JP2004137409A - Foamed body and method for producing the same - Google Patents

Foamed body and method for producing the same Download PDF

Info

Publication number
JP2004137409A
JP2004137409A JP2002304927A JP2002304927A JP2004137409A JP 2004137409 A JP2004137409 A JP 2004137409A JP 2002304927 A JP2002304927 A JP 2002304927A JP 2002304927 A JP2002304927 A JP 2002304927A JP 2004137409 A JP2004137409 A JP 2004137409A
Authority
JP
Japan
Prior art keywords
foam
gas
powder
resin
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002304927A
Other languages
Japanese (ja)
Inventor
Sumi Nagatomo
永友 寿美
Takao Maeda
前田 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2002304927A priority Critical patent/JP2004137409A/en
Publication of JP2004137409A publication Critical patent/JP2004137409A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide foamed body having heat-insulating performance and capable of readily handling a resin to be foamed, making foam content small, adjusting expansion ratio of dispersed fine foam nucleus by expansion pressure, making the pressure in foam as small as possible and reducing heat conductivity of foam when depressurized and to provide a method for producing the foam. <P>SOLUTION: The foamed body has a glass transition temperature not lower than maximum service temperature under the environment using the foam and the foamed body is obtained by expanding a liquid obtained by mixing a thermosetting resin carrying out curing reaction from a liquid to a solid by heating with a gas and powder having ≤0.05 g/cm<SP>3</SP>foam density so that foamed body density becomes ≤0.05 g/cm<SP>3</SP>. In the method for producing the foamed body, homogeneous disperse of the gas and the powder into the thermosetting resin is carried out by a stirring method utilizing revolution or rotation and represented as a planet type stirring using no stirring blade. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、建材、冷蔵庫、自動販売機等の熱を遮る必要のある分野に用いるクリーンなガスを用いた発泡体の製造方法に関する。
【0002】
【従来の技術】
従来、熱硬化性樹脂を用いた発泡体は、ウレタン樹脂やフェノール樹脂、シリコーン樹脂、エポキシ樹脂に発泡剤を混入させ、発泡させている。発泡剤にはフロン系ガス気化、反応生成物による発生ガス、熱分解ガス生成などを利用して発泡させる。ウレタンフォームなどの廃棄の際は、粉々に粉砕し中に存在するガスを回収する必要があり、特殊なガスを用いた発泡は、リサイクルの観点から処理コストが大きい。
【0003】
そのほかにシリカ粉末やウレタン粉末をガスバリヤ性フィルムでパックし、中を真空にした断熱パネルがある。
【0004】
また、発泡体の製造方法としては、空気等の不活性ガスを発泡剤としたもの、あるいは減圧により発泡倍率を高めたものが知られている。
【0005】
空気等の不活性ガスを発泡剤としたものとしては、内壁に多数の突起を有する円筒器空内を、多数の羽根(突起)を有する回転子が回転し、羽根が突起に接触することなく突起間を回転子の回転と共に回転する構造のメカニカルフロス発泡機を用い、樹脂発泡体原料と空気を混合し、さらに特定の界面活性剤を用いた尿素樹脂発泡体を製造する方法(例えば、特許文献1参照)、また、樹脂発泡体原料、触媒、シリコン整泡剤、吸着剤および他の添加剤の混合物に機械的攪拌によって該混合物全体に、不活性ガス(空気)を実質上均一に分散させて、実質上構造的に安定な泡体を形成させることを特徴とする吸着性能を有するポリウレタンフォームシートの製造法(例えば、特許文献2参照)等がある。
【0006】
減圧により発泡効倍率を高めたものとしては、発泡槽に一定量の発泡性熱可塑性樹脂粒子を供給収納した後、槽内に水蒸気を吹き込み該水蒸気により槽内粒子を加熱し、予備発泡せしめると共に、所定の発泡終了後、槽内を急激に50mmHg以下に減圧して槽内圧力と発泡粒子内圧力の差圧により更に発泡せしめる方法(例えば、特許文献3参照)、また、フェノール樹脂、フィラー、整泡剤等よりなる樹脂ペーストを気体混濁状態で混合攪拌し、該気体混濁樹脂ペーストをガラス繊維不織布に含浸させた後金型内へ供給し、該金型を密閉すると共に減圧し、減圧力を調整して気体泡の膨張を調整しつつ加熱硬化させる、すなわち、混濁された気体の減圧による膨張を利用して発泡倍率を調整する方法(例えば、特許文献4参照)等がある。
【0007】
先願の特願2001−294639号では、気泡核を樹脂に混ぜる方法を提案した。しかし、この方法でも発泡させることは可能だが、樹脂がゲル化(エポキシ樹脂の場合、反応率約10%)する直前に高速攪拌でホイップさせる必要があるため、作業時間が極めて短時間であることが問題であり、気泡核径も1mm以上のものがあり、均一性にかけた。
【0008】
【特許文献1】
特開昭59−36142号公報
【0009】
【特許文献2】
特開昭60−35016号公報
【0010】
【特許文献3】
特開昭64−45606号公報
【0011】
【特許文献4】
特開平5−318506号公報
【0012】
【発明が解決しようとする課題】
以上のことから、この発明が解決しようとする課題は、発泡させる樹脂の取り扱いを容易にでき、気泡の含有率を小さくすることができ、分散させた微細な気泡核について発泡させる圧力により発泡倍率を調整でき、気泡内圧力をできるだけ小さくし、減圧したときの気泡の熱伝達率を抑えることが可能な断熱性能のよい発泡体およびその製造方法を提供することである。
【0013】
【課題を解決するための手段】
本発明の第1の形態は、発泡体を使用する環境の最高使用温度以上のガラス転移温度を持ち、熱により液状から固体へ硬化反応する熱硬化性樹脂に、気体および10μm以下の粉末を混合してなる液体を、発泡体密度が0.05g/cm以下に発泡させた発泡体である。
【0014】
本発明の第2の態様は、前記粉末が、窒素、酸素、二酸化炭素などの気体または、空気を化学的、物理的に吸着し、7nm以上10μm以下の粒径でかつ比表面積が1m/g以上の粉末を単体または2種類以上の組み合わせたものである前記発泡体である。
【0015】
本発明の第3の態様は、発泡体に使用する熱硬化性樹脂に気体および10μm以下の粉末を混合させた発泡体の製造方法であって、該熱硬化性樹脂中への気体および該粉末の均一分散が、攪拌翼を使用しない、遊星式攪拌として示される、公転・自転を利用した攪拌方法によって行われる発泡体の製造方法である。
【0016】
本発明の第4の態様は、発泡体に使用する熱硬化性樹脂に気体および10μm以下の粉末を混合させた発泡体の製造方法であって、ガスバリヤ性のある袋に前記気体及び前記粉末が混合された発泡させる樹脂を計量、密封し、熱反応により液体が固体に変化する点(ゲル化)近辺で、1から50倍の発泡を袋内で行い、発泡倍率を制御する発泡体の製造方法である。
【0017】
【発明の実施の形態】
本発明は、環境に有害と思われる化学物質やガスを発泡剤に用いず、大気中の空気などを発泡させる原料として用い、気体の減圧膨張作用を用いることから、ガス量も少量である。発泡体内の気泡を減圧にすることで、従来の優れた断熱性能を有するフロンガス発泡剤のように断熱性能の大きいフォームを得る。
【0018】
更に、真空断熱材なども減圧を維持するためにガスバリヤ性を考慮してアルミ箔付きプラスチックフィルムの複合材が使用されているが、袋の中を真空引きして封じ切るか、真空槽内でシールするなど簡便でなく、設備負担が大きくなる。
【0019】
先願の特願2001−294639号に対して、反応していない樹脂自体に気泡核を均一にしかもより微細な核で、長期的に気泡核の抜けが無いようにすることで、材料の取り扱いを容易にする必要があった。
【0020】
本発明は、発泡の手段として用いられてきたガス化発泡に対して、減圧による気体の膨張を利用して、減圧の気泡を形成し、熱の伝わりを抑制する発泡体を製造する際に、あらかじめ気体混合樹脂を袋につめ大気中でパックをする。発泡は、真空槽内の所定の棚厚さに入れることで厚さを制御し硬化させることができ、真空槽内で発泡、硬化をさせるものである。
【0021】
先願の特願2001−294639号のように、気泡のみを樹脂に高速攪拌で混ぜ込んで発泡させる樹脂の場合、その高速攪拌のタイミングにいたるまでに反応による増粘をさせることで樹脂中から気体が抜けていくことを防ごうとした。しかし、材料の取り扱い易さが悪いことが問題であった。
【0022】
そこで、増粘材(粉末)との組み合わせにより、反応していない樹脂に均一で微細(20μm以下:133Paで膨張させた場合に約100μmになるように)気泡核を導入することと、気泡維持のためのチクソ性を付与した。また、同時に行われる作用として、粉末を樹脂に混ぜる際に巻き込んでしまう泡が分散した気泡と、それより小さい粉末の表面、細孔に化学的、物理的に吸着、付着しているガスの2種類を減圧で発泡する核材にし、気泡核導入のメインとアシストに使うことで気泡核自体も容易に微細化できる。攪拌方法も、攪拌翼を使わない遊星式攪拌方法を用いることで大きな気泡を巻き込み、樹脂中へ残ることを排除した。粉末の中で(活性炭、アエロジル、酸化マグネシウム、ゼオライト、シリカゼル)、化学的、物理的に吸着、付着するものは、吸着、付着しているガスの種類を熱処理や置換により選択できる幅があり、発泡させる温度と圧力で気化する蒸気圧を持つ液体、分子、ガスなどが候補の材料として選択できる。
【0023】
(実施例)
以下、本発明の実施例について詳細に説明する。
【0024】
[樹脂配合]
材料は、室温から60℃で硬化する配合としてエポキシ樹脂(エポキシ当量185)に変性脂肪族ポリアミン系硬化剤を加え混練した。その他、硬化温度が違うが、材料としてウレタン樹脂、シリコーン樹脂、フェノール樹脂など、液状で、反応を熱などで制御できる材料であれば適用できる。しかし、発泡後に減圧状態になるため、大気圧以上に耐えうる材料強度を有した材料を選択する必要はある(たとえば、曲げ強さ:12MPa以上、曲げ弾性率:8300MPa以上であれば0.04g/cmの発泡密度で圧縮強さが1.2kg/cm以上と大気圧に耐えうる。樹脂自身に強度が若干不足している場合でも、粉末を配合し、樹脂強度の向上ができる)。混練後真空脱泡を133Pa以下で発泡しないことを確認しドライのチッ素ガスや空気でパージし大気圧にもどす。極力水分の浸入がないように、操作する系統をドライ雰囲気で行う。
【0025】
[気泡核の分散導入]
先願の特願2001−294639号では、樹脂の反応が進み、増粘しつつゲル化する直前で、攪拌により空気などを混合、攪拌、分散する方法を提案したが、この方法では、発泡前樹脂の気体含有率が10〜50vol%で非常に多くの気体を気泡核として分散導入でき発泡させることは可能であるが、例えば図4に示されるように気泡径を均一にそろえることが難しいという問題があった。
【0026】
樹脂に平均粒径10μm以下の粉末を遊星式攪拌装置により攪拌することで大きな気泡を除去し、20μm以下の気泡のみを残す操作と粉末を均一に樹脂中に分散させる。攪拌の際に粉末近傍の空気も樹脂中に混ざることになるが、このとき前述したように遊星式攪拌により大きな気泡は除去される。攪拌により均一に分散した粉末には空気が吸着しているため減圧にした際に吸着ガスが膨張する。分散させる粉末は微細であることが好ましく、熱伝導性が悪いものが有効である。たとえば、結晶性シリカ、溶融シリカ、酸化Mg、合成マイカ、炭酸Caなどが配合できるが、熱伝導性の大きい酸化マグネシウムなどの場合は、少量の添加で使える樹脂配合に適用するなど最終的に必要な特性を満足できれば、積極的に使用できる。合成マイカの場合(平均粒径3〜5μm)、23wt%の配合で気体含有率2.4vol%である。この状態では、若干のチクソ性があるレベルである。樹脂中に多く添加するには、粉末の比表面積が10m/g以下と小さい材料が好ましい。
【0027】
[気泡を保持するための擬似ゲル化]
減圧で発泡させるタイミングとしては、発泡した泡が合一して大きくなることを防止するためにゲル化する直前に行う。ゲル化を待つ間に気泡が抜けることを防止するために、チクソ性を付与する。先願の特願2001−294639号の方法は、樹脂をゲル化させた後に攪拌翼で攪拌することで気泡をつくりだし、高速せん断で気泡径を小さくする方法であるが、樹脂反応を制御させる必要があり、見極めるのに熟練を要する。熟練を不要とするために擬似的に反応が進んだような状態で作り出す方法として超微粉末を配合する方法が有効である。ただし、擬似反応状態としては増粘させるのみでなくチクソ性を付与させることも重要である。増粘させる微粉末としては、粒度分布がシャープなもので粉末表面に水酸基、カルボキシル基のような極性基を有した材料や比表面積が30m/g以上であることが好ましい。実施例として、火炎加水分解法で製造された、平均粒径12nmの表面に水酸基がついているシリカを0.7wt%添加し非ニュートン流体にした。このような微粉末でも、表面に疎水性であるメチル基がついているものであれば、7.4wt%まで添加量を増やしても水酸基粉末なみの非ニュートン流体であることから、表面処理したものを前述した気泡核の分散導入材として兼用も可能である。
【0028】
[発泡までの養生と発泡]
配合した樹脂は、先願の特願2001−294639号のようにガスバリヤフィルムに計量して袋に入れ、流し込んだ際に巻き込んだ気泡を追い出し、袋を熱シールして封止する。この状態で40℃の熱板上に放置してゲル化に進める(樹脂の完全硬化の約5%の反応状態)。この条件は、樹脂の種類によって放置温度を最適にする必要があるがこのゲル化する時間に対して50%〜100%の範囲で選択する。このとき透明のフィルム袋に詰めたものをバリヤフィルムに入れて発泡すれば、袋内の気泡の巻き込みが確認でき熱シールする前に除去が可能になる。また袋内の樹脂は均一な厚さに伸ばすことで、発泡の際に、一部分のみが発泡不良になることを防ぐことができる。
【0029】
気泡核を真空で膨張させるタイミングは、前述したように樹脂の反応がゲル化の直前であることが好ましい。これは樹脂の分子量が増大し、架橋し高分子化していくことで減圧下のベーパーの発生を抑制することと、膨張した気体の泡が合一させない効果を持つ。
【0030】
以上のように袋詰めしたものを真空層内に設けた棚に入れ、所定の厚さに発泡させた状態で硬化させる。真空を大気圧にした状態にして、発泡体を取り出す。
【0031】
手間にはなるが、樹脂によっては、チクソ性が大きく直接アルミ箔付プラスチックフィルムに樹脂を入れる方法では中が見えないことで、巻き込み気泡を排除できず、発泡不良箇所を作る問題に対して、透明のフィルムで一時封止して、発泡硬化後にガスバリヤ性の高いアルミ箔付プラスチックフィルム中で真空パックだけを行うこともでき、どちらかを選択できる。
【0032】
樹脂の量は袋が膨らみ固まる体積を求め、樹脂中に含まれる気体を把握しておき、希望する樹脂密度のとき、気体かいっぱいに膨張した膨張倍率から、気体の圧力を求める。つまり、樹脂量と気体量が膨張した気泡の内圧を決める。樹脂の重量を袋の体積で割り、発泡密度が決まる。
【0033】
実施例の結果
袋の発泡後の内容積が356ccの場合
発泡させる樹脂の樹脂量と密度:14.1g 1.31g/cm
樹脂分の体積:10.51cc(計算値)
ガス分の体積:0.256cc(2.4vol%)(計算値)
発泡倍率:33倍(計算値)
気泡内圧力:約75Pa(計算値)
発泡体密度:0.04g/cm
【0034】
このように発泡させる樹脂の気泡含有率が小さく、高発泡させることで、発泡体内の気泡内圧力は75Paと小さくすることができる。つまり、発泡体の密度も小さくすることができる。図1〜3に気泡含有率による気泡内圧力の関係を示した。気泡内の圧力は、気泡含有率が小さいほど、同じ発泡密度でも小さくできる。このとき、気泡核の数が多いことが重要である。
【0035】
【発明の効果】
この発明によれば、発泡させる樹脂の取り扱いを容易にでき、気泡の含有率を小さくすることができ、分散させた微細な101kPaの気泡核は発泡させる圧力により発泡倍率を調整できる。気泡内圧力が小さいほど減圧した気泡の熱伝達率を抑えることが可能になる。また、樹脂配合を耐熱性の高いものに変更することで耐熱性、断熱性能の高い断熱材を製作することが可能である。
【図面の簡単な説明】
【図1】合成マイカを23.3wt%添加した発泡させる材料の発泡密度―気泡内圧曲線を示す図である。
【図2】高速攪拌(12000rpm)で泡立てた発泡させる材料の発泡密度―気泡内圧曲線を示す図である。
【図3】高速攪拌(13000rpm)で泡立てた発泡させる材料の発泡密度―気泡内圧曲線を示す図である。
【図4】粉末および気体が混合された発泡させる樹脂材料を示す図である(先行発明)。
【図5】粉末および気体が混合された発泡させる樹脂材料を示す図である(本発明)。
【符号の説明】
1 樹脂と粉末とのマトリックス
2 気体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a foam using a clean gas used in a field such as a building material, a refrigerator, a vending machine and the like where heat needs to be blocked.
[0002]
[Prior art]
Conventionally, a foam using a thermosetting resin is foamed by mixing a foaming agent into a urethane resin, a phenol resin, a silicone resin, or an epoxy resin. The foaming agent is foamed by using a fluorocarbon gas vaporization, a gas generated by a reaction product, a pyrolysis gas generation, or the like. When urethane foam or the like is discarded, it is necessary to grind it into pieces and collect the gas present therein. Foaming using a special gas requires a large processing cost from the viewpoint of recycling.
[0003]
In addition, there is a heat insulating panel in which silica powder or urethane powder is packed with a gas barrier film and the inside is evacuated.
[0004]
Further, as a method for producing a foam, a method in which an inert gas such as air is used as a foaming agent, or a method in which the foaming ratio is increased by reducing the pressure, are known.
[0005]
In the case where the inert gas such as air is used as a foaming agent, a rotor having a large number of blades (projections) rotates in a cylindrical cavity having a large number of projections on the inner wall, and the blades do not contact the projections. A method of manufacturing a urea resin foam using a specific foaming agent by mixing a resin foam raw material and air using a mechanical froth foaming machine having a structure in which the protrusions rotate with the rotation of the rotor (for example, see Patent In addition, an inert gas (air) is substantially uniformly dispersed throughout a mixture of a resin foam raw material, a catalyst, a silicone foam stabilizer, an adsorbent, and other additives by mechanical stirring. Then, there is a method for producing a polyurethane foam sheet having an adsorption performance characterized by forming a substantially structurally stable foam (for example, see Patent Document 2).
[0006]
As the foaming effect magnification is increased by reducing the pressure, after a certain amount of expandable thermoplastic resin particles are supplied and stored in the foaming tank, steam is blown into the tank and the particles in the tank are heated by the steam, and the prefoaming is performed. After predetermined foaming is completed, a method in which the inside of the tank is rapidly reduced to 50 mmHg or less and further foamed by a differential pressure between the inside pressure of the tank and the inside pressure of the expanded particles (for example, see Patent Document 3), a phenol resin, a filler, A resin paste composed of a foam stabilizer and the like is mixed and stirred in a gas turbid state, and the gas turbid resin paste is impregnated into a glass fiber nonwoven fabric, and then supplied into a mold. To adjust heat expansion while adjusting the expansion of gas bubbles, that is, a method of adjusting the expansion ratio by utilizing expansion of a turbid gas due to reduced pressure (for example, see Patent Document 4).
[0007]
Japanese Patent Application No. 2001-294639 has proposed a method of mixing bubble nuclei with resin. However, although foaming is possible with this method, it is necessary to whip with high-speed stirring immediately before the resin gels (in the case of epoxy resin, the reaction rate is about 10%), so that the working time is extremely short. Was a problem, and some of them had a bubble nucleus diameter of 1 mm or more.
[0008]
[Patent Document 1]
JP-A-59-36142
[Patent Document 2]
JP-A-60-35016
[Patent Document 3]
JP-A-64-45606
[Patent Document 4]
JP-A-5-318506
[Problems to be solved by the invention]
From the above, the problem to be solved by the present invention is to facilitate the handling of the resin to be foamed, to reduce the content of air bubbles, and to expand the expansion ratio by the pressure for foaming the dispersed fine cell nuclei. It is an object of the present invention to provide a foam having good heat insulating performance and a method for producing the same, which can control the pressure inside the cell as much as possible and can suppress the heat transfer coefficient of the cell when the pressure is reduced.
[0013]
[Means for Solving the Problems]
According to a first aspect of the present invention, a gas and a powder of 10 μm or less are mixed with a thermosetting resin having a glass transition temperature equal to or higher than the maximum use temperature of the environment in which the foam is used, and curing reaction from liquid to solid by heat. The resulting liquid is foamed to a foam density of 0.05 g / cm 3 or less.
[0014]
According to a second aspect of the present invention, the powder chemically or physically adsorbs a gas such as nitrogen, oxygen, carbon dioxide or air, has a particle size of 7 nm to 10 μm and a specific surface area of 1 m 2 / The foam is a single body or a combination of two or more kinds of powder of g or more.
[0015]
A third aspect of the present invention is a method for producing a foam in which a gas and a powder having a particle size of 10 μm or less are mixed with a thermosetting resin used for the foam, wherein the gas and the powder are mixed in the thermosetting resin. Is a method for producing a foam which is performed by a stirring method utilizing revolution or rotation, which is shown as planetary stirring without using a stirring blade.
[0016]
A fourth aspect of the present invention is a method for producing a foam in which a gas and a powder having a particle size of 10 μm or less are mixed with a thermosetting resin used for the foam, wherein the gas and the powder are contained in a bag having gas barrier properties. The mixed resin to be foamed is measured and sealed, and at a point near the point where the liquid changes to a solid by thermal reaction (gelation), foaming of 1 to 50 times is performed in the bag to produce a foam to control the foaming ratio. Is the way.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the amount of gas is small because a chemical substance or gas considered to be harmful to the environment is not used as a foaming agent, but is used as a raw material for foaming air or the like in the atmosphere and a gas is used under reduced pressure. By reducing the pressure of the bubbles in the foam, a foam having a large heat insulating property is obtained like a conventional CFC blowing agent having excellent heat insulating performance.
[0018]
Furthermore, in order to maintain the reduced pressure, vacuum insulating materials and the like are also made of plastic film composite with aluminum foil in consideration of gas barrier properties. It is not simple such as sealing, and the equipment burden is large.
[0019]
In contrast to the prior application, Japanese Patent Application No. 2001-294639, the handling of materials is achieved by making the bubble nuclei uniform and finer in the unreacted resin itself so that the bubble nuclei do not escape for a long period of time. Needed to be easy.
[0020]
The present invention, for gasification foaming that has been used as a foaming means, utilizing the expansion of the gas under reduced pressure, forming bubbles under reduced pressure, when producing a foam that suppresses the transmission of heat, A gas-mixed resin is packed in a bag in advance and packed in the atmosphere. Foaming can be cured by controlling the thickness by putting it in a predetermined shelf thickness in a vacuum chamber, and foaming and hardening in the vacuum chamber.
[0021]
As in Japanese Patent Application No. 2001-294639 of the prior application, in the case of a resin to be foamed by mixing only air bubbles into the resin by high-speed stirring, by increasing the viscosity by the reaction until the timing of the high-speed stirring, from the resin. I tried to prevent gas from escaping. However, there was a problem that the ease of handling the material was poor.
[0022]
Therefore, by combining with a thickener (powder), uniform and fine (20 μm or less, about 100 μm when expanded at 133 Pa) are introduced into the unreacted resin to introduce bubble nuclei and maintain bubbles. For thixotropic properties. In addition, as an effect performed at the same time, there are two types of gas: a bubble in which bubbles entrained when mixing the powder with the resin are dispersed, and a gas which is chemically and physically adsorbed and adhered to the surface and pores of the smaller powder. By using a core material that can be foamed under reduced pressure and using it for main and assist in the introduction of bubble nuclei, the bubble nuclei themselves can be easily miniaturized. As for the stirring method, the use of a planetary stirring method that does not use a stirring blade causes entrapment of large bubbles and eliminates the possibility of remaining in the resin. Among powders (activated carbon, aerosil, magnesium oxide, zeolite, silica gel), those that chemically and physically adsorb and adhere have a range in which the type of adsorbed and adhering gas can be selected by heat treatment or substitution, Liquids, molecules, gases, and the like having a vapor pressure that evaporates at the temperature and pressure at which the foam is formed can be selected as candidate materials.
[0023]
(Example)
Hereinafter, embodiments of the present invention will be described in detail.
[0024]
[Resin formulation]
The material was kneaded by adding a modified aliphatic polyamine-based curing agent to an epoxy resin (epoxy equivalent: 185) as a composition that cures from room temperature to 60 ° C. In addition, although the curing temperature is different, any material such as urethane resin, silicone resin, and phenol resin can be used as long as the material is liquid and the reaction can be controlled by heat or the like. However, since the pressure is reduced after foaming, it is necessary to select a material having a material strength that can withstand the atmospheric pressure or more (for example, 0.04 g if the flexural strength is 12 MPa or more and the flexural modulus is 8300 MPa or more). Compressive strength of 1.2 kg / cm 2 or more at foaming density of / cm 3 and can withstand atmospheric pressure. Even if the strength of the resin itself is slightly insufficient, powder can be blended to improve the resin strength.) . After kneading, it is confirmed that vacuum defoaming does not occur at 133 Pa or less, and the mixture is purged with dry nitrogen gas or air to return to atmospheric pressure. Operate the system in a dry atmosphere to minimize the ingress of moisture.
[0025]
[Dispersion introduction of bubble nuclei]
In Japanese Patent Application No. 2001-294639, a method of mixing, stirring, and dispersing air or the like by stirring immediately before gelation while the reaction proceeds and thickening is proposed. When the gas content of the resin is 10 to 50 vol%, it is possible to disperse and introduce a very large amount of gas as bubble nuclei and foam it. However, for example, as shown in FIG. There was a problem.
[0026]
The powder having an average particle size of 10 μm or less is stirred by a planetary stirrer to remove large air bubbles, leaving only the air bubbles of 20 μm or less, and the powder is uniformly dispersed in the resin. At the time of stirring, air near the powder is also mixed into the resin. At this time, large bubbles are removed by the planetary stirring as described above. Since air is adsorbed on the powder uniformly dispersed by stirring, the adsorbed gas expands when the pressure is reduced. The powder to be dispersed is preferably fine, and those having poor thermal conductivity are effective. For example, crystalline silica, fused silica, Mg oxide, synthetic mica, Ca carbonate, etc. can be blended. However, in the case of magnesium oxide with high thermal conductivity, it is necessary to apply it to a resin blend that can be used with a small amount of addition. If it can satisfy the required characteristics, it can be used positively. In the case of synthetic mica (average particle size of 3 to 5 μm), the gas content is 2.4 vol% when 23 wt% is blended. In this state, it is a level having some thixotropy. To add a large amount to the resin, a material whose specific surface area of the powder is as small as 10 m 2 / g or less is preferable.
[0027]
[Pseudo-gelation to retain air bubbles]
The timing of foaming under reduced pressure is performed immediately before gelation in order to prevent the foamed foam from unifying and expanding. A thixotropic property is provided in order to prevent bubbles from coming out while waiting for gelation. The method disclosed in Japanese Patent Application No. 2001-294639 is a method in which a resin is gelled and then stirred with a stirring blade to create bubbles, and the diameter of the bubbles is reduced by high-speed shearing. However, it is necessary to control the resin reaction. It requires skill to determine. A method of blending ultrafine powder is effective as a method of producing the reaction in a state in which the reaction has proceeded in a pseudo manner so that skill is not required. However, it is important not only to increase the viscosity but also to impart thixotropy as the pseudo-reaction state. The fine powder to be thickened preferably has a sharp particle size distribution, a material having a polar group such as a hydroxyl group or a carboxyl group on the powder surface, or a specific surface area of 30 m 2 / g or more. As an example, a non-Newtonian fluid was prepared by adding 0.7 wt% of silica having an average particle size of 12 nm and having a hydroxyl group on the surface, which was produced by a flame hydrolysis method. Even if such a fine powder has a hydrophobic methyl group on the surface, it is a non-Newtonian fluid like a hydroxyl-based powder even if the amount of addition is increased to 7.4 wt%. Can also be used as the material for dispersing and introducing the cell nuclei described above.
[0028]
[Curing and foaming until foaming]
The compounded resin is weighed into a gas barrier film and put into a bag as described in Japanese Patent Application No. 2001-294639, and the bubbles trapped when poured are poured out, and the bag is heat-sealed and sealed. In this state, the mixture is left on a hot plate at 40 ° C. to proceed to gelation (a reaction state of about 5% of complete curing of the resin). It is necessary to optimize the standing temperature depending on the type of the resin, but this condition is selected in the range of 50% to 100% with respect to the gelation time. At this time, if the thing packed in the transparent film bag is put into the barrier film and foamed, the entrapment of the air bubble in the bag can be confirmed, and the bubble can be removed before heat sealing. In addition, by expanding the resin in the bag to a uniform thickness, it is possible to prevent only a part of the resin from being defective in foaming during foaming.
[0029]
The timing for expanding the bubble nuclei in a vacuum is preferably immediately before the reaction of the resin is caused to gel as described above. This has the effect of suppressing the generation of vapor under reduced pressure by increasing the molecular weight of the resin, cross-linking and polymerizing the resin, and has the effect of preventing expanded gas bubbles from coalescing.
[0030]
The bag packed as described above is put on a shelf provided in the vacuum layer, and is cured while being foamed to a predetermined thickness. With the vacuum at atmospheric pressure, the foam is removed.
[0031]
Although it is troublesome, depending on the resin, the method of putting the resin directly into the plastic film with aluminum foil has a large thixotropy, so that the inside can not be seen, the entrapped bubbles can not be eliminated, and the problem of creating defective foaming points It is also possible to temporarily seal with a transparent film and then perform only vacuum packing in a plastic film with an aluminum foil having a high gas barrier property after foaming and curing.
[0032]
As for the amount of resin, the volume in which the bag expands and solidifies is obtained, the gas contained in the resin is grasped, and the gas pressure is obtained from the expansion ratio of the gas fully expanded at the desired resin density. That is, the resin pressure and the gas pressure determine the internal pressure of the expanded bubbles. Dividing the weight of the resin by the volume of the bag determines the foam density.
[0033]
When the bag has an inner volume of 356 cc after foaming as a result of the example, the resin amount and density of the foamed resin: 14.1 g 1.31 g / cm 3
Resin volume: 10.51 cc (calculated value)
Gas volume: 0.256cc (2.4vol%) (calculated value)
Expansion ratio: 33 times (calculated value)
Bubble pressure: about 75 Pa (calculated value)
Foam density: 0.04 g / cm 3
[0034]
As described above, the resin content to be foamed has a small bubble content and is highly foamed, so that the pressure inside the foam in the foam can be reduced to 75 Pa. That is, the density of the foam can be reduced. FIGS. 1 to 3 show the relationship between the bubble content and the bubble pressure. The pressure in the cells can be reduced at the same foam density as the cell content is smaller. At this time, it is important that the number of bubble nuclei is large.
[0035]
【The invention's effect】
According to the present invention, the resin to be foamed can be easily handled, the content of bubbles can be reduced, and the foaming ratio of the dispersed fine bubble nuclei of 101 kPa can be adjusted by the foaming pressure. The smaller the pressure in the bubble, the more the heat transfer coefficient of the reduced bubble can be suppressed. Further, by changing the resin composition to a material having high heat resistance, it is possible to produce a heat insulating material having high heat resistance and heat insulation performance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a foaming density-bubble internal pressure curve of a material to be foamed with 23.3 wt% of synthetic mica added.
FIG. 2 is a diagram showing a foaming density-bubble internal pressure curve of a material to be foamed by high-speed stirring (12000 rpm).
FIG. 3 is a diagram showing a foaming density-bubble internal pressure curve of a material to be foamed by high-speed stirring (13000 rpm).
FIG. 4 is a view showing a resin material to be foamed in which a powder and a gas are mixed (prior invention).
FIG. 5 is a view showing a resin material to be foamed in which a powder and a gas are mixed (the present invention).
[Explanation of symbols]
1 matrix of resin and powder 2 gas

Claims (4)

発泡体を使用する環境の最高使用温度以上のガラス転移温度を持ち、熱により液状から固体へ硬化反応する熱硬化性樹脂に、気体および10μm以下の粉末を混合してなる液体を、発泡体密度が0.05g/cm以下に発泡させたことを特徴とする発泡体。A liquid obtained by mixing a gas and a powder of 10 μm or less with a thermosetting resin having a glass transition temperature equal to or higher than the maximum use temperature of the environment in which the foam is used, and a curing reaction from a liquid to a solid by heat, Foamed to 0.05 g / cm 3 or less. 前記粉末は、窒素、酸素、二酸化炭素などの気体または、空気を化学的、物理的に吸着する、7nm以上10μm以下の粒径でかつ比表面積が1m/g以上の粉末を単体または2種類以上の組み合わせたものであることを特徴とする請求項1に記載の発泡体。The powder may be a gas such as nitrogen, oxygen, carbon dioxide or the like, or a powder having a particle diameter of 7 nm or more and 10 μm or less and a specific surface area of 1 m 2 / g or more, which adsorbs air chemically or physically. The foam according to claim 1, wherein the foam is a combination of the above. 発泡体に使用する熱硬化性樹脂に気体および10μm以下の粉末を混合させた発泡体の製造方法であって、該熱硬化性樹脂中への気体および該粉末の均一分散が、攪拌翼を使用しない、遊星式攪拌として示される、公転・自転を利用した攪拌方法によって行われることを特徴とする発泡体の製造方法。A method for producing a foam in which a gas and a powder having a particle size of 10 μm or less are mixed with a thermosetting resin used for the foam, wherein the gas and the powder are uniformly dispersed in the thermosetting resin using a stirring blade. A method for producing a foam, wherein the method is performed by a stirring method utilizing revolution or rotation, which is indicated as planetary stirring. 発泡体に使用する熱硬化性樹脂に気体および10μm以下の粉末を混合させた発泡体の製造方法であって、ガスバリヤ性のある袋に前記気体及び前記粉末が混合された発泡させる樹脂を計量、密封し、熱反応により液体が固体に変化するゲル化点近辺で、1から50倍の発泡を袋内で行い、発泡倍率を制御することを特徴とする発泡体の製造方法。A method for producing a foam obtained by mixing a gas and a powder having a particle size of 10 μm or less with a thermosetting resin used for the foam, wherein the gas and the powder are mixed and foamed in a bag having gas barrier properties. A method for producing a foam, wherein the foam is sealed and foamed 1 to 50 times in a bag near a gel point at which a liquid changes to a solid by a thermal reaction to control a foaming ratio.
JP2002304927A 2002-10-18 2002-10-18 Foamed body and method for producing the same Pending JP2004137409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304927A JP2004137409A (en) 2002-10-18 2002-10-18 Foamed body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304927A JP2004137409A (en) 2002-10-18 2002-10-18 Foamed body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004137409A true JP2004137409A (en) 2004-05-13

Family

ID=32452200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304927A Pending JP2004137409A (en) 2002-10-18 2002-10-18 Foamed body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004137409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442204B1 (en) * 2012-11-09 2014-09-19 전북대학교산학협력단 Particle reinforced cellular foam and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442204B1 (en) * 2012-11-09 2014-09-19 전북대학교산학협력단 Particle reinforced cellular foam and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5034424A (en) Rigid foam and process for producing the same
KR101060138B1 (en) Emulsion composition for silicone rubber sponge, method for preparing same, and method for preparing silicone rubber sponge
US8114919B2 (en) Microwave foam
Calabrese et al. Morphological and functional aspects of zeolite filled siloxane composite foams
CN104530712A (en) Small pore diameter silicone rubber sponge and preparation method thereof
CN111303633B (en) Method for preparing silicone rubber sponge heat-insulating material by taking in-situ graft modified mesoporous silica vesicle continuous aggregate as functional filler
CN111040104A (en) Sound-absorbing flame-retardant vegetable oil-based polyurethane foam material and preparation method thereof
Calabrese et al. Experimental evaluation of the hydrothermal stability of a silicone/zeolite composite foam for solar adsorption heating and cooling application
JP2004137409A (en) Foamed body and method for producing the same
JP2004070159A (en) Rubber-like elastic foamed body and fixing pressure roller with this elastic body arranged thereon
CN110452480B (en) Preparation method of ultra-light heat-insulating flexible aerogel
CN112321848B (en) Room temperature vulcanized silicone rubber emulsion for latex products, silicone rubber sponge and preparation method
Zoude et al. Combination of chemical foaming and direct ink writing for lightweight geopolymers
CN103319679B (en) Polyurethane rigid foam inorganic fireproof thermal-insulation material for solar water tank
CN106496627B (en) Negative pressure foaming method for preparing epoxy resin foam by taking air as foaming agent
CN114133700A (en) Efficient light electromagnetic absorption material with closed pore structure and preparation method thereof
JP7368327B2 (en) Airgel molded product and its manufacturing method
Zhou et al. Study on the foaming behavior of density‐controllable epoxy resin composite foam under negative pressure environment
CN106519702A (en) Composition and method for manufacturing pored silicone rubber sponge
JP2004250596A (en) Communicated foam, production process therefor, and heat insulated structure using the foam and production process therefor
JP2003139291A (en) Thermal insulation material
JP2718985B2 (en) Foam insulation
CN116285365A (en) Foaming conductive silicon rubber and preparation method thereof
CN115703289A (en) Polyurethane foam product and preparation method of polyurethane foam
CN118185319A (en) Self-adhesive silicone rubber foaming material and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040820