JP2004134612A - Metal organic vapor phase growth apparatus - Google Patents

Metal organic vapor phase growth apparatus Download PDF

Info

Publication number
JP2004134612A
JP2004134612A JP2002298502A JP2002298502A JP2004134612A JP 2004134612 A JP2004134612 A JP 2004134612A JP 2002298502 A JP2002298502 A JP 2002298502A JP 2002298502 A JP2002298502 A JP 2002298502A JP 2004134612 A JP2004134612 A JP 2004134612A
Authority
JP
Japan
Prior art keywords
susceptor
reactor
eccentricity
semiconductor substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002298502A
Other languages
Japanese (ja)
Inventor
Hiroshi Kato
加藤 広巳
Yasutaka Sakata
阪田 康隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2002298502A priority Critical patent/JP2004134612A/en
Publication of JP2004134612A publication Critical patent/JP2004134612A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the adjusting accuracy to the eccentricity of a susceptor by making the eccentric amount of the susceptor quantitatively measurable, thereby improving the uniformity of the in-plane distribution of thickness or crystal composition of a film formed on a semiconductor substrate. <P>SOLUTION: A vertical organic metal vapor growth apparatus 101 is constituted of a reactor 2 having an opening at the bottom, a susceptor 4 which is arranged inside the susceptor for loading a semiconductor substrate 3, a rotating shaft 5 which is continuously formed with the susceptor 4 and rotatable by a driving part, a gas supplying hole 7 which is arranged at the top of the reactor 2 for supplying various gases such as material gas 6 to the inside of the reactor 2, a gas exhaust hole 8 for exhausting reacted gas or the like to the outside of the reactor 2, a flange 9 for sealing the opening at the bottom of the reactor 2 via an O-ring, an electromagnetic induction heating coil 10 arranged outside the reactor 2, and an eccentric amount measuring part 102 for measuring the eccentric amount of the susceptor 4 when the susceptor 4 is rotating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機金属気相成長装置に関し、特に、サセプタを回転させながら、半導体基板に成膜する有機金属気相成長装置に関する。
【0002】
【従来の技術】
従来の有機金属気相成長装置の一例の斜視図を図4に示す。縦型の有機金属気相成長装置1は、底部を開口したリアクタ2と、その内部に配置し半導体基板3を載置するサセプタ4と、サセプタ4と連接し駆動部(図示せず)により回転動作可能な回転軸5と、原料ガス6など各種ガスをリアクタ2内部に供給するリアクタ2の上部に設けたガス供給孔7と、反応済みガスなどをリアクタ2外部に排気するガス排気孔8と、リアクタ2の底部開口をOリング(図示せず)を介して密閉するフランジ9と、リアクタ2の外部に配置した電磁誘導の加熱用コイル10とで構成されている。(例えば、特許文献1参照。)
【0003】
次に、この有機金属気相成長装置1の使用方法は、先ず、サセプタ4上に半導体基板3を載置する。次に、リアクタ2の底部開口をフランジ9で塞ぎ密閉状態とし、リアクタ2内に不活性ガス(図示せず)を充満させる。次に、加熱用コイル10でリアクタ2内部を加熱し、予め、設定した温度に達したら、サセプタ4を回転させながら、原料ガス6を供給し、半導体基板3上に結晶を成長させる。所定時間の反応が完了したら、原料ガス6の供給を停止し不活性ガス(図示せず)を供給するとともに、加熱を停止し冷却する。その後、フランジ9とリアクタ2とを離間させ、半導体基板3を取出し成膜が完了する。尚、サセプタ4を回転させるのは、半導体基板3に対して、上方から供給する原料ガス6を、より平均化して、半導体基板3面全体の膜厚や結晶組成の均一性を向上させるためである。このため、サセプタ4は、偏心することなく回転することが望ましいが、図5に示すように、実際には、どうしても若干の偏心(軸の傾き)が生じることは避けられず、定期的なメンテ作業の都度、目視でサセプタ4の振れ具合を見て、これを調整し補正してやる必要があった。
【0004】
【特許文献1】
特開平4−313220号公報 (第3頁0011〜0013段落、図1)
【0005】
【発明が解決しようとする課題】
従来の有機金属気相成長装置は、サセプタを回転させて半導体基板面内の成膜品質のばらつきを低減するようにしているが、サセプタの回転時の偏心量を定量的に測定する機能がなく、偏心量を把握する場合、サセプタの振れ具合を側方から目視で観察すると言う官能的な方法で行うため作業者の熟練度に依存しており、調整精度の向上と均一化が要求された。
【0006】
本発明の目的は、サセプタの回転時の偏心量を定量的に測定できるようにして、サセプタの偏心に対する調整精度を上げ、その結果として、半導体基板に成膜する膜厚や結晶組成の均一性の面内分布を向上させることである。
【0007】
【課題を解決するための手段】
本発明の有機金属気相成長装置は、リアクタ内に原料ガスを供給し、半導体基板を載置したサセプタを回転させながら、半導体基板に成膜する有機金属気相成長装置において、サセプタの回転時の偏心量を測定する偏心量測定部を備えたことを特徴とする有機金属気相成長装置である。
【0008】
【発明の実施の形態】
本発明の有機金属気相成長装置の一例の斜視図を図1に示す。尚、図4と同一部分には同一符号を付す。縦型の有機金属気相成長装置101は、底部を開口したリアクタ2と、その内部に配置し半導体基板3を載置するサセプタ4と、サセプタ4と連接し駆動部(図示せず)により回転動作可能な回転軸5と、原料ガス6など各種ガスをリアクタ2内部に供給するリアクタ2の上部に設けたガス供給孔7と、反応済みガスなどをリアクタ2外部に排気するガス排気孔8と、リアクタ2の底部開口をOリング(図示せず)を介して密閉するフランジ9と、リアクタ2の外部に配置した電磁誘導の加熱用コイル10と、サセプタ4の回転時の偏心量を測定する偏心量測定部102とで構成されている。ここで、偏心量測定部102は、サセプタ4の表面に設けた目盛103と、サセプタ4の表面に例えば、可視レーザ光などのスポット光104を照射する光照射部105及び照射方向を調整可能な反射ミラー106とで構成されている。目盛103は、サセプタ4の中心から一定のピッチで同心円状に刻まれた目盛である。
【0009】
次に、この有機金属気相成長装置101の使用方法は、先ず、サセプタ4上に半導体基板3を載置する。次に、リアクタ2の底部開口をフランジ9で塞ぎ密閉状態とし、リアクタ2内に不活性ガス(図示せず)を充満させる。次に、加熱用コイル10でリアクタ2内部を加熱し、予め、設定した温度に達したら、サセプタ4を回転させながら、原料ガス6を供給し、半導体基板3上に結晶を成長させる。所定時間の反応が完了したら、原料ガス6の供給を停止し不活性ガス(図示せず)を供給するとともに、加熱を停止し冷却する。その後、フランジ9とリアクタ2とを離間させ、半導体基板3を取出し成膜が完了する。尚、サセプタ4を軸中心に回転させるのは、半導体基板3に対して、上方から供給する原料ガス6を、より平均化して、半導体基板3面全体の膜厚や結晶組成の均一性を向上させるためであり、サセプタ4が、偏心することなく回転するように維持することが望ましい。
【0010】
このため、本装置101は、サセプタ4の偏心量を定量的に測定可能な偏心量測定部102を備えている。偏心量測定部102の使用方法は、図2に示すように、先ず、光照射部から可視レーザ光などのスポット光104をサセプタ4の表面に照射する。このとき、照射位置は、反射ミラーで調整して、スポット光104が任意の目盛線上を照射する位置にする。そして、サセプタ4をゆっくり回転させながら、スポット光104の照射する目盛線を目で追いかけ、サセプタ4が1回転以上する間にスポット光104が最大で何目盛、変位するかを読むことで測定する。(図2では2目盛、変位した場合を記載する。)このようにして、サセプタ4の偏心量を定量的に測定し必要に応じて、調整作業を行うようにする。
【0011】
尚、偏心量測定部102は、上記の構成に限るものではなく、サセプタ4の偏心量を定量的に測定できる構成であれば何でもよく、例えば、図3に示すように、サセプタ4にスポット光104を照射する光照射部105と、その反射光104を受光する受光部107とで構成し、偏心量の代用特性として、サセプタ4を回転させながら受光する光量の変化でサセプタ4表面の水平に対する傾きレベルを測定するようにしてもよい。
【0012】
【発明の効果】
本発明の有機金属気相成長装置によると、サセプタの偏心量を定量的に測定でき、サセプタの偏心に対する調整精度を上げ、その結果として、半導体基板に成膜する膜厚や結晶組成の均一性の面内分布を向上させることができる。偏心量測定部を、サセプタの表面に設けた目盛にスポット光を照射する構成とすると比較的簡単で好適である。また、偏心量測定部は、サセプタの表面にスポット光を照射する光照射部と、その反射光を受光する受光部とで構成し、偏心量の代用特性として、サセプタを回転させながら受光する光量の変化でサセプタの傾きレベルを測定するようにしても比較的簡単でよい。
【図面の簡単な説明】
【図1】本発明の有機金属気相成長装置の一例の断面斜視図
【図2】本発明の有機金属気相成長装置に具備した偏心量測定部の使用方法の説明図
【図3】本発明の有機金属気相成長装置の他の例の断面斜視図
【図4】従来の有機金属気相成長装置の一例の断面斜視図
【図5】従来の有機金属気相成長装置の課題の説明図
【符号の説明】
1 従来の有機金属気相成長装置
2 リアクタ
3 半導体基板
4 サセプタ
5 回転軸
6 原料ガス
7 ガス供給孔
8 ガス排気孔
9 フランジ
10 加熱用コイル
101 本発明の有機金属気相成長装置
102 偏心量測定部
103 目盛
104 スポット光
105 光照射部
106 反射ミラー
107 受光部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal organic chemical vapor deposition apparatus, and more particularly to a metal organic chemical vapor deposition apparatus for forming a film on a semiconductor substrate while rotating a susceptor.
[0002]
[Prior art]
FIG. 4 shows a perspective view of an example of a conventional metal organic chemical vapor deposition apparatus. The vertical metal-organic vapor phase epitaxy apparatus 1 includes a reactor 2 having an open bottom, a susceptor 4 arranged inside the susceptor 4 for mounting a semiconductor substrate 3, and a susceptor 4 connected to the susceptor 4 and rotated by a driving unit (not shown). An operable rotating shaft 5, a gas supply hole 7 provided at an upper portion of the reactor 2 for supplying various gases such as a source gas 6 to the inside of the reactor 2, and a gas exhaust hole 8 for exhausting the reacted gas and the like to the outside of the reactor 2; A flange 9 for sealing a bottom opening of the reactor 2 via an O-ring (not shown), and a heating coil 10 of electromagnetic induction arranged outside the reactor 2. (For example, refer to Patent Document 1.)
[0003]
Next, in the method of using the metal organic chemical vapor deposition apparatus 1, first, the semiconductor substrate 3 is placed on the susceptor 4. Next, the bottom opening of the reactor 2 is closed with a flange 9 so as to be in a sealed state, and the inside of the reactor 2 is filled with an inert gas (not shown). Next, the inside of the reactor 2 is heated by the heating coil 10, and when the temperature reaches a preset temperature, the source gas 6 is supplied while rotating the susceptor 4 to grow a crystal on the semiconductor substrate 3. When the reaction for a predetermined time is completed, the supply of the raw material gas 6 is stopped to supply an inert gas (not shown), and the heating is stopped to cool. Thereafter, the flange 9 and the reactor 2 are separated from each other, the semiconductor substrate 3 is taken out, and the film formation is completed. The reason why the susceptor 4 is rotated is to improve the uniformity of the film thickness and the crystal composition on the entire surface of the semiconductor substrate 3 by averaging the source gas 6 supplied from above to the semiconductor substrate 3. is there. For this reason, it is desirable that the susceptor 4 be rotated without eccentricity. However, as shown in FIG. Each time the work was performed, it was necessary to visually check the degree of deflection of the susceptor 4 and adjust and correct it.
[0004]
[Patent Document 1]
JP-A-4-313220 (Page 3, paragraphs 0011 to 0013, FIG. 1)
[0005]
[Problems to be solved by the invention]
Conventional metal-organic vapor phase epitaxy apparatuses rotate the susceptor to reduce the variation in film deposition quality in the semiconductor substrate surface, but have no function of quantitatively measuring the amount of eccentricity during rotation of the susceptor. In order to grasp the amount of eccentricity, the degree of eccentricity of the susceptor is visually monitored from the side. .
[0006]
An object of the present invention is to make it possible to quantitatively measure the amount of eccentricity during rotation of the susceptor, to improve the accuracy of adjustment for the eccentricity of the susceptor, and as a result, to achieve uniformity of the film thickness and crystal composition formed on the semiconductor substrate. Is to improve the in-plane distribution.
[0007]
[Means for Solving the Problems]
An organometallic vapor phase epitaxy apparatus of the present invention supplies a raw material gas into a reactor and rotates a susceptor on which a semiconductor substrate is mounted while rotating the susceptor. An organometallic vapor phase epitaxy apparatus comprising an eccentricity measuring unit for measuring the eccentricity of the metal.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a perspective view of an example of the metal organic chemical vapor deposition apparatus of the present invention. The same parts as those in FIG. 4 are denoted by the same reference numerals. The vertical metal organic chemical vapor deposition apparatus 101 includes a reactor 2 having an open bottom, a susceptor 4 disposed inside the susceptor 4 for mounting a semiconductor substrate 3, and a susceptor 4 connected to the susceptor 4 and rotated by a driving unit (not shown). An operable rotating shaft 5, a gas supply hole 7 provided at an upper portion of the reactor 2 for supplying various gases such as a source gas 6 to the inside of the reactor 2, and a gas exhaust hole 8 for exhausting the reacted gas and the like to the outside of the reactor 2; A flange 9 for sealing the bottom opening of the reactor 2 via an O-ring (not shown), an electromagnetic induction heating coil 10 disposed outside the reactor 2, and an eccentric amount of the susceptor 4 during rotation are measured. And an eccentricity measuring unit 102. Here, the eccentricity measuring unit 102 can adjust the scale 103 provided on the surface of the susceptor 4, the light irradiating unit 105 that irradiates the surface of the susceptor 4 with spot light 104 such as visible laser light, and the irradiation direction. And a reflection mirror 106. The scale 103 is a scale that is concentrically carved at a constant pitch from the center of the susceptor 4.
[0009]
Next, in the method of using the metal organic chemical vapor deposition apparatus 101, first, the semiconductor substrate 3 is placed on the susceptor 4. Next, the bottom opening of the reactor 2 is closed with a flange 9 so as to be in a sealed state, and the inside of the reactor 2 is filled with an inert gas (not shown). Next, the inside of the reactor 2 is heated by the heating coil 10, and when the temperature reaches a preset temperature, the source gas 6 is supplied while rotating the susceptor 4 to grow a crystal on the semiconductor substrate 3. When the reaction for a predetermined time is completed, the supply of the raw material gas 6 is stopped to supply an inert gas (not shown), and the heating is stopped to cool. Thereafter, the flange 9 and the reactor 2 are separated from each other, the semiconductor substrate 3 is taken out, and the film formation is completed. The reason why the susceptor 4 is rotated about the axis is that the source gas 6 supplied from above with respect to the semiconductor substrate 3 is further averaged to improve the uniformity of the film thickness and the crystal composition on the entire surface of the semiconductor substrate 3. It is desirable to maintain the susceptor 4 so as to rotate without eccentricity.
[0010]
For this reason, the present apparatus 101 includes an eccentricity measuring unit 102 capable of quantitatively measuring the eccentricity of the susceptor 4. The method of using the eccentricity measuring unit 102 is as shown in FIG. At this time, the irradiation position is adjusted by a reflection mirror so that the spot light 104 irradiates an arbitrary scale line. Then, while slowly rotating the susceptor 4, the graduation line irradiated by the spot light 104 is chased with the eyes, and the maximum scale and displacement of the spot light 104 is read while the susceptor 4 makes one or more rotations. . (FIG. 2 shows a case where the scale is displaced by two scales.) In this way, the amount of eccentricity of the susceptor 4 is quantitatively measured, and an adjustment operation is performed as necessary.
[0011]
The eccentricity measuring unit 102 is not limited to the above configuration, but may be any configuration that can quantitatively measure the eccentricity of the susceptor 4. For example, as shown in FIG. A light irradiating unit 105 for irradiating the susceptor 104 and a light receiving unit 107 for receiving the reflected light 104. As a substitute characteristic of the amount of eccentricity, a change in the amount of light received while rotating the susceptor 4 causes the surface of the susceptor 4 to be horizontal. The inclination level may be measured.
[0012]
【The invention's effect】
According to the metal organic chemical vapor deposition apparatus of the present invention, the amount of eccentricity of the susceptor can be quantitatively measured, the accuracy of adjustment for the eccentricity of the susceptor is increased, and as a result, the uniformity of the film thickness and the crystal composition formed on the semiconductor substrate is improved. Can be improved in-plane distribution. It is relatively simple and preferable that the eccentricity measuring section is configured to irradiate spot light on a scale provided on the surface of the susceptor. The eccentricity measuring unit includes a light irradiating unit that irradiates a spot light onto the surface of the susceptor and a light receiving unit that receives the reflected light. As a substitute characteristic of the eccentricity, the amount of light received while rotating the susceptor is used. It may be relatively simple to measure the inclination level of the susceptor based on the change of.
[Brief description of the drawings]
FIG. 1 is a cross-sectional perspective view of an example of a metal organic chemical vapor deposition apparatus of the present invention. FIG. 2 is an explanatory view of a method of using an eccentricity measuring unit provided in the metal organic chemical vapor deposition apparatus of the present invention. FIG. 4 is a cross-sectional perspective view of another example of the metal organic chemical vapor deposition apparatus of the invention. FIG. 4 is a cross-sectional perspective view of one example of the conventional metal organic chemical vapor deposition apparatus. Figure [Explanation of symbols]
REFERENCE SIGNS LIST 1 conventional metalorganic vapor phase epitaxy apparatus 2 reactor 3 semiconductor substrate 4 susceptor 5 rotating shaft 6 source gas 7 gas supply hole 8 gas exhaust hole 9 flange 10 heating coil 101 metalorganic vapor phase epitaxy apparatus 102 of the present invention 102 measurement of eccentricity Unit 103 scale 104 spot light 105 light irradiation unit 106 reflecting mirror 107 light receiving unit

Claims (3)

リアクタ内に原料ガスを供給し、半導体基板を載置したサセプタを回転させながら、前記半導体基板に成膜する有機金属気相成長装置において、前記サセプタの回転時の偏心量を測定する偏心量測定部を備えたことを特徴とする有機金属気相成長装置。In a metal organic chemical vapor deposition apparatus for forming a film on the semiconductor substrate while supplying a source gas into a reactor and rotating a susceptor on which the semiconductor substrate is mounted, an eccentricity measurement for measuring an eccentricity when the susceptor rotates. A metalorganic vapor phase epitaxy device comprising a part. 前記偏心量測定部は、前記サセプタの表面に設けた目盛と、前記サセプタの表面にスポット光を照射する光照射部とでなることを特徴とする請求項1に記載の有機金属気相成長装置。The metal-organic vapor phase epitaxy apparatus according to claim 1, wherein the eccentricity measuring unit includes a scale provided on a surface of the susceptor and a light irradiation unit that irradiates a spot light to the surface of the susceptor. . 前記偏心量測定部は、前記サセプタの表面にスポット光を照射する光照射部と、前記サセプタからの反射光を受光する受光部とでなることを特徴とする請求項1に記載の有機金属気相成長装置。The organometallic gas detector according to claim 1, wherein the eccentricity measuring unit includes a light irradiating unit that irradiates a spot light to the surface of the susceptor, and a light receiving unit that receives light reflected from the susceptor. Phase growth equipment.
JP2002298502A 2002-10-11 2002-10-11 Metal organic vapor phase growth apparatus Pending JP2004134612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298502A JP2004134612A (en) 2002-10-11 2002-10-11 Metal organic vapor phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298502A JP2004134612A (en) 2002-10-11 2002-10-11 Metal organic vapor phase growth apparatus

Publications (1)

Publication Number Publication Date
JP2004134612A true JP2004134612A (en) 2004-04-30

Family

ID=32287894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298502A Pending JP2004134612A (en) 2002-10-11 2002-10-11 Metal organic vapor phase growth apparatus

Country Status (1)

Country Link
JP (1) JP2004134612A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266743A (en) * 2011-07-22 2011-12-07 中国热带农业科学院热带作物品种资源研究所 Reaction kettle
CN102389764A (en) * 2011-12-23 2012-03-28 吴江德邦科技化工有限公司 Efficient reaction kettle
JP2013115215A (en) * 2011-11-28 2013-06-10 Taiyo Nippon Sanso Corp Vapor phase growth apparatus
JP2014127595A (en) * 2012-12-26 2014-07-07 Shin Etsu Handotai Co Ltd Eccentricity evaluation method and manufacturing method of epitaxial wafer
JP2014239093A (en) * 2013-06-06 2014-12-18 信越半導体株式会社 Susceptor for single wafer vapor phase growth apparatus, vapor phase growth apparatus, and vapor phase growth using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266743A (en) * 2011-07-22 2011-12-07 中国热带农业科学院热带作物品种资源研究所 Reaction kettle
JP2013115215A (en) * 2011-11-28 2013-06-10 Taiyo Nippon Sanso Corp Vapor phase growth apparatus
CN102389764A (en) * 2011-12-23 2012-03-28 吴江德邦科技化工有限公司 Efficient reaction kettle
JP2014127595A (en) * 2012-12-26 2014-07-07 Shin Etsu Handotai Co Ltd Eccentricity evaluation method and manufacturing method of epitaxial wafer
JP2014239093A (en) * 2013-06-06 2014-12-18 信越半導体株式会社 Susceptor for single wafer vapor phase growth apparatus, vapor phase growth apparatus, and vapor phase growth using the same

Similar Documents

Publication Publication Date Title
US6970532B2 (en) Method and apparatus for measuring thin film, and thin film deposition system
JP5445508B2 (en) Eccentricity evaluation method and epitaxial wafer manufacturing method
US20130084390A1 (en) Film-forming apparatus and film-forming method
US7667162B2 (en) Semiconductor thermal process control utilizing position oriented temperature generated thermal mask
KR20100097006A (en) Method for identifying an incorrect position of a semiconductor wafer during a thermal treatment
TW201237376A (en) Methods and systems for in-situ pyrometer calibration
TW201241230A (en) Vapor deposition apparatus
CN111501099A (en) Semiconductor processing equipment
JP5943201B2 (en) Eccentricity evaluation method and epitaxial wafer manufacturing method
US6329643B1 (en) Method of temperature-calibrating heat treating apparatus
JP2004134612A (en) Metal organic vapor phase growth apparatus
TW201829856A (en) Thickness uniformity control for epitaxially-grown structures in a chemical vapor deposition system
TW201727205A (en) Substrate processing chamber
US6082296A (en) Thin film deposition chamber
JP3922018B2 (en) Vapor growth apparatus and temperature detection method for vapor growth apparatus
JP2009038294A (en) Output adjustment method, manufacturing method of silicon epitaxial wafer, and susceptor
KR101139693B1 (en) Chemical vapor deposition device and method for controlling the temperature of susceptor in the chemical vapor deposition device
JP3514254B2 (en) Heat treatment apparatus and method for manufacturing silicon epitaxial wafer
US5685905A (en) Method of manufacturing a single crystal thin film
JP2015074821A (en) Film thickness measurement method for vapor phase growth apparatus
JP3554287B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JP6027929B2 (en) Method for adjusting vapor phase growth apparatus
JP2002367907A (en) Crystal growth apparatus and method therefor
TW202235699A (en) Non-contact systems and methods for determining distance between silicon melt and reflector in a crystal puller
JPS59190297A (en) Crystal growth in vapor of organometallic compound