provided for adding the slip frequency calculated by the slip frequency calculation from the motor speed and the motor speed converted into the frequency, and an addition value from the adder is provided. The frequency of the highest speed set by the frequency setting device and the frequency calculator and configured to be input to the voltage calculator, A high-speed induction motor driven by a variable-frequency inverter having frequency output values of the inverter and frequency output values of the inverters as output values from the frequency operation device and the voltage operation device; and a speed reducer for the induction motor. It is a feature.
[0007]
[Problems to be solved by the invention]
The present invention has been proposed to solve the above problems. In other words, it is possible to maintain an appropriate number of revolutions and load torque for a wide range of specification changes in the cutting diameter, to cope with a reduction in cutting efficiency, and to withstand overload to reduce motor damage. It is an object of the present invention to provide a drive device for a pavement road surface circular cutting device which can be driven while maintaining a low current when grounded to a concrete surface.
[0008]
[Means for Solving the Problems]
According to the present invention, a plurality of extensible cutting beams are connected to one end of an upright spindle, and a feeder is provided in which a cutting blade is attached to each end of the cutting beams, and the spindle is rotationally driven by an induction motor. Then, in the drive device of the pavement road surface circular cutting device that cuts the pavement road surface circularly with the cutting blade, a speed detector that detects the speed of the induction motor, a slip frequency calculator that determines the torque characteristics, and a frequency of the inverter. A frequency calculator for determining the frequency, and a voltage calculator for which a V / f (applied voltage / frequency) value at which the number of gap magnetic fluxes created by the exciting inductance of the induction motor is always constant is previously input to the circuit. And a frequency setting device that can set the frequency of the maximum speed according to the usage conditions and can respond to the appropriate peripheral speed of the cutting blade surface for a wide range of cutting diameters of the pavement road surface circular cutting device. An adder is provided for adding the slip frequency calculated by the slip frequency calculator from the motor speed and the motor speed converted to the frequency, and the added value from the adder and the maximum speed set by the frequency setter. A variable frequency inverter configured to input a frequency to the frequency calculator and the voltage calculator, and using calculation outputs from the frequency calculator and the voltage calculator as a frequency command value and a voltage command value of the inverter, respectively. , And a high-speed rotation induction motor and its speed reducer.
[0009]
In the driving device of the pavement road surface circular cutting device configured as described above, the motor speed detected by the speed detector is input to the slip frequency calculator, and a torque characteristic similar to a desired series winding torque characteristic is obtained. The slip frequency is output as follows. Next, the slip frequency and the frequency conversion value of the motor speed are added in an adder, and input to a frequency calculator and a voltage calculator. If the added value is equal to or less than the set value of the frequency setting device at the highest speed, the value is kept as it is, and if it exceeds the set value, it is output as the set value. Then, the calculation outputs of the frequency calculator and the voltage calculator are input to the inverter as a frequency command value and a voltage command value of the inverter, and the inverter drives a high-speed rotation induction motor.
In this way, the appropriate rotation speed and load torque are maintained for the specification change of the cutting diameter, and it is possible to cope without reducing the cutting efficiency.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
First, an outline of a pavement road surface circular cutting device will be described. FIG. 1 is a front view showing the entire configuration of the pavement road surface circular cutting device.
In the figure, a driving device 1 of a pavement road surface circular cutting device is provided on a gantry 2 and includes a high-speed induction motor 21 with a speed reducer and a variable frequency inverter 23 for controlling the same. The main shaft 6, which is supported by the main shaft 6, is rotationally driven by the electric motor 21 through the speed reducer 5, and two extensible cutting beams 7 connected to one end of the main shaft 6 expand and contract with the increase and decrease of the cutting diameter. Let me. A feed device 8 is provided at the tip of each cutting beam 7, and a cutting blade 9 is attached to the feed device 8, and the cutting blade 9 sends the cutting blade 9 to a cutting surface via a feed driving device 10. In this way, the cutting is performed.
[0011]
FIG. 2 is a configuration block diagram showing an embodiment of the present invention. Reference numerals in the figure denote 20 a speed reducer, 21 a high-speed induction motor, 22 a speed detector, 23 an inverter, 24 a frequency calculator, 25 a voltage calculator, 26 a slip frequency calculator, 27 Denotes a frequency setting device having the highest speed, and 28 denotes an adder. VINV is an inverter voltage command value, FINV is an inverter frequency command value, VFM is the speed of the induction motor, VFS is the slip frequency, VFT is the maximum speed frequency determined by the use conditions, and VF0 is the frequency of the speed VFM of the induction motor. This is an added value of the converted value and the slip frequency VFS.
In such a configuration, the motor speed VFM is detected by the speed detector 22 from the induction motor 21 and is input to the slip frequency calculator 26 to output a slip frequency VFS having a desired torque characteristic. Next, the frequency conversion value VFM of the motor speed and the slip frequency VFS thereof are added by the adder 28 and input to the frequency calculator 24 and the voltage calculator 25.
On the other hand, the highest speed frequency VFT determined by the use conditions is set in the highest speed frequency setting device 27, and is input to the frequency calculator 24 and the voltage calculator 25, and the highest speed frequency VFT and the added value VFO are calculated. Output the inverter's frequency command value FINV and voltage command value VINV to the inverter 23, and the inverter drives the induction motor 21.
[0012]
3 and 4 are explanatory diagrams of the embodiment of the present invention. FIG. 3 is an equivalent circuit of an induction motor, where reference symbol r1 is a primary resistance, r2 is a primary converted secondary resistance, L1 is a primary leakage inductance, L2 is a primary converted secondary leakage inductance, L0 is an exciting inductance, S indicates slip, I1 indicates motor current, V1 indicates terminal voltage, f indicates frequency, and E2 indicates voltage applied to the secondary circuit.
FIG. 4 shows the torque characteristics of the induction motor 21 at each frequency. The torque characteristic curves denoted by reference numerals 30 to 33 are characteristic curves at respective frequencies when the number of magnetic fluxes generated by the exciting inductance is set to a V / f value that is always constant. The characteristic curve indicated by reference numeral 34 is a desired torque characteristic curve, that is, a torque characteristic curve similar to the series winding torque characteristic, intersects with the characteristic curves 30 to 33 at points 35 to 38, respectively, and the slip frequency at that time is Fs1 to fs4, respectively.
[0013]
2, the motor speed VFM is input to a slip frequency calculator 26. At this time, the slip frequency calculator 26 obtains a desired torque characteristic, that is, a torque characteristic similar to a series winding torque characteristic in FIG. The slip frequency VFS is output.
For example, in order for the speed VFM to be at the intersection 37, it is necessary to add and output only the slip frequency of fs3. Thus, the frequency conversion value of the speed VFM and the slip frequency VFS are added by the adder 28, and the added value VF0 is input to the frequency calculator 24 and the voltage calculator 25. Since the circuit of the frequency calculator 24 acts as a kind of limiter circuit, if the added value VF0 is equal to or lower than the highest speed frequency VFT set by the highest speed frequency setting unit 27, the frequency is passed as it is and the highest speed If it exceeds the frequency VFT, the frequency VFT of the highest speed is output as it is. The voltage command value VINV is set in advance so as to compensate for the voltage drop due to the primary impedance (r1 + jωL1) calculated from the primary resistance r1 and the primary leakage inductance L1 in FIG. 3 so that the torque does not decrease even at a low speed. The inverter command value is calculated based on the V / f value input to the voltage calculator 25.
Then, since the number of gap magnetic fluxes generated by the exciting inductance L0 is constant at any frequency, the torque does not decrease even at low speed. The calculated value is output to inverter 23 as voltage command value VINV. The inverter 23 drives the induction motor 21 by receiving the frequency command value FINV and the voltage command value VINV.
Since the above operation is performed continuously, a torque characteristic similar to the series winding torque characteristic in FIG. 4 is obtained. In the case of a high-speed (for example, 20,000 rpm) induction motor, this characteristic is matched to the load curve of the circular pavement cutting machine by using the high-speed region of the torque characteristic curve. The reason is considered to be that the exciting current cannot be sufficiently secured as in the case of a low speed.
[0014]
FIG. 5 shows a first embodiment of the present invention, in which the type 1 (three-phase 200 V, 10 A, reduction ratio 1/140) driving device has a torque, a rotational speed, an inlet current and an outlet (motor) at each rotational speed in the case of the driving device. 9 shows experimental data indicating a relationship between currents. In this figure, the solid line shows the characteristic curve, and the two-dot chain line 43 shows the condition that the inlet set current is 10 A and the outlet current is below the rated value, that is, the curve connecting the points where continuous operation is possible. As can be seen from the figure, the rotation speed can be kept constant irrespective of the change in the load torque. Further, it has a characteristic that it can be continuously operated even at a low speed (for example, 10 r / min), and can be operated without overloading the motor, such as when landing on concrete.
[0015]
FIG. 6 shows a second embodiment of the present invention, in which a driving device tested in the same manner as the type 1 described above: each rotation in the case of a three-phase 200 V, 15 A, and a reduction ratio of 1/70 (hereinafter referred to as type 2). FIG. 2 shows experimental data showing the relationship between torque, speed, inlet current and outlet (motor) current in numbers (drive is powered up). In the figure, the solid line indicates the characteristic curve and the two-dot chain line 44 indicates the result under the same conditions as the curve 43 in FIG.
[0016]
Next, FIG. 9 is a plot of the torque characteristic curves 43 and 44 shown in FIGS. 5 and 6 on FIG. 9 for the first and second embodiments of the present invention.
In FIG. 7, the torque lines of the cutting diameters 1500, 1300, 1000, 800, and 600 mm on the right side show the values of the load torque when the pressing force is constant (150 kg). For example, when the cutting diameter is 1000 mm shown in the figure, the rotation speed is 62 r / min (peripheral speed 3.3 m / sec) in the curve 43 of the first embodiment, and 110 r / min (circumferential speed) in the curve 44 of the second embodiment. 5.9 m / sec> can be achieved, and the pressing force of the cutting blade surface is always constant (that is, the surface pressure is constant) in any of the cutting diameters of 1500 to 600 mm. Wear is small, and the peripheral speed can be increased to about 3 to 6 m / sec by selecting the driving device type 1 or type 2, so that an increase in drilling speed can be expected.
[0017]
【The invention's effect】
The drive device of the pavement road surface circular cutting device of the present invention can maintain an appropriate rotation speed and load torque for a wide range of specification changes in the cutting diameter, can cope without a decrease in cutting efficiency, and can withstand overload. Thus, there is an effect that the motor can be driven while the damage to the motor is small and the current at the time of grounding is kept low. In addition, even if the cutting diameter changes, there is also an effect that continuous operation can be performed without changing the inlet set current.
[Brief description of the drawings]
FIG. 1 is a front view showing an overall arrangement of a pavement road surface circular cutting device.
FIG. 2 is a configuration block diagram showing an embodiment of the present invention.
FIG. 3 is an equivalent circuit diagram of an induction motor for describing an embodiment of the present invention.
FIG. 4 is a torque characteristic diagram at each frequency of the induction motor for describing the embodiment of the present invention.
FIG. 5 is a characteristic diagram showing a relationship among a rotation speed and load torque / input current / output current according to the first embodiment of the present invention.
FIG. 6 is a characteristic diagram showing a relationship among a rotational speed and load torque / input current / exit current according to a second embodiment of the present invention.
FIG. 7 is a characteristic diagram showing a relationship between a rotation speed, a load torque, and a cutting diameter according to the present invention.
FIG. 8 is experimental data showing the relationship between the pressing force of the cutting blade surface and the cutting speed.
FIG. 9 is a comparison diagram of the rotational speed and the load torque of the circular cutting device comparing the expected characteristic curve and the experimental data.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Drive device 2 ... Stand 5 ... Reduction gear 6 ... Main shaft 7 ... Cutting beam 8 ... Feeding device 9 ... Cutting blade 10 ... Feeding driving device 20 ..Speed reducer 21 high speed induction motor 22 speed detector 23 inverter 24 frequency calculator 25 voltage calculator 26 slip frequency calculator 27. · Frequency setting device 28 of maximum speed ··· Adders 30 to 33 ··· Torque characteristic curve 34 of each frequency ··· Desired torque characteristic curve 35 to 38 ··· Torque characteristic curve of each frequency and desired torque characteristic Intersections 40 to 42 with the curves: Torque characteristic curves 43, 44 ... Torque characteristic curves VINV of the first and second embodiments ... Inverter voltage command value FINV ... Inverter frequency command value VFM ... Induction motor speed VFS ... Slip The wave number VFT ··· highest rate of frequency VF0 ··· VFM + VFS
r1 Primary resistance r2 Secondary resistance L1 Primary leakage inductance L2 Secondary leakage inductance L0 of primary resistance Excitation inductance S Slip I1 Electric motor Current V1 Terminal voltage f Frequency E2 Voltage fs1 to fs4 applied to the secondary circuit Slip frequency

Claims (1)

立設した主軸の一端に複数の伸縮可能な切削ビームを連結し、それらの切削ビームの先端部にそれぞれ切削刃を取り付けた送り装置を設け、主軸を誘導電動機で回転駆動してその切削刃で舗装路面を円形に切削する舗装路面円形切断装置の駆動装置において、誘導電動機の速度を検出する速度検出器と、トルク特性を決定する滑り周波数演算器と、インバータの周波数を決定する周波数演算器と、前記誘導電動機の励磁インダクタンスによってつくられるギャップ磁束数が常に一定となるV/f値が予め回路中に入力されている電圧演算器とを備えており、そして使用条件によって最高速度の周波数を設定し舗装路面切断装置の広範囲の切削径に対して切削刃面の適正周速に対応できる周波数設定器を設け、前記電動機速度から滑り周波数演算器で演算された滑り周波数と周波数に換算した電動機速度とを加え合わせる加算器を設け、その加算器からの加算値と前記周波数設定器で設定された最高速度の周波数とを前記周波数演算器と電圧演算器とに入力するように構成し、前記周波数演算器と電圧演算器とからの演算出力をそれぞれ前記インバータの周波数指令値および電圧指令値とする可変周波数インバータで駆動される高速回転の誘導電動機と、その減速機とを設けていることを特徴とする舗装路面円形切断装置の駆動装置。A plurality of extendable cutting beams are connected to one end of the standing spindle, and feeders with cutting blades attached to the ends of the cutting beams are provided.The spindle is driven to rotate by an induction motor and the cutting blades are used. In a drive device of a pavement road surface circular cutting device that cuts a pavement road surface into a circle, a speed detector that detects a speed of an induction motor, a slip frequency calculator that determines a torque characteristic, and a frequency calculator that determines a frequency of an inverter. A voltage calculator in which a V / f value at which the number of gap magnetic fluxes generated by the excitation inductance of the induction motor is always constant is previously input into the circuit, and a frequency of a maximum speed is set according to use conditions. A frequency setting device is provided which can correspond to an appropriate peripheral speed of the cutting blade surface for a wide range of cutting diameters of a pavement road surface cutting device, and a slip frequency operation is performed based on the motor speed. An adder that adds the slip frequency calculated by the calculator and the motor speed converted to the frequency, and the added value from the adder and the frequency of the maximum speed set by the frequency setting device are referred to as the frequency calculator. And a high-speed rotation induction driven by a variable frequency inverter configured to input to the voltage calculator and to set the calculation outputs from the frequency calculator and the voltage calculator to a frequency command value and a voltage command value of the inverter, respectively. A drive device for a pavement road surface circular cutting device, comprising an electric motor and a speed reducer.
JP2002305877A 2002-10-21 2002-10-21 Driving device for paving road surface circular cutting device Expired - Fee Related JP4017072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305877A JP4017072B2 (en) 2002-10-21 2002-10-21 Driving device for paving road surface circular cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305877A JP4017072B2 (en) 2002-10-21 2002-10-21 Driving device for paving road surface circular cutting device

Publications (2)

Publication Number Publication Date
JP2004137854A true JP2004137854A (en) 2004-05-13
JP4017072B2 JP4017072B2 (en) 2007-12-05

Family

ID=32452851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305877A Expired - Fee Related JP4017072B2 (en) 2002-10-21 2002-10-21 Driving device for paving road surface circular cutting device

Country Status (1)

Country Link
JP (1) JP4017072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942796A (en) * 2010-10-11 2011-01-12 陕西长大实业有限公司 Milling roller with built-in driving unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942796A (en) * 2010-10-11 2011-01-12 陕西长大实业有限公司 Milling roller with built-in driving unit
CN101942796B (en) * 2010-10-11 2015-12-09 陕西中土重工机械有限公司 The built-in milling of a kind of driver element is rolled

Also Published As

Publication number Publication date
JP4017072B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
CN101031719B (en) Transmission chain for wind power equipment and method for controlling rotation speed or torque
JP2755011B2 (en) Motor drive control device
EP1589630A2 (en) Protection for wind power station
US8111048B2 (en) Double fed synchronous generator motor
JP2004137854A (en) Driving device for paved road surface circular cutting device
CN201557032U (en) Variable frequency motor and potential energy loading high-speed-ratio frequency conversion system for hoisting machinery
KR20140099821A (en) Motor Control Unit
US7129613B2 (en) Rotating electrical machine and drive system of cage induction motor
JP5627999B2 (en) Driving device for motor-driven chain conveyor cutter
JP3175106B2 (en) Driving device for dry cutter for concrete cutting
JP2005051900A (en) High speed rotation core drill
JP2004225333A (en) Cutting blade feeding drive unit for pavement surface circularly cutting device
KR20150123216A (en) Mechanical device
JP2783518B2 (en) Core drill drive
JP6438950B2 (en) Power converter
JP2000218613A (en) Manual feed apparatus for core drill
JPH1070898A (en) Controller for induction motor
JP4087931B2 (en) Variable speed control device for pump drive motor
JP2930479B2 (en) Induction motor drive
JP4584687B2 (en) Swivel control device for construction machinery
JPH06237593A (en) Driving device of induction motor for polisher
JP3043121U (en) Core drill soft starter
JP2880808B2 (en) Inverter device
JP2856350B2 (en) Cooling device for core drill drive motor
CN104836399B (en) Low-voltage alternating-current asynchronous machine high speed torque Optimization Design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Effective date: 20070227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070912

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees