JP2004136294A - Ceramic roll - Google Patents

Ceramic roll Download PDF

Info

Publication number
JP2004136294A
JP2004136294A JP2002301007A JP2002301007A JP2004136294A JP 2004136294 A JP2004136294 A JP 2004136294A JP 2002301007 A JP2002301007 A JP 2002301007A JP 2002301007 A JP2002301007 A JP 2002301007A JP 2004136294 A JP2004136294 A JP 2004136294A
Authority
JP
Japan
Prior art keywords
silicon nitride
roll
sintered body
ceramic roll
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002301007A
Other languages
Japanese (ja)
Inventor
Shigesada Sugiyama
杉山 茂禎
Toshiaki Sumiyasu
角保 利明
Shigeyuki Hamayoshi
濱吉 繁幸
Shingo Nogami
野上 信悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002301007A priority Critical patent/JP2004136294A/en
Publication of JP2004136294A publication Critical patent/JP2004136294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic roll which is excellent in thermal impact resistance, strength and insulation property and used for a hot rolling line. <P>SOLUTION: This roll is a ceramic roll which is used for the hot rolling line, composed of a sintered compact consisting essentially of a silicon nitride and a coefficient R which is expressed by R=σc (1-ν)/Eα (where, σc is the rupture strength, ν is Poisson's ratio, E is Young's modulus and α is the thermal expansion coefficient.) is ≥600. The sintered compact consists essentially of the silicon nitride the heat conductivity of which is ≥60 W/(m×K), the four-point bending strength of which is ≥700 MPa and the withstand voltage of which is ≥16 kV/mm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱間圧延ラインに用いられる圧延用ロール、搬送用ローラ、ガイドローラなどのロールおよびローラ(以下、ロールおよびローラを「ロール」と略す。)に係り、特に耐熱衝撃性、強度、絶縁性に優れた窒化ケイ素系焼結体からなるセラミックス製ロールに関する。
【0002】
【従来の技術】
鋼材を製造する熱間圧延ラインに用いられる圧延用ロール、搬送用ローラ、ガイドローラなどは、金属製ロールが多く使われている。しかしながら、金属製ロールは、摩耗しやすい、耐熱性に劣る、また重量が重いためロールの取り替え作業が容易でないという問題がある。そこで、金属製ロールに替わりセラミックス製ロールが種々提案されている。
【0003】
特開平6−170419公報には、熱間圧延ラインに使用されるガイドローラまたは圧延ロールであって、窒化ケイ素セラミックスからなり、少なくとも被圧延材と接する溝部の表面粗さがRmax4μm以下で、表面に酸化膜を有し、材料特性が、曲げ強度80kgf/mm以上、破壊靭性値KICが7MPam1/2以上、硬度Hk14GPa以上であることが記載されている。
【0004】
特開平6−277733号公報には、熱間圧延ラインに使用されるセラミックスローラであって、窒化ケイ素セラミックスからなり、800℃におけるビッカース硬度が9.0GPa以上であることが記載されている。
【0005】
特開2002−178020号公報には、熱間圧延ラインにおいて、圧延鋼板の上下から互いに対向した誘導加熱コイルを配置して圧延鋼板の幅方向両端部を加熱する誘導加熱装置の直下または前後に配置され、金属製芯金にセラミックス製スリーブを嵌合した熱間圧延ライン向けローラであって、セラミックス製スリーブは、金属製芯金の胴長方向の両側にそれぞれ外嵌され、そのスリーブ外嵌部がローラの胴長方向中央部よりも大径となることが記載されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような従来のセラミックス製ロールは、特に耐熱衝撃性が十分といえず、使用時に熱衝撃によりロールが破壊しやすく耐用寿命が短いという問題があった。
【0007】
また、特開2002−178020号公報に記載されているような誘導加熱装置の前後に配置される搬送用ロールの場合、高い耐熱衝撃性に加えて、誘導電流が発生した鋼片と接触して発生するスパーク痕を防止するために高い絶縁性も要求される。
【0008】
そこで、本発明は耐熱衝撃性、強度、絶縁性に優れるセラミックス製ロールを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は鋭意検討した結果、熱衝撃に対する材料の破壊抵抗を表わす量である係数Rについて所定の範囲を満足する窒化ケイ素系材料を用いることにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は熱間圧延ラインに用いられるセラミックス製ロールであって、窒化ケイ素を主成分とする焼結体からなり、R=σc(1−ν)/Eα(但し、σc:破壊強度、ν:ポアソン比、E:ヤング率、α:熱膨張係数)で表わされる係数Rが600以上であることを特徴とする。
【0011】
前記本発明において、窒化ケイ素を主成分とする焼結体は、常温における熱伝導率が60W/(m・K)以上であることを特徴とする。また、窒化ケイ素を主成分とする焼結体は、相対密度が98%以上であり常温における4点曲げ強度が700MPa以上であることを特徴とする。さらに、窒化ケイ素を主成分とする焼結体は、絶縁耐圧が16kV/mm以上であることを特徴とする。
【0012】
本発明においては、ロールを形成する窒化ケイ素を主成分とする焼結体の急激な温度変化に対する係数R=σ(1−ν)/Eα(但し、σc:破壊強度、ν:ポアソン比、E:ヤング率、α:熱膨張係数)が600以上の値を有するようにした。
【0013】
種々の窒化ケイ素系焼結体製ロールを約600℃の急昇温、急冷却による熱衝撃を受ける実際の熱間圧延ラインにおいて試験した結果、この係数Rが600未満であるとロールが破壊しやすい知見を得た。
【0014】
本発明で規定される係数Rは、ロール自体から切り出した試験片の測定値から求めたものである。破壊強度σcは常温における4点曲げ強度(MPa)、熱膨張係数αは常温から800℃までの平均熱膨張係数(℃−1)、ポアソン比νは常温における値、ヤング率E(GPa)は常温における値を用いた。
【0015】
また、通常の窒化ケイ素系焼結体は、常温における熱伝導率が高々30W/(m・K)程度であるが、実際の熱間圧延ラインにおいて急昇温、急冷却による熱がロールの表面を経て内部まで速く到達して耐熱衝撃性が高まるように、本発明の窒化ケイ素を主成分とする焼結体は常温における熱伝導率が60W/(m・K)以上であることが好ましい。
【0016】
また、ロールの破壊を防止するために、窒化ケイ素を主成分とする焼結体は、相対密度が98%以上であり常温における4点曲げ強度が700MPa以上であることが好ましい。
【0017】
また、誘導加熱装置の前後に配置される搬送用ロールとして用いる場合、窒化ケイ素を主成分とする焼結体は絶縁耐圧が16kV/mm以上であると、誘導電流が発生した鋼片と接触して発生するスパーク痕を防止できる。
【0018】
【発明の実施の形態】
本発明のセラミックス製ロールの製造方法について説明する。平均粒径0.5μmの窒化ケイ素粉末に、焼結助剤として、平均粒径0.2μmの酸化マグネシウム粉末を3.0重量%、平均粒径2.0μmの酸化イットリウム粉末を3.0重量%添加し、適量の分散剤を加えエタノール中で粉砕、混合した。ついで、噴霧乾燥後、篩を通して造粒した後、ゴム型に充填し、静水圧により冷間静水圧プレス(CIP)を行い、所定形状の中空スリーブロールとなる成形体を作製した。この成形体を1950℃、60気圧の窒素ガス雰囲気中で5時間焼成し、本発明の窒化ケイ素系セラミックス焼結体(実施例1)からなる熱間圧延ラインに用いられる圧延スリーブロールを得た。
【0019】
また、上記で使用する焼結助剤の種類、添加量、焼成条件を変えて、材料特性の異なる窒化ケイ素系セラミックス焼結体(比較例1)からなる熱間圧延ラインに用いられる圧延スリーブロールを得た。
【0020】
得られた窒化ケイ素系セラミックス焼結体から、直径10mm×厚さ3mmの熱伝導率および密度測定用の試験片、縦3mm×横4mm×長さ40mmの4点曲げ試験片を採取した。密度はJIS R2205に基づいてアルキメデス法から求めた。相対密度はJIS R2205に準拠したアルキメデス法により実測密度を求めこれを計算により算出した理論密度で除した値とした。熱伝導率はレーザーフラッシュ法JIS R1611に準拠して常温での比熱および熱拡散率を測定し熱伝導率を算出した。4点曲げ強度は常温にてJIS R1601に準拠して測定を行った。同様に、窒化ケイ素系セラミックス焼結体から試験片を切り出し、常温から800℃までの平均熱膨張係数、常温におけるポアソン比、ヤング率の測定を行なった。また、絶縁耐圧は常温にてJIS C2110に準拠して測定を行った。表1に測定結果を示す。
【0021】
【表1】

Figure 2004136294
【0022】
実施例1および比較例1の窒化ケイ素系焼結体からなる圧延スリーブロールを用いて、約600℃の急昇温、急冷却による熱衝撃を受ける実際の熱間圧延ラインにおいて試験した。比較例1の圧延スリーブロールは、耐摩耗性、耐焼付き性は良好であったが、係数Rが600未満であること、また熱伝導率が60W/(m・K)未満であることが原因と考えられるが使用後まもなくロール表面に亀裂が発生した。
【0023】
本発明の実施例1の圧延スリーブロールは、耐摩耗性、耐焼付き性が良好であるとともに、係数Rが600以上であること、また熱伝導率が60W/(m・K)以上であるためロール表面に亀裂は見られず耐熱衝撃性に優れることを確認できた。
【0024】
また、本発明の実施例1の諸特性を有するロールを、誘導加熱装置の前後に配置される搬送用ロールに適用した結果、ロール表面に亀裂が見られないことに加えて、絶縁耐圧が16kV/mm以上であるため誘導電流が発生した鋼片と接触して発生するスパーク痕を十分に防止することができた。
【0025】
【発明の効果】
本発明によれば、所定の係数Rを有する窒化ケイ素系材料でロールを構成することにより、ロールが破壊し難く耐用寿命の長い熱間圧延ラインに用いられるロールを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to rolls and rollers (hereinafter, rolls and rollers are abbreviated as “rolls”) such as rolling rolls, conveying rollers, and guide rollers used in a hot rolling line, and particularly relates to thermal shock resistance, strength, and the like. The present invention relates to a ceramic roll made of a silicon nitride-based sintered body having excellent insulation properties.
[0002]
[Prior art]
Metal rolls are often used for rolling rolls, transport rollers, guide rollers, and the like used in a hot rolling line for producing steel materials. However, there is a problem that the metal roll is easily worn, is inferior in heat resistance, and is difficult to replace the roll because of its heavy weight. Therefore, various ceramic rolls have been proposed in place of metal rolls.
[0003]
Japanese Patent Application Laid-Open No. Hei 6-170419 discloses a guide roller or a rolling roll used in a hot rolling line, which is made of silicon nitride ceramic and has a surface roughness of at least Rmax 4 μm or less in contact with a material to be rolled. It is described that it has an oxide film, has material properties of a flexural strength of 80 kgf / mm 2 or more, a fracture toughness value K IC of 7 MPam 1/2 or more, and a hardness of Hk 14 GPa or more.
[0004]
JP-A-6-277733 describes a ceramic roller used for a hot rolling line, which is made of silicon nitride ceramics and has a Vickers hardness at 800 ° C. of 9.0 GPa or more.
[0005]
Japanese Patent Application Laid-Open No. 2002-178020 discloses that, in a hot rolling line, induction heating coils opposed to each other from above and below a rolled steel sheet are arranged, and arranged immediately below or before and after an induction heating device for heating both ends in the width direction of the rolled steel sheet. A roller for a hot rolling line in which a ceramic sleeve is fitted to a metal core, and the ceramic sleeve is externally fitted to both sides of the metal core in the body length direction, and the sleeve outer fitting portion is provided. Is larger than the center of the roller in the body length direction.
[0006]
[Problems to be solved by the invention]
However, the conventional ceramic roll as described above has a problem in that the thermal shock resistance is not particularly sufficient, and the roll is easily broken by a thermal shock during use, resulting in a short service life.
[0007]
Further, in the case of a transport roll disposed before and after an induction heating device as described in JP-A-2002-178020, in addition to high thermal shock resistance, the transport roll comes into contact with a steel slab in which an induction current has been generated. High insulating properties are also required to prevent the generated spark marks.
[0008]
Therefore, an object of the present invention is to provide a ceramic roll excellent in thermal shock resistance, strength, and insulation.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above problem can be solved by using a silicon nitride-based material that satisfies a predetermined range for a coefficient R, which is an amount representing the fracture resistance of the material against thermal shock. It was completed.
[0010]
That is, the present invention relates to a ceramic roll used in a hot rolling line, which is made of a sintered body containing silicon nitride as a main component, and R = σc (1-ν) / Eα (where σc: breaking strength, A coefficient R represented by ν: Poisson's ratio, E: Young's modulus, α: thermal expansion coefficient is 600 or more.
[0011]
In the present invention, the sintered body containing silicon nitride as a main component has a thermal conductivity at room temperature of 60 W / (m · K) or more. Further, the sintered body containing silicon nitride as a main component has a relative density of 98% or more and a four-point bending strength at room temperature of 700 MPa or more. Further, the sintered body containing silicon nitride as a main component is characterized in that the dielectric strength is 16 kV / mm or more.
[0012]
In the present invention, a coefficient R = σ C (1-ν) / Eα (where σc: breaking strength, ν: Poisson's ratio, with respect to a rapid temperature change of a sintered body containing silicon nitride as a main component forming a roll) E: Young's modulus, α: thermal expansion coefficient) had a value of 600 or more.
[0013]
Various silicon nitride sintered rolls were tested on an actual hot rolling line subjected to a thermal shock caused by rapid temperature rise and cooling of about 600 ° C. As a result, if the coefficient R was less than 600, the rolls were broken. Easy knowledge was obtained.
[0014]
The coefficient R defined in the present invention is obtained from a measured value of a test piece cut from the roll itself. The breaking strength σc is a four-point bending strength (MPa) at ordinary temperature, the thermal expansion coefficient α is the average thermal expansion coefficient from ordinary temperature to 800 ° C. (° C. −1 ), the Poisson's ratio ν is the value at ordinary temperature, and the Young's modulus E (GPa) is The value at normal temperature was used.
[0015]
A normal silicon nitride-based sintered body has a thermal conductivity at room temperature of about 30 W / (m · K) at most, but heat generated by rapid temperature rise and rapid cooling in the actual hot rolling line causes the surface of the roll to heat. The sintered body mainly containing silicon nitride according to the present invention preferably has a thermal conductivity of 60 W / (m · K) or more at room temperature so that the thermal shock resistance is increased by arriving at the inside quickly through the process.
[0016]
In order to prevent breakage of the roll, the sintered body mainly containing silicon nitride preferably has a relative density of 98% or more and a four-point bending strength at room temperature of 700 MPa or more.
[0017]
Further, when used as a transporting roll disposed before and after the induction heating device, when the sintered body mainly composed of silicon nitride has a withstand voltage of 16 kV / mm or more, it comes into contact with the steel slab in which the induced current is generated. Spark marks that occur during the operation can be prevented.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing the ceramic roll of the present invention will be described. As a sintering aid, 3.0% by weight of magnesium oxide powder having an average particle size of 0.2 μm and 3.0% by weight of yttrium oxide powder having an average particle size of 2.0 μm were added to silicon nitride powder having an average particle size of 0.5 μm. %, An appropriate amount of a dispersant was added, and the mixture was ground and mixed in ethanol. Next, after spray drying, the mixture was granulated through a sieve, filled in a rubber mold, and subjected to cold isostatic pressing (CIP) by hydrostatic pressure, to produce a molded body to be a hollow sleeve roll having a predetermined shape. The compact was fired in a nitrogen gas atmosphere at 1950 ° C. and 60 atm for 5 hours to obtain a rolled sleeve roll for use in a hot rolling line made of the silicon nitride ceramic sintered body of the present invention (Example 1). .
[0019]
Further, by changing the type, amount and sintering conditions of the sintering aid used above, a rolling sleeve roll used in a hot rolling line composed of silicon nitride-based ceramics sintered bodies having different material properties (Comparative Example 1). Got.
[0020]
From the obtained silicon nitride-based ceramics sintered body, a test piece for measuring the thermal conductivity and the density of 10 mm in diameter × 3 mm in thickness and a 4-point bending test piece of 3 mm in length × 4 mm in width × 40 mm in length were collected. The density was determined from the Archimedes method based on JIS R2205. The relative density was a value obtained by calculating the measured density by the Archimedes method based on JIS R2205 and dividing the measured density by the theoretical density calculated by calculation. The thermal conductivity was calculated by measuring the specific heat and the thermal diffusivity at room temperature according to the laser flash method JIS R1611. The four-point bending strength was measured at room temperature in accordance with JIS R1601. Similarly, a test piece was cut out from the silicon nitride-based ceramics sintered body, and the average coefficient of thermal expansion from room temperature to 800 ° C., Poisson's ratio at room temperature, and Young's modulus were measured. The dielectric strength was measured at room temperature in accordance with JIS C2110. Table 1 shows the measurement results.
[0021]
[Table 1]
Figure 2004136294
[0022]
Using the rolled sleeve roll made of the silicon nitride-based sintered body of Example 1 and Comparative Example 1, a test was performed in an actual hot rolling line that was subjected to a thermal shock due to a rapid temperature rise of about 600 ° C. and rapid cooling. The rolled sleeve roll of Comparative Example 1 had good abrasion resistance and seizure resistance, but had a coefficient R of less than 600 and a thermal conductivity of less than 60 W / (m · K). It was thought that cracks occurred on the roll surface shortly after use.
[0023]
The rolling sleeve roll of Example 1 of the present invention has good wear resistance and seizure resistance, a coefficient R of 600 or more, and a thermal conductivity of 60 W / (m · K) or more. No cracks were observed on the roll surface, and it was confirmed that the roll had excellent thermal shock resistance.
[0024]
In addition, as a result of applying the roll having the various characteristics of Example 1 of the present invention to a transport roll disposed before and after the induction heating device, in addition to the fact that no crack was observed on the roll surface, the dielectric strength was 16 kV. / Mm or more, it was possible to sufficiently prevent spark marks generated by contact with the steel slab in which the induced current was generated.
[0025]
【The invention's effect】
According to the present invention, by forming a roll with a silicon nitride-based material having a predetermined coefficient R, it is possible to provide a roll used in a hot rolling line having a long service life and the roll is unlikely to break.

Claims (4)

熱間圧延ラインに用いられるセラミックス製ロールであって、窒化ケイ素を主成分とする焼結体からなり、R=σc(1−ν)/Eα(但し、σc:破壊強度、ν:ポアソン比、E:ヤング率、α:熱膨張係数)で表わされる係数Rが600以上であることを特徴とするセラミックス製ロール。A ceramic roll used for a hot rolling line, comprising a sintered body containing silicon nitride as a main component, wherein R = σc (1-ν) / Eα (where σc: breaking strength, ν: Poisson's ratio, E: Young's modulus, α: coefficient of thermal expansion R is 600 or more, a ceramic roll. 前記窒化ケイ素を主成分とする焼結体は、常温における熱伝導率が60W/(m・K)以上であることを特徴とする請求項1に記載のセラミックス製ロール。The ceramic roll according to claim 1, wherein the sintered body containing silicon nitride as a main component has a thermal conductivity of 60 W / (m · K) or more at room temperature. 前記窒化ケイ素を主成分とする焼結体は、相対密度が98%以上であり、常温における4点曲げ強度が700MPa以上であることを特徴とする請求項1または2に記載のセラミックス製ロール。3. The ceramic roll according to claim 1, wherein the sintered body containing silicon nitride as a main component has a relative density of 98% or more and a four-point bending strength at room temperature of 700 MPa or more. 4. 前記窒化ケイ素を主成分とする焼結体は、絶縁耐圧が16kV/mm以上であることを特徴とする請求項1〜3のいずれかに記載のセラミックス製ロール。The ceramic roll according to any one of claims 1 to 3, wherein the sintered body containing silicon nitride as a main component has a withstand voltage of 16 kV / mm or more.
JP2002301007A 2002-10-15 2002-10-15 Ceramic roll Pending JP2004136294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301007A JP2004136294A (en) 2002-10-15 2002-10-15 Ceramic roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301007A JP2004136294A (en) 2002-10-15 2002-10-15 Ceramic roll

Publications (1)

Publication Number Publication Date
JP2004136294A true JP2004136294A (en) 2004-05-13

Family

ID=32449510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301007A Pending JP2004136294A (en) 2002-10-15 2002-10-15 Ceramic roll

Country Status (1)

Country Link
JP (1) JP2004136294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758839B2 (en) * 2004-06-04 2010-07-20 Joint Solar Silicon Gmbh & Co. Kg Silicon and method for producing the same
JP2011016716A (en) * 2010-07-14 2011-01-27 Toshiba Corp Sintered silicon nitride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758839B2 (en) * 2004-06-04 2010-07-20 Joint Solar Silicon Gmbh & Co. Kg Silicon and method for producing the same
JP2011016716A (en) * 2010-07-14 2011-01-27 Toshiba Corp Sintered silicon nitride

Similar Documents

Publication Publication Date Title
EP1829844B1 (en) Silicon nitride based sintered compact and method for production thereof, and member for molten metal, member for hot working and member for excavation
EP1711034A1 (en) Ceramic heater and method for manufacturing same
She et al. Thermal shock behavior of isotropic and anisotropic porous silicon nitride
JP2004136294A (en) Ceramic roll
JP4529102B2 (en) High thermal conductivity silicon nitride sintered body and manufacturing method thereof
JP4678581B2 (en) Roll for hot metal plating bath
JP4678580B2 (en) Roll for hot metal plating bath
JP2004136295A (en) Ceramic roll
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP4264336B2 (en) Roller, induction heating device, and roller manufacturing method
JP3419495B2 (en) Composite ceramics
JP2005169463A (en) Roll made of ceramic
JP3965246B2 (en) Silicon nitride sintered body, method for producing the same, and insulator material for ceramic heater
JP2004183011A (en) Roll for continuous hot dip metal plating
JP3602931B2 (en) Low hardness silicon nitride sintered body and semiconductor manufacturing parts using the same
JP2004167502A (en) Roll made of ceramic
JP5979613B2 (en) Rotating body
JP2006193812A (en) Roll for hot dip metal plating bath
JP2005177810A (en) Apron made of ceramic
JP4332824B2 (en) Method for producing high thermal conductivity silicon nitride sintered body, sintered body thereof, substrate, circuit board for semiconductor element
JPH11180775A (en) Ceramic protective pipe
JP4292508B2 (en) Ceramic roll
JP3317820B2 (en) Ceramic roll
JP5892642B2 (en) Rotating body
JP2586873B2 (en) Hot rolled ceramics rollers and rolls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071109