JP2004136907A - Gas barrier container, method and apparatus for manufacturing the same - Google Patents

Gas barrier container, method and apparatus for manufacturing the same Download PDF

Info

Publication number
JP2004136907A
JP2004136907A JP2002301479A JP2002301479A JP2004136907A JP 2004136907 A JP2004136907 A JP 2004136907A JP 2002301479 A JP2002301479 A JP 2002301479A JP 2002301479 A JP2002301479 A JP 2002301479A JP 2004136907 A JP2004136907 A JP 2004136907A
Authority
JP
Japan
Prior art keywords
container
voltage
voltage pulse
gas barrier
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301479A
Other languages
Japanese (ja)
Other versions
JP4007149B2 (en
Inventor
Takahiro Harada
原田 隆宏
Hidemi Nakajima
中島 英実
Tsutomu Shirai
白井 励
Naoto Kusaka
日下 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002301479A priority Critical patent/JP4007149B2/en
Publication of JP2004136907A publication Critical patent/JP2004136907A/en
Application granted granted Critical
Publication of JP4007149B2 publication Critical patent/JP4007149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container with a three-dimensional shape such as a bottle which is colorless and has high transparency and high gas barrier properties without using a plasma CVD method having such a problem as adhesion of a film, and to provide a method and an apparatus for manufacturing it. <P>SOLUTION: Plasma is generated on the inner face of the container by the method for manufacturing the container, ions fed from the plasma are accelerated by a high voltage pulse applied from the external face of the container, and implanted on the inner face of the container. The method for manufacturing the gas barrier container is characterized by that the electric voltage of the high voltage pulse is a negative voltage, and its absolute value is at least 2 kV, and starting-up of the voltage of the high voltage pulse is ≥1 kV/1 μs in its absolute value in the negative direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はガスバリア性を有する、ボトルなどの3次元形状の容器とその製造方法並びにその製造装置に関する。
【0002】
【従来の技術】
従来、軽量且つ耐衝撃性に強いため、PETボトルに代表される高分子樹脂製の3次元容器が広範に使われている。最近、酸素、水蒸気の気体遮断性(以下バリア性と称す)に優れた飲料容器として、容器内面或いは外面にダイヤモンドライクカーボン(以下DLCとする)に代表される硬質炭素膜や酸化珪素(SiOx)膜のコーティングを施したPETボトルが提案された(特許文献1、2参照)。これらのコーティングPETボトルは、二酸化炭素のバリア性にも優れているため炭酸飲料、ビール等にも採用されつつある。
【0003】
これらのコーティング処理は、真空装置内にPETボトルを挿入し真空排気した後に、反応ガスをボトル内面に導入して外部から電圧やマイクロ波による電磁界エネルギーを加えてボトル内空間にプラズマを発生、反応ガスの化学反応により薄膜成長させる、いわゆるプラズマCVD法により、ボトル内面にバリア層を形成する。これらの方法は、極めて高い光透過性とバリア性を有する。
【0004】
一方、プラズマCVD法以外のバリア性付与の方法として、高分子樹脂容器の内部にプラズマを発生させると同時に内部に施設した電極により高電圧のパルスを印加し、高分子樹脂容器内面にイオン照射して樹脂表面をDLC等の硬質炭素膜に改質しバリア性を付与することが提案された(特許文献3参照)。
この技術では、前述のプラズマCVD法による硬質炭素膜の膜剥がれを防止し、密着性の非常に良好な信頼性の高いバリア性を有する容器を提供できるとされている。
【0005】
しかし、上記の技術では以下の様な問題がある。前者は、反応容器内で反応ガスを化学反応させて薄膜を成長させるため、反応ガス自体を導入する機構を必要とする。また薄膜成長させるため反応容器内で膜付着が起こり、長時間運転すると大気解放する際に付着した膜が剥離し高分子樹脂容器に付着する。硬質炭素膜では茶色に着色し無色透明とはならない。
【0006】
後者は、膜付着が起こらないが高分子樹脂容器の内面の表面改質により硬質炭素化させるため、茶色に着色し、無色透明とはならない。
【0007】
【特許文献1】
特許第2788412号公報
【特許文献2】
特開2001−310960号公報
【特許文献3】
特開2002−46726号公報
【0008】
【発明が解決しようとする課題】
本発明では、前述した膜の付着などが問題となるプラズマCVD法を用いることなく、着色がなく、高透明性、高いガスバリア性のある、ボトルなどの3次元形状の容器及びその製造方法並びにその製造装置を提供することにある。
【0009】
【課題を解決するための手段】
請求項1の発明は、イオン注入することにより、容器の内面の最表面より1μm以下に高密度層を形成されてなることを特徴とする請求項1記載のガスバリア性容器である。
【0010】
請求項2の発明は、前記注入されるイオンが、窒素、酸素、水素、及び希ガスの少なくとも1種類を含むことを特徴とする請求項1記載のガスバリア性容器である。
【0011】
請求項3の発明は、容器の内面にプラズマを発生させ、該容器内面にプラズマから供給されるイオンを容器外面から印加した高電圧パルスにより加速しイオン注入する容器の製造方法であって、該高電圧パルスの電圧が、負の電圧であり絶対値が2kVより大きい電圧で、かつ該高電圧パルス電圧の立ち上がりが、負の方向で1μs当たり絶対値が1kV以上であることを特徴とするガスバリア性容器の製造方法である。
【0012】
請求項4の発明は、前記高電圧パルス電圧の立ち下がりが、1μs当たり絶対値が1kV以上であることを特徴とする請求項3記載のガスバリア性容器の製造方法である。
【0013】
請求項5の発明は、前記容器内面に発生させるプラズマが、空気、窒素、酸素、二酸化炭素、水素、及び希ガスの少なくとも1種類を含む気体で構成されることを特徴とする請求項3または4記載のガスバリア性容器の製造方法である。
【0014】
請求項6の発明は、少なくとも、チャンバーと該チャンバー内に容器を具備し、かつ該チャンバーが外部電極を兼ねており、該チャンバー内及び該容器内を真空排気する手段を有し、該容器内にガス導入可能な内部電極を備え、該容器内にプラズマを発生させるプラズマ発生用交流電源と、負の電圧であり絶対値が2kVより大きい電圧を印加可能であり、かつ該高電圧パルス電圧の立ち上がりが、負の方向で1μs当たり絶対値が1kV以上、立ち下がりが1μs当たり絶対値が1kV以上の動作が可能な高電圧パルス電源を有することを特徴とするガスバリア性容器の製造装置である。
【0015】
請求項7の発明は、少なくとも、チャンバーと該チャンバー内に容器を具備し、該チャンバー内及び該容器内を真空排気する手段を有し、該チャンバーの内側または外側に外部電極を有し、該容器内にガス導入可能な内部電極を備え、該容器内にプラズマを発生させるプラズマ発生用交流電源と、負の電圧であり絶対値が2kVより大きい電圧を印加可能であり、かつ該高電圧パルス電圧の立ち上がりが、負の方向で1μs当たり絶対値が1kV以上、立ち下がりが1μs当たり絶対値が1kV以上の動作が可能な高電圧パルス電源を有することを特徴とするガスバリア性容器の製造装置である。
【0016】
請求項8の発明は、前記プラズマ発生用交流電源の出力部と高電圧パルス電源の出力部が、前記外部電極と、高周波の相互干渉を防止するフィルタ回路を介して接続されていることを特徴とする請求項6または7記載のガスバリア性容器の製造装置である。
【0017】
【発明の実施の形態】
以下、本発明の一実施例について図面を用いて詳細に説明する。
図1に本発明に関する装置の一実施例として、本発明に関わるガスバリア性容器の製造装置を示す。
【0018】
チャンバー1内に容器2を具備し、真空容器内を排気するため、補助真空容器3を挟んだ反対側にある真空排気系4を備える。図1の形態においては、チャンバーは導電材料からなり、非導電性碍子6により、電気的に非接地(浮遊状態)にある。所望の圧力に到達した後、プラズマ発生用電源7により高周波相互干渉防止用フィルタ兼マッチングボックス9を介して高周波電力が供給されて、容器2内にプラズマを発生させる。
また、チャンバーは絶縁性の材料からなり、チャンバーの内または外側に外部電極を設けても良い。
【0019】
本発明では、プラズマ発生用電源7により高周波電圧を容器内に印加し、プラズマを発生させ、高電圧パルス電源8により発生したプラズマ中のイオンを加速させ、容器内表面に注入する。
高周波相互干渉防止用フィルタ兼マッチングボックス9は、プラズマ発生用電源7と高電圧パルス電源8が共に交流成分を持つため相互干渉することから、電源を保護し安定した出力を可能とするため必要である。特に高周波になる程この傾向は強く出るため必須となる。この時、チャンバー1、及び容器2内の圧力は0.1Pa〜10Pa程度の圧力が好ましい。
【0020】
本発明に用いられる容器としては、例えば高分子樹脂製等の容器が挙げられる。中でもポリエチレンテレフタレート(PET)等のポリエステルからなる容器を好適に用いることができる。また容器の形状は特に限定するものではないが、ボトル形状のものなどを用いることができる。
【0021】
本発明では、前記容器のバリア性付与のための手段として、排気時における残留空気でもイオン注入は可能であるが、一度上記圧力以下に排気した後、ガス導入系5を介して、イオン注入の原料となる気体を導入することができる。導入する気体としては特に限定するものではなく、目的に応じて様々なものを用いることができるが、例えば、乾燥空気、窒素、酸素、二酸化炭素、水素、及び希ガスの少なくとも1種類を含む気体で構成されるガスを導入し、上記圧力域でプラズマを発生させたることができる。
【0022】
次に、イオン注入について説明する。
容器2内にプラズマを発生させた後、高電圧パルス電源8により高周波相互干渉防止用フィルタ兼マッチングボックス9を介して高電圧パルスが金属製の真空容器1に印加されると、容器2内のプラズマ中にあるイオンが、この高電圧によって加速され、高エネルギーのイオンが容器2の内表面に注入される。
この時イオンを容器に注入させるため、負の電圧をかけ、加速させる必要がある。この高電圧パルスは、電圧が負の電圧で絶対値が2kV、より好ましくは5kVより大きい電圧であり、且つパルス電圧の立ち上がりが、負の方向で1μs当たり絶対値で1kV以上、より好ましくは10kV以上の高速の立ち上がりであり、また立ち下がりが1μs当たり絶対値で1kV以上、より好ましくは10kV以上の高速の立ち下がりであることが本発明では重要である。
【0023】
図2に示すように、イオン加速用の電圧が負の電圧で絶対値が2kVより小さいとイオンによる容器2の内表面をスパッタリングすることになり、表面を削ると同時にイオン注入は行われない。
更に、容器2として高分子樹脂を用いる場合、内表面の樹脂を分解するため硬質炭素の層に改質するため、バリア性の発現が可能であっても着色し、無色透明とすることは出来ない。
【0024】
このスパッタリングが起こる電圧よりも高電圧を印加する場合、立ち上がり・立ち下がりの過程で必ずこの領域の電圧を通過することとなるため、パルスの立ち上がり・立ち下がり動作が緩慢では、スパッタリングが起こり、また着色することとなる。よって、パルスの立ち上がり・立ち下がり動作を極めて短くする必要がある。本発明においては、パルス電圧の立ち上がりを負の方向で1μs当たり絶対値で1kV以上、より好ましくは10kV以上の高速の立ち上がりであり、また立ち下がりが1μs当たり絶対値で1kV以上、より好ましくは10kV以上の高速の立ち下がりとすることにより、イオン注入によるバリアー性付与と無色透明を可能とする。なお、この範囲で行えば、フィルムのDLC化している部分が10%以下、好ましくは5%以下にすることができる。
【0025】
また、本発明では、加速電圧によりイオンの注入深さを制御できる。最も効果が現れるのが表面から1μm以内であり、これ以上深く注入するには、大掛かりな加速器などが必要であり困難である。また、イオンの注入深さは、イオンの質量、半径、運動エネルギーと容器に用いる高分子樹脂の種類などの材質によるが、容器2に高分子樹脂を用いるとすると、高分子樹脂は概ね炭素、水素、酸素、窒素から構成されており、どの材質を用いてもほぼ同じ深さに注入できる。
また、加速電圧が大きいほど深い位置に注入可能であるが、高分子樹脂内での散乱もあり注入域は広がる。この点からも、パルス電圧の立ち上がり・立ち下がり動作を極めて短くすることにより、注入域を狭められ高密度層を形成しやすいのでバリア性が発現しやすい。
また、高密度層は、注入されたイオンが、高分子樹脂などの容器2を構成する材料と、何らかの相互作用を持ちながら存在することによりできると考えられる。
【0026】
プラズマ発生用の電力と高電圧パルスは、同時に印加しても、交互に印加しても良く、任意の条件で可能である。典型的な例として交互に印加した場合を図3に示す。プラズマ発生用電源、高電圧パルス電源は共に上記の条件を満たせば市販のものが使用できる。プラズマ発生用電源は、周波数13.56MHzの高周波電源が価格、プラズマ発生の安定性からも好適である。高電圧パルス電源は、例えばハイデン研究所のPHF−2K型やSBP−5K−HF型、栗田製作所3D・PBII型などが好適である。
【0027】
【実施例】
以下に製造したガスバリア性容器の実施例を示す。
【0028】
<実施例1>
容器2として、500mlのPETボトルを使用し、図1の装置で1×10−2Paまで排気した後、窒素ガスを導入し真空容器内を圧力5Paにした。13.56MHzの高周波電源で間欠的に電力を500W印加し、交互に高電圧パルス−20kVで、パルス電圧の立ち上がり、立ち下がりを−20Kv/μs、20Kv/μsで印加し、約60秒間イオン注入した。ボトルを大気に取り出し、目視により着色の有無を評価し、バリア性を酸素透過率測定装置(MOCON社製、OX−TRAN10/50)で評価した。目視の結果、着色は認められず高い透明性を有し、酸素透過率は0.007cc/pkg/dayであり、処理前のPETボトルの酸素透過率0.07cc/pkg/dayの約10倍に向上した。また、イオンの注入深さは、SIMS(Secondary Ion Mass Spectroscopy)により測定したところ、1〜30nmに相当すると思われた。
【0029】
<実施例2>
容器2として、500mlのPETボトルを使用し、図1の装置で1×10−2Paまで排気した後、二酸化炭素ガスを導入し真空容器内を圧力5Paにした。13.56MHzの高周波電源で間欠的に電力を500W印加し、交互に高電圧パルス−20kVで、パルス電圧の立ち上がり、立ち下がりを−20Kv/μs、20Kv/μsで印加し、約60秒間イオン注入した。ボトルを大気に取り出し、目視の結果、着色は認められず高い透明性を有し、酸素透過率は0.009cc/pkg/dayであり、処理前のPETボトルの酸素透過率0.07cc/pkg/dayの約10倍に向上した。また、イオンの注入深さは、SIMS(Secondary Ion Mass Spectroscopy)により測定したところ、1〜30nmに相当すると思われた。
【0030】
<実施例3>
容器2として、500mlのPETボトルを使用し、図1の装置で1×10−2Paまで排気した後、乾燥空気を導入し真空容器内を圧力7Paにした。13.56MHzの高周波電源で間欠的に電力を500W印加し、交互に高電圧パルス−20kVで、パルス電圧の立ち上がり、立ち下がりを−20Kv/μs、20Kv/μsで印加し、約60秒間イオン注入した。ボトルを大気に取り出し、目視の結果、着色は認められず高い透明性を有し、酸素透過率は0.010cc/pkg/dayであり、処理前のPETボトルの酸素透過率0.07cc/pkg/dayの約10倍に向上した。また、イオンの注入深さは、SIMS(Secondary Ion Mass Spectroscopy)により測定したところ、1〜30nmに相当すると思われた。
【0031】
<比較例1>
容器2として、500mlのPETボトルを使用し、図1の装置で1×10−2Paまで排気した後、乾燥空気を導入し真空容器内を圧力7Paにした。13.56MHzの高周波電源で間欠的に電力を500W印加し、交互に高電圧パルス−1kVで、パルス電圧の立ち上がり、立ち下がりを−1Kv/μs、1Kv/μsで印加し、約60秒間イオン注入した。大気に取り出し、目視の結果、薄茶色の着色があり、酸素透過率は0.07cc/pkg/dayであり、処理前のPETボトルの酸素透過率0.07cc/pkg/dayと同等の値を示した。また、イオンの注入深さは、SIMS(Secondary Ion MassSpectroscopy)により測定したところ、見られなかった。
【0032】
<比較例2>
容器2として、500mlのPETボトルを使用し、図1の装置で1×10−2Paまで排気した後、乾燥空気を導入し真空容器内を圧力7Paにした。13.56MHzの高周波電源で間欠的に電力を500W印加し、交互に高電圧パルス−20kVを印加させ、約60秒間イオン注入した。この際、パルス電圧の立ち上がりを−0.5kV/1μs、立ち下がりを0.5kV/1μsとした。大気に取り出し、目視の結果、薄茶色の着色があり、酸素透過率は0.07cc/pkg/dayであり、処理前のPETボトルの酸素透過率0.007cc/pkg/dayと処理前のPETボトルの酸素透過率0.07cc/pkg/dayの約10倍に向上した。
【0033】
【発明の効果】
以上詳述したように、本発明の方法によれば、ボトルなどの容器の内面に高速の高電圧パルスを印加してイオン注入することにより、プラズマCVD法、従来のイオン注入法と比較して無色透明で高いガス遮断性を有するガスバリア性容器の製造方法と製造装置、及び製造されたガスバリア性容器を提供できる。
【0034】
【図面の簡単な説明】
【図1】本発明に関するバリア性容器の一例を示す装置の説明図である
【図2】本発明に関する説明図で、イオン加速電圧と固体表面の効果を説明する説明図である。
【図3】本発明に関する説明図で、プラズマ発生用の電力と高電圧パルスの出力の時間変化を説明する説明図である。
【符号の説明】
1   チャンバー
2   容器
3   補助真空容器
4   真空排気系
5   ガス導入系
6   非伝導性碍子
7   プラズマ発生用電源
8   高電圧パルス電源
9   高周波相互干渉防止用フィルタ兼マッチングボックス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a three-dimensionally shaped container such as a bottle having gas barrier properties, a method for manufacturing the same, and an apparatus for manufacturing the same.
[0002]
[Prior art]
BACKGROUND ART Conventionally, polymer resin three-dimensional containers represented by PET bottles have been widely used because of their light weight and high impact resistance. Recently, as a beverage container having an excellent barrier property against oxygen and water vapor (hereinafter referred to as a barrier property), a hard carbon film represented by diamond-like carbon (hereinafter referred to as DLC) or silicon oxide (SiOx) is provided on the inner surface or outer surface of the container. A PET bottle coated with a film has been proposed (see Patent Documents 1 and 2). These coated PET bottles are also being used in carbonated beverages, beer, etc. because of their excellent carbon dioxide barrier properties.
[0003]
In these coating processes, after inserting a PET bottle into a vacuum device and evacuating, a reaction gas is introduced into the inner surface of the bottle, and a voltage or microwave electromagnetic field energy is applied from outside to generate plasma in the bottle space. A barrier layer is formed on the inner surface of the bottle by a so-called plasma CVD method in which a thin film is grown by a chemical reaction of a reaction gas. These methods have extremely high light transmission and barrier properties.
[0004]
On the other hand, as a method of imparting a barrier property other than the plasma CVD method, a plasma is generated inside the polymer resin container, and at the same time, a high voltage pulse is applied by an electrode provided inside, and ions are irradiated to the polymer resin container inner surface. It has been proposed to modify the resin surface to a hard carbon film such as DLC to impart a barrier property (see Patent Document 3).
According to this technique, the hard carbon film is prevented from peeling off by the above-mentioned plasma CVD method, and it is possible to provide a container having very good adhesion and a highly reliable barrier property.
[0005]
However, the above technique has the following problems. The former requires a mechanism for introducing the reaction gas itself in order to grow the thin film by chemically reacting the reaction gas in the reaction vessel. In addition, film deposition occurs in the reaction container for growing a thin film, and when the device is operated for a long time, the film adheres when released to the atmosphere, and adheres to the polymer resin container. The hard carbon film is colored brown and does not become colorless and transparent.
[0006]
Although the latter does not cause film adhesion, it is hard carbonized by surface modification of the inner surface of the polymer resin container, so that it is colored brown and is not colorless and transparent.
[0007]
[Patent Document 1]
Japanese Patent No. 2788412 [Patent Document 2]
JP 2001-310960 A [Patent Document 3]
JP-A-2002-46726
[Problems to be solved by the invention]
In the present invention, a three-dimensional container such as a bottle, a method for producing the same, and a method for producing the three-dimensional container without coloring, having high transparency and high gas barrier properties, without using the plasma CVD method in which the above-described film adhesion and the like are problematic. It is to provide a manufacturing apparatus.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is the gas barrier container according to claim 1, wherein a high-density layer is formed at 1 μm or less from the outermost surface of the inner surface of the container by ion implantation.
[0010]
The invention according to claim 2 is the gas barrier container according to claim 1, wherein the implanted ions include at least one of nitrogen, oxygen, hydrogen, and a rare gas.
[0011]
The invention according to claim 3 is a method for manufacturing a container which generates plasma on the inner surface of the container, accelerates ions supplied from the plasma on the inner surface of the container by a high voltage pulse applied from the outer surface of the container, and implants the ions. A gas barrier characterized in that the voltage of the high-voltage pulse is a negative voltage and a voltage whose absolute value is larger than 2 kV, and the rising of the high-voltage pulse voltage is 1 kV or more per 1 μs in the negative direction. This is a method for producing a conductive container.
[0012]
The invention according to claim 4 is the method for manufacturing a gas barrier container according to claim 3, wherein the fall of the high voltage pulse voltage has an absolute value of 1 kV or more per 1 μs.
[0013]
The invention according to claim 5 is characterized in that the plasma generated on the inner surface of the container is composed of a gas containing at least one of air, nitrogen, oxygen, carbon dioxide, hydrogen, and a rare gas. 5. A method for producing a gas barrier container according to item 4.
[0014]
The invention according to claim 6 comprises at least a chamber and a container in the chamber, and the chamber also serves as an external electrode, and has means for evacuating the inside of the chamber and the inside of the container. A plasma generating AC power supply for generating a plasma in the vessel, a negative voltage having an absolute value greater than 2 kV, and a high voltage pulse voltage. An apparatus for manufacturing a gas barrier container, comprising: a high voltage pulse power supply capable of operating with an absolute value of 1 kV or more per 1 μs in a negative rising direction and an absolute value of 1 kV or more per 1 μs in a falling direction.
[0015]
The invention according to claim 7 includes at least a chamber and a container in the chamber, has means for evacuating the inside of the chamber and the inside of the container, and has an external electrode inside or outside the chamber, An internal electrode capable of introducing a gas into the container, an AC power supply for generating plasma in the container, and a high voltage pulse capable of applying a negative voltage and an absolute value greater than 2 kV; An apparatus for manufacturing a gas barrier container, comprising: a high-voltage pulse power supply capable of operating such that an absolute value of a voltage is 1 kV or more per 1 μs in a negative direction and an absolute value is 1 kV or more per 1 μs in a negative direction. is there.
[0016]
The invention according to claim 8 is characterized in that the output section of the AC power supply for plasma generation and the output section of the high-voltage pulse power supply are connected to the external electrode via a filter circuit for preventing high-frequency interference. An apparatus for manufacturing a gas barrier container according to claim 6 or 7.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an apparatus for manufacturing a gas barrier container according to the present invention as an embodiment of the apparatus according to the present invention.
[0018]
A chamber 2 is provided in the chamber 1, and a vacuum exhaust system 4 is provided on the opposite side of the auxiliary vacuum vessel 3 to exhaust the inside of the vacuum vessel. In the embodiment of FIG. 1, the chamber is made of a conductive material and is electrically non-grounded (floating state) by the non-conductive insulator 6. After reaching the desired pressure, high-frequency power is supplied from the plasma generation power supply 7 via the high-frequency mutual interference prevention filter and matching box 9 to generate plasma in the container 2.
Further, the chamber may be made of an insulating material, and an external electrode may be provided inside or outside the chamber.
[0019]
In the present invention, a high frequency voltage is applied to the inside of the container by the plasma generating power source 7 to generate plasma, and ions in the plasma generated by the high voltage pulse power source 8 are accelerated and injected into the inner surface of the container.
The high-frequency mutual interference prevention filter / matching box 9 is necessary for protecting the power supply and enabling stable output since the plasma generation power supply 7 and the high-voltage pulse power supply 8 both have an AC component and thus interfere with each other. is there. In particular, this tendency becomes stronger as the frequency becomes higher, so it is essential. At this time, the pressure in the chamber 1 and the container 2 is preferably about 0.1 Pa to 10 Pa.
[0020]
Examples of the container used in the present invention include a container made of a polymer resin or the like. Above all, a container made of polyester such as polyethylene terephthalate (PET) can be preferably used. The shape of the container is not particularly limited, but a bottle shape or the like can be used.
[0021]
In the present invention, as a means for imparting the barrier property of the container, ion implantation can be performed even with residual air at the time of evacuation. However, once the pressure is reduced to the pressure or lower, the ion implantation is performed via the gas introduction system 5. A gas serving as a raw material can be introduced. The gas to be introduced is not particularly limited, and various gases can be used depending on the purpose. For example, a gas containing at least one of dry air, nitrogen, oxygen, carbon dioxide, hydrogen, and a rare gas Can be introduced to generate plasma in the above pressure range.
[0022]
Next, ion implantation will be described.
After the plasma is generated in the container 2, when a high-voltage pulse is applied to the metal vacuum container 1 by the high-voltage pulse power supply 8 through the high-frequency mutual interference prevention filter and matching box 9, The ions in the plasma are accelerated by the high voltage, and high-energy ions are injected into the inner surface of the container 2.
At this time, in order to inject ions into the container, it is necessary to apply a negative voltage and accelerate the ions. The high-voltage pulse is a voltage having a negative voltage and an absolute value of 2 kV, more preferably a voltage of more than 5 kV, and a rising of the pulse voltage in a negative direction of 1 kV or more in absolute value per 1 μs, more preferably 10 kV. It is important in the present invention that the above-mentioned high-speed rising and the falling are high-speed falling of 1 kV or more, more preferably 10 kV or more, in absolute value per 1 μs.
[0023]
As shown in FIG. 2, when the voltage for ion acceleration is a negative voltage and the absolute value is smaller than 2 kV, the inner surface of the container 2 is sputtered by the ions, and the ion is not implanted at the same time as the surface is shaved.
Further, when a polymer resin is used for the container 2, the resin on the inner surface is reformed into a hard carbon layer to decompose the resin, so that even if the barrier property can be developed, it can be colored and made colorless and transparent. Absent.
[0024]
When a voltage higher than the voltage at which this sputtering occurs is applied, the voltage in this region must be passed during the rising / falling process, so if the rising / falling operation of the pulse is slow, sputtering occurs, and It will be colored. Therefore, it is necessary to make the rising and falling operations of the pulse extremely short. In the present invention, the rising of the pulse voltage is a high-speed rising of 1 kV or more in absolute value per 1 μs in the negative direction, more preferably 10 kV or more, and the falling is 1 kV or more in absolute value per 1 μs, more preferably 10 kV. With the above-mentioned high-speed falling, it is possible to impart a barrier property by ion implantation and to achieve colorless and transparent. If performed in this range, the DLC portion of the film can be reduced to 10% or less, preferably 5% or less.
[0025]
Further, in the present invention, the ion implantation depth can be controlled by the acceleration voltage. The effect is most effective within 1 μm from the surface, and it is difficult to implant deeper than this because a large-scale accelerator is required. The ion implantation depth depends on materials such as the mass, radius, kinetic energy of the ions, and the type of the polymer resin used for the container. However, when the polymer resin is used for the container 2, the polymer resin is substantially carbon, It is composed of hydrogen, oxygen and nitrogen, and can be implanted at almost the same depth using any material.
The higher the acceleration voltage, the deeper the injection can be. However, the injection area is widened due to scattering in the polymer resin. From this point as well, by extremely shortening the rising and falling operations of the pulse voltage, the injection region is narrowed and a high-density layer is easily formed, so that the barrier property is easily developed.
Further, it is considered that the high-density layer is formed by the presence of the implanted ions while having some kind of interaction with the material constituting the container 2 such as a polymer resin.
[0026]
The power for generating plasma and the high voltage pulse may be applied simultaneously or alternately, and can be applied under any conditions. FIG. 3 shows a typical example in which the voltage is applied alternately. As the power source for plasma generation and the high-voltage pulse power source, commercial products can be used as long as the above conditions are satisfied. As the power supply for plasma generation, a high-frequency power supply with a frequency of 13.56 MHz is suitable in terms of cost and stability of plasma generation. As the high-voltage pulse power supply, for example, PHF-2K type, SBP-5K-HF type, and 3D / PBII type of Kurita Manufacturing Co., Ltd. of Heiden Laboratory are suitable.
[0027]
【Example】
Examples of the manufactured gas barrier container will be described below.
[0028]
<Example 1>
As a container 2, a 500 ml PET bottle was used. After evacuation was performed to 1 × 10 −2 Pa using the apparatus shown in FIG. 1, nitrogen gas was introduced to make the pressure in the vacuum container 5 Pa. An electric power of 500 W is applied intermittently with a 13.56 MHz high frequency power supply, and a high voltage pulse of −20 kV is alternately applied, and the rising and falling of the pulse voltage are applied at −20 Kv / μs and 20 Kv / μs, and ion implantation is performed for about 60 seconds. did. The bottle was taken out to the atmosphere, the presence or absence of coloring was visually evaluated, and the barrier property was evaluated with an oxygen permeability measuring device (OX-TRAN 10/50, manufactured by MOCON). As a result of visual inspection, no coloring was observed and the transparency was high. The oxygen permeability was 0.007 cc / pkg / day, which was about 10 times the oxygen permeability of the PET bottle before treatment, 0.07 cc / pkg / day. Improved. The ion implantation depth was measured by SIMS (Secondary Ion Mass Spectroscopy), and was considered to correspond to 1 to 30 nm.
[0029]
<Example 2>
As a container 2, a 500 ml PET bottle was used. After evacuation was performed to 1 × 10 −2 Pa with the apparatus shown in FIG. 1, carbon dioxide gas was introduced to make the pressure in the vacuum container 5 Pa. An electric power of 500 W is intermittently applied by a 13.56 MHz high frequency power supply, and a high voltage pulse of −20 kV is alternately applied, and the rising and falling of the pulse voltage are applied at −20 Kv / μs and 20 Kv / μs, and ion implantation is performed for about 60 seconds. did. The bottle was taken out to the atmosphere, and as a result of visual observation, no coloring was observed, the bottle had high transparency, the oxygen permeability was 0.009 cc / pkg / day, and the oxygen permeability of the PET bottle before treatment was 0.07 cc / pkg. / Day was improved about 10 times. The ion implantation depth was measured by SIMS (Secondary Ion Mass Spectroscopy) and found to correspond to 1 to 30 nm.
[0030]
<Example 3>
As a container 2, a 500 ml PET bottle was used. After evacuation was performed to 1 × 10 −2 Pa by the apparatus shown in FIG. 1, dry air was introduced to make the pressure in the vacuum container 7 Pa. An electric power of 500 W is applied intermittently with a 13.56 MHz high frequency power supply, and a high voltage pulse of −20 kV is alternately applied, and the rising and falling of the pulse voltage are applied at −20 Kv / μs and 20 Kv / μs, and ion implantation is performed for about 60 seconds. did. The bottle was taken out to the atmosphere, and as a result of visual observation, no coloring was observed, the bottle had high transparency, the oxygen permeability was 0.010 cc / pkg / day, and the oxygen permeability of the PET bottle before treatment was 0.07 cc / pkg. / Day was improved about 10 times. The ion implantation depth was measured by SIMS (Secondary Ion Mass Spectroscopy) and found to correspond to 1 to 30 nm.
[0031]
<Comparative Example 1>
As a container 2, a 500 ml PET bottle was used. After evacuation was performed to 1 × 10 −2 Pa using the apparatus shown in FIG. 1, dry air was introduced to make the pressure in the vacuum container 7 Pa. A power of 500 W is applied intermittently with a 13.56 MHz high frequency power supply, and a high voltage pulse of -1 kV is applied alternately, and the rising and falling of the pulse voltage are applied at -1 Kv / μs and 1 Kv / μs, and ion implantation is performed for about 60 seconds. did. It was taken out to the atmosphere, and as a result of visual inspection, it had a light brown coloration, and the oxygen permeability was 0.07 cc / pkg / day, which was equivalent to the oxygen permeability of the PET bottle before treatment, 0.07 cc / pkg / day. Indicated. Further, the ion implantation depth was not found when measured by SIMS (Secondary Ion Mass Spectroscopy).
[0032]
<Comparative Example 2>
As a container 2, a 500 ml PET bottle was used. After evacuation was performed to 1 × 10 −2 Pa by the apparatus shown in FIG. 1, dry air was introduced to make the pressure in the vacuum container 7 Pa. An electric power of 500 W was intermittently applied by a 13.56 MHz high frequency power supply, and a high voltage pulse of −20 kV was alternately applied, and ions were implanted for about 60 seconds. At this time, the rise of the pulse voltage was -0.5 kV / 1 [mu] s, and the fall was 0.5 kV / 1 [mu] s. It was taken out to the atmosphere, and as a result of visual inspection, it had a light brown coloration, and the oxygen permeability was 0.07 cc / pkg / day. The oxygen permeability of the bottle was improved to about 10 times of 0.07 cc / pkg / day.
[0033]
【The invention's effect】
As described above in detail, according to the method of the present invention, a high-speed high-voltage pulse is applied to the inner surface of a container such as a bottle to perform ion implantation. It is possible to provide a method and an apparatus for producing a gas barrier container which is colorless and transparent and has a high gas barrier property, and a produced gas barrier container.
[0034]
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus showing an example of a barrier container according to the present invention. FIG. 2 is an explanatory diagram illustrating an ion accelerating voltage and an effect of a solid surface in the present invention.
FIG. 3 is an explanatory diagram related to the present invention, and is an explanatory diagram illustrating a time change of the power for plasma generation and the output of a high-voltage pulse.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Chamber 2 Container 3 Auxiliary vacuum container 4 Vacuum exhaust system 5 Gas introduction system 6 Non-conductive insulator 7 Plasma generation power supply 8 High voltage pulse power supply 9 High frequency mutual interference prevention filter and matching box

Claims (8)

イオン注入することにより、容器の内面の最表面より1μm以下に高密度層を形成されてなることを特徴とする請求項1記載のガスバリア性容器。2. The gas barrier container according to claim 1, wherein a high-density layer is formed 1 μm or less from the outermost surface of the inner surface of the container by ion implantation. 前記注入されるイオンが、窒素、酸素、水素、及び希ガスの少なくとも1種類を含むことを特徴とする請求項1記載のガスバリア性容器。The gas barrier container according to claim 1, wherein the implanted ions include at least one of nitrogen, oxygen, hydrogen, and a rare gas. 容器の内面にプラズマを発生させ、該容器内面にプラズマから供給されるイオンを容器外面から印加した高電圧パルスにより加速しイオン注入する容器の製造方法であって、該高電圧パルスの電圧が、負の電圧であり絶対値が2kVより大きい電圧で、かつ該高電圧パルス電圧の立ち上がりが、負の方向で1μs当たり絶対値が1kV以上であることを特徴とするガスバリア性容器の製造方法。A method for producing a container in which plasma is generated on the inner surface of a container, ions supplied from the plasma on the inner surface of the container are accelerated by a high-voltage pulse applied from the outer surface of the container, and ions are implanted, and the voltage of the high-voltage pulse is A method for producing a gas barrier container, wherein the voltage is a negative voltage, the absolute value of which is greater than 2 kV, and the rising of the high voltage pulse voltage is 1 kV or more per 1 μs in the negative direction. 前記高電圧パルス電圧の立ち下がりが、1μs当たり絶対値が1kV以上であることを特徴とする請求項3記載のガスバリア性容器の製造方法。4. The method for manufacturing a gas barrier container according to claim 3, wherein the fall of the high voltage pulse voltage has an absolute value of 1 kV or more per 1 [mu] s. 前記容器内面に発生させるプラズマが、空気、窒素、酸素、二酸化炭素、水素、及び希ガスの少なくとも1種類を含む気体で構成されることを特徴とする請求項3または4記載のガスバリア性容器の製造方法。The gas barrier container according to claim 3, wherein the plasma generated on the inner surface of the container is formed of a gas containing at least one of air, nitrogen, oxygen, carbon dioxide, hydrogen, and a rare gas. Production method. 少なくとも、チャンバーと該チャンバー内に容器を具備し、かつ該チャンバーが外部電極を兼ねており、該チャンバー内及び該容器内を真空排気する手段を有し、該容器内にガス導入可能な内部電極を備え、該容器内にプラズマを発生させるプラズマ発生用交流電源と、負の電圧であり絶対値が2kVより大きい電圧を印加可能であり、かつ該高電圧パルス電圧の立ち上がりが、負の方向で1μs当たり絶対値が1kV以上、立ち下がりが1μs当たり絶対値が1kV以上の動作が可能な高電圧パルス電源を有することを特徴とするガスバリア性容器の製造装置。At least a chamber and a container in the chamber, and the chamber also serves as an external electrode, and means for evacuating the chamber and the container, and an internal electrode capable of introducing a gas into the container. A plasma generating AC power supply for generating plasma in the vessel, a negative voltage having an absolute value greater than 2 kV can be applied, and the rising of the high voltage pulse voltage is performed in a negative direction. An apparatus for manufacturing a gas barrier container, comprising: a high-voltage pulse power supply capable of operating with an absolute value of 1 kV or more per 1 μs and an absolute value of 1 kV or more per 1 μs in fall. 少なくとも、チャンバーと該チャンバー内に容器を具備し、該チャンバー内及び該容器内を真空排気する手段を有し、該チャンバーの内側または外側に外部電極を有し、該容器内にガス導入可能な内部電極を備え、該容器内にプラズマを発生させるプラズマ発生用交流電源と、負の電圧であり絶対値が2kVより大きい電圧を印加可能であり、かつ該高電圧パルス電圧の立ち上がりが、負の方向で1μs当たり絶対値が1kV以上、立ち下がりが1μs当たり絶対値が1kV以上の動作が可能な高電圧パルス電源を有することを特徴とするガスバリア性容器の製造装置。At least comprising a chamber and a container in the chamber, a means for evacuating the chamber and the container, an external electrode inside or outside the chamber, and gas can be introduced into the container. An AC power supply for generating plasma in the vessel, which is provided with an internal electrode, and a negative voltage whose absolute value is larger than 2 kV can be applied, and the rising of the high-voltage pulse voltage is negative; An apparatus for manufacturing a gas barrier container, comprising: a high-voltage pulse power supply capable of operating with an absolute value of 1 kV or more per 1 μs in the direction and an absolute value of 1 kV or more per 1 μs in fall. 前記プラズマ発生用交流電源の出力部と高電圧パルス電源の出力部が、前記外部電極と、高周波の相互干渉を防止するフィルタ回路を介して接続されていることを特徴とする請求項6または7記載のガスバリア性容器の製造装置。8. An output section of the plasma generating AC power supply and an output section of the high-voltage pulse power supply are connected to the external electrode via a filter circuit for preventing high-frequency mutual interference. An apparatus for producing a gas barrier container according to the above.
JP2002301479A 2002-10-16 2002-10-16 Gas barrier container, method for manufacturing the same, and apparatus for manufacturing the same Expired - Fee Related JP4007149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301479A JP4007149B2 (en) 2002-10-16 2002-10-16 Gas barrier container, method for manufacturing the same, and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301479A JP4007149B2 (en) 2002-10-16 2002-10-16 Gas barrier container, method for manufacturing the same, and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004136907A true JP2004136907A (en) 2004-05-13
JP4007149B2 JP4007149B2 (en) 2007-11-14

Family

ID=32449806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301479A Expired - Fee Related JP4007149B2 (en) 2002-10-16 2002-10-16 Gas barrier container, method for manufacturing the same, and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4007149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196934A1 (en) * 2016-05-13 2017-11-16 Entegris, Inc. Fluorinated compositions for ion source performance improvement in nitrogen ion implantation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196934A1 (en) * 2016-05-13 2017-11-16 Entegris, Inc. Fluorinated compositions for ion source performance improvement in nitrogen ion implantation
KR20180129937A (en) * 2016-05-13 2018-12-05 엔테그리스, 아이엔씨. Fluorinated compositions for improving ion source performance in nitrogen ion implantation
CN109196617A (en) * 2016-05-13 2019-01-11 恩特格里斯公司 Improve the fluorinated composition of ion source performance in Nitrogen ion implantation
KR102202345B1 (en) * 2016-05-13 2021-01-12 엔테그리스, 아이엔씨. Fluorinated composition for improving ion source performance in nitrogen ion implantation
CN109196617B (en) * 2016-05-13 2021-02-12 恩特格里斯公司 Fluorinated compositions for improving ion source performance in nitrogen ion implantation

Also Published As

Publication number Publication date
JP4007149B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP3698887B2 (en) Diamond-like carbon film production equipment
AU740485B2 (en) Container with material coating having barrier effect and method and apparatus for making same
JP5453089B2 (en) Cold plasma treatment of plastic bottles and apparatus for performing the same
JP4122011B2 (en) Method for forming diamond-like carbon film
KR0136863B1 (en) Method of creating a high flux of activated species for reaction with a remotely located substrate
US6403029B1 (en) System and method of applying energetic ions for sterilization
US6376028B1 (en) Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process
JP2009542917A (en) Plasma assisted chemical vapor deposition method for inner wall of hollow body
JP2006233234A (en) Vapor deposition film by plasma cvd method
JP2006507197A (en) Method and apparatus for depositing a plasma coating on a container
JP3735257B2 (en) Container processing equipment using microwave plasma
JPWO2003085165A1 (en) Plasma CVD film forming apparatus and CVD film coated plastic container manufacturing method
JP2004203935A (en) Gas barrier film and method and apparatus for its manufacturing
JP2002532828A (en) Array of hollow cathodes for plasma generation
US11898241B2 (en) Method for a treatment to deposit a barrier coating
JP4007149B2 (en) Gas barrier container, method for manufacturing the same, and apparatus for manufacturing the same
JPWO2003000559A1 (en) DLC film-coated plastic container manufacturing apparatus, DLC film-coated plastic container and method for manufacturing the same
Tanaka et al. Diamondlike carbon deposition on plastic films by plasma source ion implantation
JP2003236976A (en) Silicon oxide coating film with excellent gas barrier property and packaging body using it
US20080111490A1 (en) System and method for generating ions and radicals
Narushima et al. Surface modifications of polyester films by ammonia plasma
JP2006249539A (en) Compound surface reforming treatment method and apparatus, and surface reforming treated material
JP4442182B2 (en) Method for forming metal oxide film
JP3880797B2 (en) Diamond-like carbon film deposition equipment
JPS61166975A (en) Formation of film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees