JP2004136368A - Vibration detector for casting mold - Google Patents

Vibration detector for casting mold Download PDF

Info

Publication number
JP2004136368A
JP2004136368A JP2003387085A JP2003387085A JP2004136368A JP 2004136368 A JP2004136368 A JP 2004136368A JP 2003387085 A JP2003387085 A JP 2003387085A JP 2003387085 A JP2003387085 A JP 2003387085A JP 2004136368 A JP2004136368 A JP 2004136368A
Authority
JP
Japan
Prior art keywords
mold
vibration
casting
amount
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003387085A
Other languages
Japanese (ja)
Inventor
Kiminori Hajika
羽鹿 公則
Takeshi Murakami
村上 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003387085A priority Critical patent/JP2004136368A/en
Publication of JP2004136368A publication Critical patent/JP2004136368A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting mold vibration detector used in realizing a continuous casting method which prevents manufacturing of a cast billet containing such conventional and occasional abnormalities as streaks or transverse cracks and which enables preventive maintenance of the equipment to be properly carried out. <P>SOLUTION: The detector is equipped with a flat plate mounted on the outer face of a casting mold and a position sensor for sensing positional change in the flat plate. The positional change of the flat plate is caused by vibration of the casting mold in the direction orthogonal to the withdrawing direction of a cast billet in the casting mold. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は鋳型振動検出装置に関するものであり、ビレット,ブルーム,スラブといった各種鋳片を連続的に鋳造する際に用いる鋳型振動検出装置に関するものである。 The present invention relates to a mold vibration detecting device, and more particularly to a mold vibration detecting device used when continuously casting various cast pieces such as billets, blooms, and slabs.

 ビレット,ブルーム,スラブといった各種鋳片を連続鋳造方法により製造することが一般的に行われており、この連続鋳造にあたっては、鋳型内の溶融金属の湯面にパウダーを添加し、鋳片の引き抜きに伴って該パウダーを鋳型−鋳片間に導入して鋳型と鋳片の摩擦抵抗を低減させている。また鋳片引き抜き方向と平行な方向に鋳型を振動させて、円滑な引き抜きの実現を図っている。 It is common practice to manufacture various cast pieces such as billets, blooms and slabs by a continuous casting method. In this continuous casting, powder is added to the molten metal surface in a mold, and the cast pieces are drawn. As a result, the powder is introduced between the mold and the slab to reduce the frictional resistance between the mold and the slab. In addition, the mold is vibrated in a direction parallel to the slab withdrawing direction to achieve smooth drawing.

 鋳型の振動は上述の通り鋳片引き抜き方向と平行な方向(以下、引抜き方向と称することがある)のみに作用させているのであるが、この振動に伴って鋳片引抜き方向と直交する方向(以下、横方向と称することがある)にも少なからず振動が生じる(以下、横振れと称することがある)。この横振れは鋳造設備の劣化等が進むと次第にひどくなり、この為に鋳型−鋳片間へのパウダー流入に異常をきたしたり、また鋳型から鋳片に対して異常な荷重が加わり、鋳型内で進行している凝固反応に影響を及ぼす等の現象が生じる。すると鋳片表面にストリーク欠陥(パウダー不均一流入の為に生じた鋳片表面の窪み欠陥)や、凝固進行中の結晶組織が外力により破断することによる横割れ欠陥が発生する可能性が高くなり、品質上の問題が生じる。 As described above, the vibration of the mold acts only in the direction parallel to the slab withdrawal direction (hereinafter, sometimes referred to as the “drawing direction”). In some cases, the vibration also occurs (hereinafter, may be referred to as a lateral direction). This lateral run-out becomes progressively worse as the casting equipment deteriorates, which causes an abnormal flow of powder between the mold and the slab, and an abnormal load is applied from the mold to the slab, resulting in the inside of the mold. Phenomena such as affecting the coagulation reaction that is proceeding occur. As a result, there is a high possibility that streak defects (dent defects on the slab surface caused by uneven flow of powder) and lateral cracking defects due to the fracture of the crystal structure during solidification due to external force occur on the slab surface. And quality problems arise.

 しかしながら従来においては上述の様な異常な状況が生じていても、それに気づかずに鋳造操業を継続して行っており、良質な製品を常に安定して製造することが困難であった。この為、鋳造後の鋳片に発生する品質不良を後工程において検査により検出し、良品を選別する作業が必要となっていた。 However, in the related art, even if the above-mentioned abnormal situation occurs, the casting operation is continuously performed without noticing it, and it has been difficult to always produce a high quality product stably. For this reason, there has been a need for an operation of detecting quality defects occurring in the cast slab after casting by inspection in a post-process and selecting good products.

 そこで本発明は以上の様な状況に鑑みてなされたものであり、異常品質の鋳片が製造されることを未然に防止し、また鋳型の横振動を低位に安定させる為の設備の予防保全を適切に実行することのできる連続鋳造方法を実行する際に用いる鋳型振動検出装置を提供することを目的とする。 Therefore, the present invention has been made in view of the above situation, and prevents the production of cast slabs of abnormal quality beforehand, and also performs preventive maintenance of equipment for stabilizing lateral vibration of a mold at a low level. It is an object of the present invention to provide a mold vibration detection device used when executing a continuous casting method capable of appropriately executing the method.

 本発明に係る鋳型振動検出装置は、非鋳造時及び鋳造中における、鋳片引抜き方向と直交する方向の鋳型振動量を測定することのできる鋳型振動検出装置であって、鋳型外面に取付けられた平板と、該鋳型における鋳片引抜き方向と直交する方向への鋳型振動に基づく該平板の位置変化を感知する位置センサーとを備えたことを要旨とする。 The mold vibration detecting device according to the present invention is a mold vibration detecting device capable of measuring the amount of mold vibration in a direction orthogonal to the slab withdrawal direction during non-casting and during casting, and is attached to the outer surface of the mold. The gist comprises a flat plate and a position sensor for detecting a change in the position of the flat plate based on the vibration of the mold in a direction orthogonal to the direction of drawing the slab of the mold.

 例えば鋳型の振動から隔離された架台等(固定されたもの)に上記位置センサー(例えば渦流式センサー)を設置し、該センサーから上記平板(例えば金属平板)までの距離の変動状況を測定し、上記横方向の鋳型振動量を測定する。 For example, the position sensor (for example, an eddy current sensor) is installed on a mount or the like (fixed) that is isolated from the vibration of the mold, and the fluctuation state of the distance from the sensor to the flat plate (for example, a metal flat plate) is measured. The vibration amount of the mold in the lateral direction is measured.

 本発明に係る鋳型振動検出装置を用いることにより、次の連続鋳造方法を実行することができる。該連続鋳造方法は、非鋳造時及び/または鋳造中における、鋳片引抜き方向と直交する方向の鋳型振動量を測定し、予め設定された基準値との比較を行って鋳造実施の適否を判断することである。 次 The following continuous casting method can be executed by using the mold vibration detecting device according to the present invention. In the continuous casting method, during non-casting and / or during casting, the amount of vibration of the mold in a direction perpendicular to the direction of slab withdrawal is measured, and a comparison with a preset reference value is performed to determine whether or not casting is appropriate. It is to be.

 本発明者らは、鋳片表面付近の横割れやストリーク欠陥といった問題について検討したところ、その問題の発生原因が上記の如く鋳型の横振れにあることを見出した。従来の連続鋳造方法においては、鋳型の横振れ状況を監視したり、また横振れの程度を測定したりすることを行っておらず、この為に良質な製品を安定して得ることが困難であったものと考えられる。 The present inventors have examined problems such as lateral cracks and streak defects near the slab surface, and have found that the cause of the problem is the lateral deflection of the mold as described above. In the conventional continuous casting method, the state of the lateral run-out of the mold is not monitored or the degree of the lateral run-out is not measured. Therefore, it is difficult to obtain a high quality product stably. It is thought that there was.

 上述の様に鋳片引抜き方向と直交する方向(横方向)の鋳型振動量、即ち横振れに関する鋳型振動量を測定し、この振動量が所定の基準値より大きければ、連続鋳造装置の部品交換や鋳造ラインの通り芯調整等のメンテナンスを予防的に行い、これによって上記振動量を低位に安定管理すると良く、この様にして常に横方向の振動量が小さい状態で連続鋳造を行うことにより、良質の鋳片を安定して製造することが可能となる。 As described above, the amount of mold vibration in the direction (lateral direction) perpendicular to the slab withdrawal direction, that is, the amount of mold vibration related to lateral runout, is measured. If this vibration amount is larger than a predetermined reference value, the component replacement of the continuous casting apparatus is performed. It is advisable to perform preventive maintenance such as core adjustment of the casting line or the like, thereby stably controlling the vibration amount to a low level, and thus performing continuous casting with the horizontal vibration amount always small. High quality slabs can be stably manufactured.

 尚上記「非鋳造時」とは、鋳造を開始する前、或いは鋳造が完了した後の、鋳型内に鋳片(溶融金属及びその凝固体)が無い状態(空の状態)のときを言い、上記「鋳造中」とは、鋳型内に鋳片があり、鋳造が行われている状態のときを言う。 The “non-casting time” refers to a state in which there is no slab (molten metal and its solidified body) in the mold (empty state) before starting casting or after completion of casting, The above-mentioned “during casting” refers to a state where there is a slab in the mold and casting is being performed.

 また上記「振動量」とは、振動的変位の変動の幅を言い、つまり鋳型の振動をグラフで表したときの山〜谷までの距離を言う。 {Circle around (4)} The “vibration amount” refers to the range of fluctuation of the vibrational displacement, that is, the distance from the peak to the valley when the vibration of the mold is represented by a graph.

 そして、前記鋳片引抜き方向と直交する方向の鋳型振動量、及び鋳片引抜き方向と平行な方向の鋳型振動量を測定し、これらの測定値が、下式(1)を満足する様にして連続鋳造を行うことが好ましい。
1/W0≦0.1   …(1)
  W1:鋳片引抜き方向と直交する方向の鋳型振動量の最大値(μm)
  W0:鋳片引抜き方向と平行な方向の鋳型振動量の設定値(μm)
Then, the mold vibration amount in a direction perpendicular to the slab drawing direction, and the mold vibration amount in a direction parallel to the slab drawing direction were measured, and these measured values were set so as to satisfy the following expression (1). Preferably, continuous casting is performed.
W 1 / W 0 ≦ 0.1… (1)
W 1 : Maximum value of the vibration amount of the mold in the direction perpendicular to the slab drawing direction (μm)
W 0 : Set value (μm) of the vibration amount of the mold in a direction parallel to the slab drawing direction

 W1/W0が0.1超の場合は、鋳型の横振れが大き過ぎると判断され、従ってパウダーの流入状況があまり好ましくない傾向にあり、また鋳造中に鋳型から異常な横方向の荷重が鋳片に加えられていると推測されるから、連続鋳造装置のメンテナンスを行って上記式(1)を満足するようにする。これにより鋳片の品質異常の発生を未然に防止でき、また設備の保全を適切に行うことができる。特にストリーク欠陥が発生し易い鋼種(例えば、炭素を0.10%含有する鋼種)や、横割れ欠陥の発生し易い鋼種(例えば、炭素を0.10〜0.20%含有する鋼種)において、上記式(1)を満足することが望ましい。 If W 1 / W 0 is more than 0.1, it is determined that the lateral run-out of the mold is too large, so that the powder inflow tends to be less favorable, and abnormal lateral load from the mold during casting. Since it is estimated that is added to the cast slab, maintenance of the continuous casting apparatus is performed to satisfy the above-mentioned expression (1). Thereby, occurrence of quality abnormality of the slab can be prevented beforehand, and the maintenance of the equipment can be appropriately performed. In particular, in steel types in which streak defects are easily generated (for example, steel types containing 0.10% of carbon) and in steel types in which lateral cracking defects are easily generated (for example, steel types containing 0.10 to 0.20% of carbon), It is desirable to satisfy the above equation (1).

 より好ましくは上記W1/W0が0.08以下であり、更に好ましくは0.07以下である。 More preferably, the ratio W 1 / W 0 is 0.08 or less, still more preferably 0.07 or less.

 尚上記「鋳片引抜き方向と平行な方向の鋳型振動量の設定値(W0)」とは、鋳型に対して引抜き方向に振動を作用させる際の設定値である。 The “set value (W 0 ) of the mold vibration amount in the direction parallel to the slab withdrawal direction” is a set value when a vibration is applied to the mold in the drawing direction.

 また連続鋳造方法としては、非鋳造時及び鋳造中における、鋳片引抜き方向と直交する方向の鋳型振動量を測定し、非鋳造時における前記鋳片引抜き方向と直交する方向の鋳型振動量と、鋳造中における前記鋳片引抜き方向と直交する方向の鋳型振動量とを対比し、この変化量と予め設定された基準値との比較を行って鋳造実施の適否を判断することが挙げられる。 Further, as a continuous casting method, during non-casting and during casting, measure the amount of mold vibration in the direction perpendicular to the slab withdrawal direction, and during non-casting, the amount of mold vibration in the direction perpendicular to the slab withdrawal direction, It is possible to compare the amount of vibration of the mold in a direction orthogonal to the direction of drawing the slab during casting and compare the amount of change with a predetermined reference value to determine whether or not the casting is appropriate.

 例えば鋳型内に鋳片がない状態(非鋳造時)の横方向の振動量に比べて、鋳型内に鋳片が存在している状態(鋳造中)の横方向の振動量が小さい値となった場合は、その差(変化量)の分だけ鋳片が横方向の荷重を受けているということであり、この変化量が大きいと鋳片に横割れ欠陥等を生じる懸念が増す。また逆に非鋳造時の横方向の振動量に比べて、鋳造中の横方向の振動量が大きい値の場合は、連続鋳造装置の鋳型や各ロールの配置がズレて、鋳造ラインの通り芯が精度良く出ていない可能性があり、この場合も鋳型内の鋳片に異常な力が作用して割れ欠陥やストリーク欠陥を生じる恐れがある。この様に上記変化量が大きいと、欠陥のある鋳片が製造される恐れが高いから、この変化量が少なくなる様に、連続鋳造装置のメンテナンス等を実行すると良い。 For example, the horizontal vibration amount when the slab exists in the mold (during casting) is smaller than the horizontal vibration amount when there is no slab in the mold (during casting). In this case, it means that the slab receives a load in the lateral direction by an amount corresponding to the difference (amount of change). If the amount of change is large, there is an increased concern that a slab may have a lateral crack defect. Conversely, if the amount of lateral vibration during casting is a large value compared to the amount of lateral vibration during non-casting, the arrangement of the molds and rolls in the continuous casting machine will shift, and the core of the casting line will be misaligned. May not come out with high accuracy, and in this case also, an abnormal force acts on the slab in the mold, and there is a possibility that a crack defect or a streak defect may occur. If the amount of change is large as described above, there is a high possibility that a defective slab is manufactured. Therefore, it is preferable to perform maintenance or the like of the continuous casting apparatus so as to reduce the amount of change.

 更に、非鋳造時における前記鋳片引抜き方向と直交する方向の鋳型振動量と、鋳造中における前記鋳片引抜き方向と直交する方向の鋳型振動量との差の絶対値が、0.1mm以下であることが好ましい。 Furthermore, the absolute value of the difference between the mold vibration amount in the direction orthogonal to the slab withdrawal direction during non-casting and the mold vibration amount in the direction orthogonal to the slab withdrawal direction during casting is 0.1 mm or less. Preferably, there is.

 上記の様に非鋳造時と鋳造中の横方向振動量の差(変化量)が、絶対値で0.1mm以下であれば、上述の様な不具合を生じる懸念が少なく、良好な鋳片を安定して製造することが可能である。特に鋼種としてストリーク欠陥が発生し易い鋼種(例えば、炭素を0.10%含有する鋼種)や、横割れ欠陥の発生し易い鋼種(例えば、炭素を0.10〜0.20%含有する鋼種)において、上記変化量の絶対値を0.1mm以下にすると欠陥予防効果が高い。 As described above, if the difference (change amount) between the lateral vibration amount during non-casting and during casting is 0.1 mm or less in absolute value, there is little concern that the above-described problems will occur, and a good cast piece can be obtained. It can be manufactured stably. In particular, as a steel type, a steel type in which streak defects are easily generated (for example, a steel type containing 0.10% of carbon) and a steel type in which lateral cracking defects are easily generated (for example, a steel type containing 0.10 to 0.20% of carbon) In this case, when the absolute value of the variation is 0.1 mm or less, the effect of preventing defects is high.

 より好ましくは非鋳造時と鋳造中の横方向振動量の差の絶対値が0.08mm以下である。更に好ましくは0.05mm以下である。 More preferably, the absolute value of the difference between the lateral vibration amount during non-casting and during casting is 0.08 mm or less. More preferably, it is 0.05 mm or less.

 上記連続鋳造方法の如く、鋳型の横方向の振動を監視し、例えば横方向の振動が大きい場合には装置の部品交換や鋳造ラインの通り芯調整といったメンテナンス等を行うことにより、ストリーク欠陥や横割れ欠陥等の不良品の発生を防止でき、常に安定して良品質の鋳片を製造することが可能となる。加えて大きな設備異常が生じる前に、設備の予防保全を適切に実行することができる。 As in the continuous casting method described above, the lateral vibration of the mold is monitored. For example, if the lateral vibration is large, streak defects and lateral vibration can be obtained by performing maintenance such as replacing parts of the equipment or adjusting the core of the casting line. It is possible to prevent the occurrence of defective products such as crack defects, and to constantly and stably produce high quality cast slabs. In addition, preventive maintenance of equipment can be appropriately performed before a large equipment abnormality occurs.

 そして本発明に係る鋳型振動検出装置によれば、鋳型の横方向の振動を精度良く検知でき、上記連続鋳造方法を容易に実行することが可能となる。 According to the mold vibration detecting device of the present invention, the lateral vibration of the mold can be accurately detected, and the continuous casting method can be easily performed.

 図1は本発明の鋳型振動検出装置を備えた連続鋳造装置の一例を示す模式図であり、(a)は縦断面図で、(b)は鋳型14を上方から見た図である。図2,3は該連続鋳造装置の鋳型付近を表す拡大断面図で、図2は良好な鋳片が製造される場合を示し、図3は鋳型の横揺れが大きく鋳片に異常をきたす場合を示している。 FIG. 1 is a schematic view showing an example of a continuous casting apparatus provided with the mold vibration detecting device of the present invention, in which (a) is a longitudinal sectional view and (b) is a view of the mold 14 as viewed from above. 2 and 3 are enlarged sectional views showing the vicinity of a mold of the continuous casting apparatus. FIG. 2 shows a case where a good cast piece is manufactured, and FIG. Is shown.

 浸漬ノズル(図示せず)から鋳型14内に注入された溶融金属13は下方に引き抜かれつつ、次第に表面(鋳型との接触面)から凝固する(凝固殻12)。溶融金属13の湯面にはパウダー11が添加され、上記引き抜きに伴ってパウダー11が凝固殻12の表面を覆うようにして鋳型14と鋳片(凝固殻12)の間に入り、摩擦抵抗を低減させる。またこのとき鋳型14に引抜き方向(Z軸方向)の振動が加えられ、鋳片が引抜き易くなっている。尚本明細書において、上記溶融金属13と凝固殻12を合わせて鋳片と呼ぶことがある。 (4) The molten metal 13 injected into the mold 14 from the immersion nozzle (not shown) gradually solidifies from the surface (contact surface with the mold) while being drawn downward (solidified shell 12). Powder 11 is added to the molten metal surface of the molten metal 13, and the powder 11 enters between the mold 14 and the slab (solidified shell 12) so as to cover the surface of the solidified shell 12 with the above-mentioned drawing, thereby reducing frictional resistance. Reduce. At this time, vibration is applied to the mold 14 in the drawing direction (Z-axis direction), and the slab is easily drawn. In the present specification, the molten metal 13 and the solidified shell 12 may be collectively referred to as a slab.

 上記連続鋳造装置の鋳型14外面には金属平板17が取付けられており(尚実際には、鋳型の周りの鉄製フレームに金属平板17を取り付けると良い)、鋳型14の振動と同じに金属平板17も振動する。そして該金属平板17に対向して渦流式センサー18が設置されており、該渦流式センサー18は固定した架台(図示せず)に取付けられ、動くことがない。これら金属平板17と渦流式センサー18により鋳型振動検出装置16が構成されている。 A metal plate 17 is attached to the outer surface of the mold 14 of the continuous casting apparatus (in practice, it is preferable to attach the metal plate 17 to an iron frame around the mold). Also vibrate. An eddy current sensor 18 is installed facing the metal plate 17, and the eddy current sensor 18 is mounted on a fixed base (not shown) and does not move. The metal plate 17 and the eddy current sensor 18 constitute a mold vibration detecting device 16.

 上記渦流式センサー18は上記金属平板17との距離を測定し、これにより金属平板17の横方向の振動量、即ち鋳型14の横方向の振動量を測定する。尚図1(b)に示す左上の渦流式センサー18はX軸方向の振動を感知し、図1(b)に示す左下の渦流式センサー18はY軸方向の振動を感知する。ここでX軸方向とは引抜き方向(Z軸方向)と直交する一の方向で、Y軸方向とは該X軸方向及び前記Z軸方向と直交する方向である。横振れとは、上記X軸方向の振れ、上記Y軸方向の振れ、またはX軸方向とY軸方向を合成した振れである。 The eddy current sensor 18 measures the distance from the metal plate 17 and thereby measures the amount of vibration of the metal plate 17 in the horizontal direction, that is, the amount of vibration of the mold 14 in the horizontal direction. The upper left eddy current sensor 18 shown in FIG. 1B senses vibration in the X-axis direction, and the lower left eddy current sensor 18 shown in FIG. 1B senses vibration in the Y-axis direction. Here, the X-axis direction is one direction orthogonal to the drawing direction (Z-axis direction), and the Y-axis direction is a direction orthogonal to the X-axis direction and the Z-axis direction. The lateral shake is the shake in the X-axis direction, the shake in the Y-axis direction, or the shake in which the X-axis direction and the Y-axis direction are combined.

 連続鋳造を行うにあたって上記鋳型振動検出装置16を用いて、鋳造中或いは鋳造前等(非鋳造時)に鋳型の横振れの状況を監視し、予め設定された基準値と比較して上記横方向鋳型振動量が大きければ連続鋳造装置の部品交換や鋳造ラインの通り芯調整等を行い、常に横振れの小さい状態で鋳造を行う。これにより鋳型横振れによって生じる鋳片の品質不良を未然に防止できる。 When performing continuous casting, the mold vibration detecting device 16 is used to monitor the state of the mold run-out during casting or before casting (at the time of non-casting), and compare it with a preset reference value to determine the lateral direction. If the amount of vibration of the mold is large, parts are exchanged in the continuous casting apparatus, the core of the casting line is adjusted, etc., and the casting is always performed with a small horizontal runout. As a result, it is possible to prevent inferior quality of the slab caused by the mold runout.

 尚鋳型の横振れが大きいと、図3に示す様にパウダー11の流入が不均一となり、凝固殻にストリーク欠陥を生じる可能性が高くなる。また鋳型14から凝固殻12に対して異常な荷重が加わり、割れ欠陥15が発生する可能性も高くなる。 (3) If the lateral run-out of the mold is large, the inflow of the powder 11 becomes non-uniform as shown in FIG. 3 and the possibility of causing streak defects in the solidified shell increases. In addition, an abnormal load is applied from the mold 14 to the solidified shell 12, and the possibility that the crack defect 15 is generated increases.

 これに対し鋳型14の横振れの小さい場合は、パウダー11が均一,良好に流入し、健全な凝固殻が形成される(図2)。 On the other hand, when the lateral runout of the mold 14 is small, the powder 11 flows in uniformly and well, and a sound solidified shell is formed (FIG. 2).

 尚本発明に係る方法は、鋳造段階の欠陥がそのまま製品に残存し易いニアネットシェイプ型の連続鋳造機(ビレット連続鋳造機,薄スラブ連続鋳造機等)において特に有効である。 The method according to the present invention is particularly effective in a near net shape type continuous casting machine (a billet continuous casting machine, a thin slab continuous casting machine, etc.) in which defects in the casting stage are likely to remain in the product.

 <実験1>
 下記に示す鋼種a,bを用いて連続鋳造を行い、その際の横方向の鋳型振動量を測定し、また出来上がった鋼にストリーク欠陥が発生しているか否かを観察した。この連続鋳造のときに鋳型に付与した引抜き方向(Z軸方向)の振動量(設定値)は3000μm(W0)である。
鋼種a:C=0.10%、Si=0.02%、Mn=0.43%、S=0.030%、残部鉄
鋼種b:C=0.10%、Si=0.02%、Mn=0.43%、S=0.008%、残部鉄
<Experiment 1>
Continuous casting was carried out using the following steel types a and b, the vibration amount of the mold in the horizontal direction at that time was measured, and it was observed whether or not the resulting steel had a streak defect. The amount of vibration (set value) in the drawing direction (Z-axis direction) imparted to the mold during this continuous casting is 3000 μm (W 0 ).
Steel type a: C = 0.10%, Si = 0.02%, Mn = 0.43%, S = 0.030%, balance steel type b: C = 0.10%, Si = 0.02%, Mn = 0.43%, S = 0.008%, balance iron

 図4は、ストリーク欠陥が発生しない確率(ストリーク欠陥非発生率(%))と上記横方向鋳型振動量との関係を表すグラフである。図4から分かる様に横方向の鋳型振動量が小さいもの程、ストリーク欠陥があまり発生せず、横方向の鋳型振動量が大きくなるとストリーク欠陥が多く発生する傾向にある(各結果は図4のグラフに示す2つの実線で挟まれた領域内に概ね入っている)。従って横方向の鋳型振動量を低減することが、ストリーク欠陥の減少に有効であることが分かる。 FIG. 4 is a graph showing the relationship between the probability that streak defects do not occur (the streak defect non-occurrence rate (%)) and the lateral mold vibration amount. As can be seen from FIG. 4, the smaller the vibration amount of the mold in the horizontal direction, the less streak defects occur, and the larger the vibration amount of the mold in the horizontal direction, the more streak defects tend to occur. It is generally within the area between the two solid lines shown in the graph). Therefore, it can be seen that reducing the vibration amount of the mold in the lateral direction is effective for reducing streak defects.

 尚上記の如くW0は3000μmであるから、上記式(1)を満足するのは横方向の鋳型振動量が300μm以下の場合であるが、図4に見られる様に横方向振動量230μm以下のものはストリーク欠陥があまり発生していない。 Since W 0 is 3000 μm as described above, the above equation (1) is satisfied when the lateral vibration amount of the mold is 300 μm or less, but as shown in FIG. 4, the lateral vibration amount is 230 μm or less. No streak defects occurred much.

 <実験2>
 ビレット連続鋳造装置(ストランドNo.1,2)を用いて連続鋳造を実施し、鋳造前(非鋳造時)と鋳造中における横方向の鋳型振動量を測定した。その結果を図5,6に示す。尚ストランドNo.1,2に作用させた引抜き方向の振動量、即ち引抜き方向の鋳型振動量の設定値W0は3000μmである。また図5,6のグラフに示す各値は、鋳造中における横方向鋳型振動量の平均値、また鋳造前に鋳型を引抜き方向に振動させたときの横方向鋳型振動量の平均値を、それぞれキャスト(一連の連続鋳造作業)単位で示したものである。また上記横方向鋳型振動量の平均値とは、渦流式センサー(位置センサー)の信号を0.1sec.毎に読み取り、その値の平均である。
<Experiment 2>
Continuous casting was performed using a billet continuous casting apparatus (strand Nos. 1 and 2), and the amount of vibration of the mold in the horizontal direction before casting (when not casting) and during casting was measured. The results are shown in FIGS. The amount of vibration applied to the strands Nos. 1 and 2 in the drawing direction, that is, the set value W 0 of the amount of vibration of the mold in the drawing direction is 3000 μm. The values shown in the graphs of FIGS. 5 and 6 are the average value of the lateral mold vibration amount during casting, and the average value of the lateral mold vibration amount when the mold is vibrated in the drawing direction before casting, respectively. It is shown in units of a cast (a series of continuous casting operations). The average value of the lateral mold vibration amount is an average of the values obtained by reading the signal of the eddy current sensor (position sensor) every 0.1 sec.

 更に上記鋳造前の横方向鋳型振動量から鋳造中の横方向鋳型振動量を引いた値(変化量)のグラフを図7,8に示す。尚上記ストランドNo.1の結果は図5,7に、ストランドNo.2の結果は図6,8にそれぞれ示す。 FIGS. 7 and 8 show graphs of values (changes) obtained by subtracting the lateral mold vibration during casting from the lateral mold vibration before casting. The results of strand No. 1 are shown in FIGS. 5 and 7, and the results of strand No. 2 are shown in FIGS.

 前述の様に横振れが大きいと、鋳片に割れ欠陥やストリーク欠陥が発生する懸念が高いが、上記の様に横方向の鋳型振動量を測定してその傾向を管理することにより、鋳型横揺れに影響を及ぼす重要部品(例えば鋳型振動装置のガイドレール、回転軸等)の摩耗等の劣化状況を把握でき、よって適切なタイミングでこれら部品の交換等のメンテナンスを予防的に行うことで、欠陥のない鋳片を安定して製造することが可能となる。 If the lateral runout is large as described above, there is a high possibility that a crack defect or a streak defect will occur in the slab.However, as described above, by measuring the lateral mold vibration amount and managing the tendency, the mold lateral It is possible to grasp the state of deterioration such as wear of important parts that affect shaking (for example, the guide rail of the mold vibrating device, the rotating shaft, etc.), and to perform maintenance such as replacement of these parts at the appropriate timing in a preventive manner. It is possible to stably produce a slab without defects.

 例えばストランドNo.1ではキャストNo.7の前に部品Aの交換を行ったので、それ以降は、鋳造前と鋳造中の横振れの変化量が少なく(図7)、しかも該変化量の絶対値は50μm以下であり、安定して良品質の鋳片が得られた。また部品Aの交換以降、鋳造前や鋳造中の横方向の鋳型振動量も低減した(図5)。尚部品Aの交換前(キャストNo.1〜6)であってもW1/W0が最大でも0.07程度であり、概ね良好に鋳片が製造されていたが、更に部品Aの交換以降はW1/W0が最大でも0.06程度となり、より一層安定して良品質の鋳片が得られることとなった。 For example, in the case of the strand No. 1, the part A was replaced before the cast No. 7, and thereafter, the amount of change in the lateral run-out before and during the casting was small (FIG. 7). The value was 50 μm or less, and a slab of good quality was obtained stably. Also, after the replacement of the part A, the amount of vibration of the mold in the horizontal direction before and during casting was reduced (FIG. 5). Even before the replacement of the part A (cast Nos. 1 to 6), W 1 / W 0 was about 0.07 at the maximum, and the cast slab was generally excellently manufactured. Thereafter, W 1 / W 0 is about 0.06 at the maximum, and a cast of high quality can be obtained more stably.

 ストランドNo.2ではキャストNo.17の前に部品Aの交換を行ったので、それ以降は鋳造前の横揺れが小さくなった上(図6)、鋳造前と鋳造中の横振れの変化量が少なくなり(図8)、良品質の鋳片が安定して得られるようになった。 In the case of the strand No. 2, the part A was replaced before the cast No. 17, so that the rolling before casting became smaller after that (Fig. 6), and the variation of the rolling before and after casting. (Fig. 8), and a high quality cast slab can be obtained stably.

 この様に予防的に早めのメンテナンスを行うことは、設備の保全を計画的に行う場合においても有効である。 予 防 Early preventive maintenance is effective even when equipment maintenance is planned.

 仮に設備不良の状態であると、大レベルの鋳型横振れが突発的に発生するという事故が起こることがあるが、この様な突発事故が起こった場合には、鋳造を中止して大規模な設備修理を行う必要がある。この点、上記の様に横振れの状態を監視して設備の劣化や異常の発生を早めに察知し、メンテナンスを行うことにより、上記突発事故を防止できる。この様に設備保全を計画的に実施するという観点からも有効であるから、生産計画に支障をきたすことなく、安定して良品質の製品を得ることが可能となる。 If the equipment is in a defective state, an accident may occur in which a large level of mold runout occurs suddenly.If such an accident occurs, the casting is stopped and a large-scale Equipment needs to be repaired. In this regard, the sudden accident can be prevented by monitoring the state of the lateral run-out as described above, detecting the deterioration and abnormality of the equipment at an early stage, and performing maintenance. As described above, it is effective from the viewpoint of systematically carrying out equipment maintenance, so that it is possible to stably obtain a good quality product without hindering a production plan.

 また非鋳造時のみ或いは鋳造中のみの横振れを測定するだけでなく、非鋳造時と鋳造中の横振れの変化量を監視することにより、設備異常管理を一層高精度で行うことができる。 In addition to measuring the lateral runout only during non-casting or only during casting, by monitoring the amount of lateral runout during non-casting and during casting, equipment abnormality management can be performed with higher accuracy.

 例えば図6から分かる様にストランドNo.2における横方向の鋳型振動量は漸増しているが、図8に示す様にその変化量(非鋳造時と鋳造中との変化量)としてはあまり変わらない値を示している。ここから分かる様に、変化量(図8)に基づいて評価することにより、設備劣化等に伴うW1/W0の値(横方向鋳型振動量より算出)の経時変動の影響を受けることなく、鋳造中の鋳片に対して鋳型から加えられる外力の影響のみを精度良く抽出,評価することができ、より高品質な鋳片を安定して生産することが可能となる。 For example, as can be seen from FIG. 6, the amount of vibration of the mold in the horizontal direction in the strand No. 2 is gradually increasing, but as shown in FIG. Indicates no value. As can be seen, by evaluating based on the amount of change (FIG. 8), the value of W 1 / W 0 (calculated from the amount of vibration in the lateral direction mold) due to equipment deterioration and the like is not affected by the temporal change. In addition, it is possible to accurately extract and evaluate only the influence of the external force applied from the mold to the slab during casting, and to stably produce a higher quality slab.

 以上の様に本発明に係る鋳型振動検出装置に関して、例を示す図面を参照しつつ具体的に説明したが、本発明はもとより上記例に限定される訳ではなく、前記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 As described above, the mold vibration detection device according to the present invention has been specifically described with reference to the drawings showing examples. However, the present invention is not limited to the above-described examples, and may be adapted to the above-described purpose. The present invention can be implemented with appropriate modifications within the scope, and all of them are included in the technical scope of the present invention.

本発明に係る鋳型振動検出装置を備えた連続鋳造装置の一例を示す図である。It is a figure which shows an example of the continuous casting apparatus provided with the mold vibration detection apparatus which concerns on this invention. 鋳片が正常な状態の場合における、連続鋳造装置の鋳型付近を表す拡大断面図である。It is an expanded sectional view showing the vicinity of a casting mold of a continuous casting device when a cast piece is in a normal state. 鋳片に異常をきたした場合における、連続鋳造装置の鋳型付近を表す拡大断面図である。It is an expanded sectional view showing the neighborhood of a casting mold of a continuous casting device when an abnormality occurs in a cast piece. 鋳型振動量とストリーク欠陥非発生率との関係を表すグラフである。4 is a graph showing a relationship between a mold vibration amount and a streak defect non-occurrence rate. ストランドNo.1における横方向の鋳型振動量を示すグラフである。6 is a graph showing the amount of vibration of the mold in the horizontal direction in strand No. 1. ストランドNo.2における横方向の鋳型振動量を示すグラフである。9 is a graph showing the amount of vibration of the mold in the horizontal direction in strand No. 2. ストランドNo.1における横方向の鋳型振動量の変化量を示すグラフである。6 is a graph showing the amount of change in the amount of vibration of the mold in the horizontal direction in strand No. 1. ストランドNo.2における横方向の鋳型振動量の変化量を示すグラフである。9 is a graph showing a change amount of a mold vibration amount in a horizontal direction in a strand No. 2;

符号の説明Explanation of reference numerals

 11 パウダー
 12 凝固殻
 13 溶融金属
 14 鋳型
 15 割れ欠陥
 16 鋳型振動検出装置
 17 金属平板
 18 渦流式センサー
DESCRIPTION OF SYMBOLS 11 Powder 12 Solidified shell 13 Molten metal 14 Mold 15 Crack defect 16 Mold vibration detection device 17 Metal plate 18 Eddy current sensor

Claims (1)

 非鋳造時及び鋳造中における、鋳片引抜き方向と直交する方向の鋳型振動量を測定することのできる鋳型振動検出装置であって、
 鋳型外面に取付けられた平板と、該鋳型における前記鋳片引抜き方向と直交する方向への鋳型振動に基づく該平板の位置変化を感知する位置センサーとを備えたことを特徴とする鋳型振動検出装置。

During non-casting and during casting, a mold vibration detection device capable of measuring the amount of mold vibration in a direction orthogonal to the slab withdrawal direction,
A mold vibration detecting device comprising: a flat plate attached to an outer surface of a mold; and a position sensor for detecting a change in position of the flat plate based on the vibration of the mold in the mold in a direction orthogonal to the slab drawing direction. .

JP2003387085A 2003-11-17 2003-11-17 Vibration detector for casting mold Withdrawn JP2004136368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387085A JP2004136368A (en) 2003-11-17 2003-11-17 Vibration detector for casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387085A JP2004136368A (en) 2003-11-17 2003-11-17 Vibration detector for casting mold

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000199059A Division JP3887520B2 (en) 2000-06-30 2000-06-30 Equipment management method for continuous casting equipment

Publications (1)

Publication Number Publication Date
JP2004136368A true JP2004136368A (en) 2004-05-13

Family

ID=32463883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387085A Withdrawn JP2004136368A (en) 2003-11-17 2003-11-17 Vibration detector for casting mold

Country Status (1)

Country Link
JP (1) JP2004136368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161423A (en) * 2007-12-12 2009-07-23 Hoya Corp Method of manufacturing glass substrate for magnetic disk and method of managing melting furnace
KR101243118B1 (en) * 2009-10-01 2013-03-12 주식회사 포스코 Apparatus and method for controlling oscillation of edgedam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161423A (en) * 2007-12-12 2009-07-23 Hoya Corp Method of manufacturing glass substrate for magnetic disk and method of managing melting furnace
KR101243118B1 (en) * 2009-10-01 2013-03-12 주식회사 포스코 Apparatus and method for controlling oscillation of edgedam

Similar Documents

Publication Publication Date Title
CA2947828A1 (en) Method for continuous-casting slab
JP2018192530A (en) Casting mold for continuous casting and continuous casting method of steel
JP2008087046A (en) Continuous casting method for medium-carbon steel
JP6036659B2 (en) Roll opening control method in continuous casting machine
EP3246113A1 (en) Continuously cast piece and manufacturing method and manufacturing device therefor, manufacturing method and manufacturing device for thick steel plate
EP3909703B1 (en) Method for continuous casting of slab
JP2008238256A (en) Method for producing continuously cast slab and continuous caster
JP5712575B2 (en) Method for detecting and controlling solidification completion position of continuous cast slab
JP6561822B2 (en) Steel continuous casting method
JP3887520B2 (en) Equipment management method for continuous casting equipment
JP2004136368A (en) Vibration detector for casting mold
JP2019171435A (en) Method of continuous casting
JP5831118B2 (en) Method and apparatus for continuous casting of steel
JP6897583B2 (en) Method for measuring the central solid phase ratio of slabs
JP2013111624A (en) Method of determining quality of continuously cast slab
KR101267347B1 (en) Device for monitoring crack using frictional force in mold and method therefor
JP4745929B2 (en) Method for suppressing solidification delay in continuous casting.
KR101505158B1 (en) Continuous casting method
KR102487307B1 (en) Apparatus of manufacturing for continuous casting and methods of manufacturing high-quality strand
KR101466358B1 (en) Evaluation method for validation of cracks in piece by using friction
JP4417899B2 (en) Continuous casting method
KR20130099289A (en) Device for predicting quality of plate in continuous casting and method therefor
KR101707304B1 (en) Method of predicting crack of slab in continuous casting process and slab-crack predicting apparatus
JP6107770B2 (en) Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method
JP2895603B2 (en) Surface defect judgment method for continuous cast slab

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A02 Decision of refusal

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050727

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050819

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060526