JP2004132758A - Control rod comprising boron mixed carbon fiber reinforced carbon composite material - Google Patents

Control rod comprising boron mixed carbon fiber reinforced carbon composite material Download PDF

Info

Publication number
JP2004132758A
JP2004132758A JP2002295621A JP2002295621A JP2004132758A JP 2004132758 A JP2004132758 A JP 2004132758A JP 2002295621 A JP2002295621 A JP 2002295621A JP 2002295621 A JP2002295621 A JP 2002295621A JP 2004132758 A JP2004132758 A JP 2004132758A
Authority
JP
Japan
Prior art keywords
boron
control rod
carbon fiber
composite material
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002295621A
Other languages
Japanese (ja)
Other versions
JP4000382B2 (en
Inventor
Masahiro Ishihara
石原 正博
Toshiaki Sogabe
曽我部 敏明
Yumi Onishi
大西 由美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Japan Atomic Energy Agency
Original Assignee
Toyo Tanso Co Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, Japan Atomic Energy Research Institute filed Critical Toyo Tanso Co Ltd
Priority to JP2002295621A priority Critical patent/JP4000382B2/en
Publication of JP2004132758A publication Critical patent/JP2004132758A/en
Application granted granted Critical
Publication of JP4000382B2 publication Critical patent/JP4000382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a control rod formed by enclosing a neutron absorber such as boron carbide or boronated graphite in a control rod housing which is a conventional structure wherein a heat-resistant alloy such as alloy 800 is used for the control rod housing which is the structure thereof does not have heat resistance in the range over 800°C up to 1,000°C or higher. <P>SOLUTION: This control rod comprising a boron mixed carbon fiber reinforced carbon composite material is a control rod in a nuclear reactor formed by integrating the control rod housing constituted from the boron mixed carbon fiber reinforced carbon composite material formed by combining a carbon fiber reinforced carbon composite material with boron, with the neutron absorber enclosed inside. The control rod is formed by winding and laminating carbon fiber cloth around the mandrel, and then by winding and laminating carbon fiber cloth into which a boron source is impregnated, and by performing heat treatment thereof. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、原子炉内の中性子吸収材と構造物が一体化したホウ素混合炭素繊維強化炭素複合材料からなる制御棒に関する。
【0002】
【従来の技術】
従来、多目的高温ガス炉やガス冷却高速増殖炉において、構造物である制御棒容器に、炭化ホウ素やホウ素化黒鉛などの中性子吸収材を格納して制御棒として使用している。この構造物である制御棒容器は、現在、アロイ800などの耐熱合金が使用されているが、次期のこれらの炉においては800℃を超えて1000℃若しくはそれ以上の耐熱性が要求される。
【0003】
その対策として炭素繊維強化炭素複合材料を上記構造物として使用することが検討されており、それが下記の特許文献1で示され、それに関しては日本原子力研究所内においても、例えば、下記の非特許文献1にもあるように炭素繊維強化炭素複合材料の照射特性等の研究が進められている。制御棒は、原子炉内において最も重要な部材の一つであり、より一層の性能の向上、安全性が要求されている。反面、コストパフォーマンスの向上も求められている。
【0004】
【特許文献1】:特許第2784304号明細書
【非特許文献1】:JAERI−Research 2001−028
【0005】
【発明が解決しようとする課題】
本発明は、かかる制御棒に関して、より一層の性能の向上および安全性をより高めて、更にコスト低減を追求することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するための手段として、鋭意検討の結果、構造物である制御棒容器と中性子吸収材が一体となった制御棒を発明するに至った。本発明の制御棒は、中性子吸収能力を持つホウ素と構造物とを一体化させることによって解決される。以下、本発明にかかる制御棒をホウ素混合型制御棒という。なお、中性子吸収能力を持つホウ素とは、正確にはホウ素同位体の内、質量数が10のものがその中性子吸収作用を有し、通常のホウ素およびホウ素化合物にそれが一定量含まれている。
【0007】
又、従来の制御棒は、制御棒容器に別途中性子吸収材をいれるので、その形状が円筒形状であった。これに対し、本発明の制御棒は、制御棒容器と中性子吸収材が一体化されたものであるので、その形状として、円筒、円柱、板状、板を十字に組み合わせたもの等の都合のよい形状のものを使用することができる。
【0008】
【発明の実施の形態】
ホウ素混合型制御棒として、耐熱性を有する材料として、高温ガス炉で使用されているホウ素化黒鉛(例えば、下記特許文献2及び下記非特許文献2に記載)をそのまま使用することも設計の工夫によっては、理論上可能である。
【0009】
【特許文献2】:第1820502号
【非特許文献2】:1993年2月発行のIAEA−TECDOC−690 “The status of graphite development for gas cooled reactors”
しかしながら、ホウ素化黒鉛は充分な耐熱性を有するが機械的な靭性に乏しいという欠点があるために、実際には制御棒容器の中に納める中性子吸収材としてのみ使用されている。
【0010】
高靭性も兼ね備える炭素繊維強化炭素複合材料とホウ素を組み合わせた、ホウ素混合炭素繊維強化炭素複合材料(以下、ホウ素混合C/C複合材という。)は優れたホウ素混合型制御棒を構成することができる。その理由を以下のようにあげることが出来る。
【0011】
▲1▼ C/C複合材を母材とするので、主として性能の向上が図れる。
▲2▼ 一体型なので構造物と中性子吸収材との相互作用がない。例えば、地震などが発生した場合、相互にかかる衝撃による応力発生を考慮しなくて良い。
【0012】
▲3▼ C/C複合材のみと比較してホウ素混合C/C複合材は耐酸化性が高く、例えばヘリウムガス中の不純物酸素によって酸化される度合いが少ない。
▲4▼ 配管の破断などの事故時に空気の導入を想定した場合、ホウ素混合C/C複合材は耐酸化性が高いのでC/C複合材のみと異なり、より高い安全性を確保することができる。
【0013】
▲5▼ 構造物と中性子吸収材を別々に製作する場合に比べて低コストとなる。C/C複合材の形態は特に限定されないので、いずれのものでも適応可能であるが、本用途には1次元、2次元、2.5次元、3次元C/C複合材が適していると考えられる。これらのC/C複合材は、一般に特に引張りの機械的強度が高く、また、高い靭性を有しているからである。従って、これらのC/C複合材の形態をベースとしてホウ素を混合するのが望ましい。
【0014】
更に、望ましくは2次元(2D)C/C複合材をベースとして用いることである。また、現在、最も一般に使用されている2D−C/C複合材としては、2次元クロスを用いたもの若しくは一次元クロスの方向を違えて交互に積層したものがある。二次元クロスを用いた2次元C/C複合材は、形状や大きさなど製作性の幅が広く、比較的多量に生産されておりコスト的にも有利であることから、日本原子力研究所においても高温ガス炉の制御棒として2次元C/C複合材を中心に研究が進められている。
【0015】
上記C/C複合材は、炭素繊維の束が、ある配列をもって並んで、マトリックスで高密度化しているものであり、又炭素繊維は、その原料がピッチ、ポリアクリロニトリル(PAN)、レーヨン等からなるものである。
【0016】
上記1次元C/C複合材は、長炭素繊維が一方向に揃えて作製したものであり、炭素繊維の体積分率が20%若しくはそれ以上のものであり、炭素繊維の軸方向において使用した炭素繊維の特徴が顕著に現れているものであり、1方向に大きな引張強さを有するものである。上記2次元C/C複合材は、長炭素繊維を縦、横2次元に織ったクロス又は不織布を積層して作製したものであり、その高密度化は一般にはピッチ又は樹脂含浸によって行われており、2次元的に補強された材料で、高い靭性を有している。上記2.5次元、3次元C/C複合材等の多次元C/C複合材は、多次元方向に長繊維束を配向させて作製されたものであり、その高密度化はピッチ又は樹脂含浸によって行われており、多次元的に炭素繊維によって補強されているので、等方的な物理特性を有している。
【0017】
C/C複合材にホウ素源であるホウ素若しくはその炭化物を存在せしめる方法は特に問わないが、コスト面などの製作の困難性を考慮しながらより均一にホウ素が分散される方法が望ましい。
【0018】
ホウ素を分散させる方法としては、次の3つを例示することができる。
▲1▼ 金属アルコキシドを用いてホウ素を微分散させる方法、
▲2▼ 加熱含浸装置(熱間静水圧加圧装置)を用いて酸化ホウ素を含浸せしめ、1500℃以上の高温で熱処理を行なってホウ素もしくはその炭化物を存在せしめる方法が下記特許文献3に示されている
【0019】
【特許文献3】:特許第3034919号明細書
▲3▼ また、下記特許文献4では、耐酸化材作製におけるマトリックスとなる熱硬化性樹脂、コールタール又はピッチに炭化ホウ素粉末を混ぜ合わせたものを塗布する方法とホウ素含有ガスの熱分解によってC/C複合材内にホウ素を含有させる方法を示している。
【0020】
【特許文献4】:特許第3058180号明細書
▲1▼の方法は、ホウ素の微分散が可能であるが、アルコキシドが高価で大量にホウ素を存在させるのには不向きであるという欠点がある。▲2▼の方法は、ホウ素の微分散が可能であるという利点があるが、加熱含浸装置(熱間静水圧加圧装置)を必要としコスト高となる他、装置の大きさに制限を有する。▲3▼の方法は、炭化ホウ素を混合するという意味において中性子吸収材として使用されているホウ素化黒鉛の場合と同じである。
【0021】
炭化ホウ素粉末を使用した場合のホウ素の均一性は次のように考えられる。ホウ素化黒鉛に用いられている炭化ホウ素の平均粒径が3マイクロメータであり、その程度の粒径を有する炭化ホウ素粉末を原料に使用すれば充分であると思われる。
【0022】
また、2000℃程度の熱処理によってホウ素が炭素部分に置換固溶させるのでホウ素の分散の均一性が図られる。これらの条件を満足するためには炭化ホウ素自体が材料中に均一に分散して存在してなくてはならないことは言うまでもない。ホウ素化材料の製作に当っては、熱処理温度は1600℃から2300℃、好ましくは1900から2100℃が良い。1600℃以下であるとホウ素が炭素中に固溶せず、2300℃以上であると黒鉛化が発達しすぎて機械的強度が劣化するからである。
【0023】
2次元の炭素繊維クロスを用いた2D−C/C複合材中に炭化ホウ素を工業的に有効に量産もしくは使用されるように均一に分散させる方法は開示されたものはなく、工業的にもほとんど生産されていない。しかし、本発明において、これら材料は必要である。
【0024】
次に、ホウ素混合C/C複合材のホウ素濃度について述べる。ホウ素濃度は制御棒を含めた炉の設計によって決まるものである。従って、一義的に濃度は幾らとは言えないが、経験的に最高30〜50重量%程度のホウ素の濃度が確保できれば適合するものと思われる。材料中のホウ素濃度は、発明の本質を左右するものではない。
【0025】
ここで、ホウ素の分布状態が重要である。ホウ素は複合型制御棒の長さ方向には同じ濃度を有することが必要であると考えられる。制御棒を上下に動かして核反応を制御するからである。
【0026】
ホウ素混合型制御棒において、ホウ素が径方向に全体に渡って均一に分布していても使用可能であるが、ホウ素混合型制御棒の径方向は、ホウ素の分布状態を変化させる事がより有効であることを見出し明らかにした。
【0027】
すなわち、ホウ素混合型制御棒は使用中において、ホウ素は中性子と反応してヘリウムを発生する。その際にボイドが発生する。その材料中に生じたボイドは、材料強度を低下させると考えられる。そこで、ホウ素を含まない部分を例えば径の中央部分に存在させると、その部分は、そのことによる材料強度の低下が防止でき材料の安全性や長寿命化が確保できることになる。また、ホウ素濃度を、円柱または円筒の径方向において外側の濃度を高くして内側を低くし、ホウ素濃度を順次変化させる、いわゆる傾斜機能材料とすることができる。そうすることによって、材料の熱的・機械的特性が緩やかに変化して耐熱衝撃性などにおいてより信頼性が高まる。
【0028】
その他、ホウ素混合型制御棒のホウ素を含まない部分の存在のさせ方は中央部の他、外側に交互にするなどが考えられる。事故時の空気の侵入による制御棒の酸化による劣化を防ぐために、いずれにしても外側表面にホウ素を存在させなくてはならない。
【0029】
【実施例】
ホウ素混合2D−C/C複合材の制御棒を作製した例を示す。ホウ素混合2D−C/C複合材を作製するには、平均粒径3μmの炭化ホウ素粉末および炭素繊維クロス{PAN(ポリアクリロニトリル)系の6K(炭素繊維の束の繊維数が6000本のもの)平織り(繊維が互いに折り重なって織られたもの)のもの}を使用した。
【0030】
成形にあたっては、直径5mmのステンレス製の棒を心棒にして、炭素繊維クロスのプリプレグを連続的に巻きつけて直径100mm、長さ200mmの成形体とした。この成形体は、径方向内側の直径30mmまではホウ素を含まないものである。
【0031】
炭素繊維クロスのプリプレグの製作方法について述べる。その製作に当っては炭素繊維クロスのうち、ホウ素を含まない部分とホウ素を含む部分に分ける。
ホウ素を含まない部分ではまず、炭素繊維クロス100重量部に対して、100重量部のレゾール型フェノール樹脂をエチルアルコールに溶かして塗布した。
【0032】
その続きのホウ素を含む部分では、100重量部に相当する炭化ホウ素粉末と100重量部のレゾール型フェノール樹脂のエチルアルコールスラリーを炭素繊維クロス面に塗布した。なお、ホウ素の濃度を順次変化した複合材を製作するには、添加する炭化ホウ素の濃度を変えたスラリーを順次塗布すれば良い。
【0033】
これら、樹脂のみ、または炭化ホウ素と樹脂を塗布したクロスを積層して風乾させた。
次に、成形体を窒素ガスを流しながら1000℃の熱処理を施した。その熱処理を施した材料にレゾールタイプのフェノール樹脂を含浸し、再び同様の熱処理を行った。この操作を合計3回繰り返した。
【0034】
次いでアルゴンガス雰囲気5Torrの下、2000℃で熱処理を施して、ホウ素混合2D−C/C複合材を得た。マンニットール滴定法などの化学滴定の手法を用いて測定した。ホウ素濃度は30重量%であった。酸化ホウ素の濃度は0.02重量%であった。ホウ素混合2D−C/C複合材全体のかさ密度は1.62g/cmであった。
【0035】
製作したホウ素混合2D−C/C複合材においてホウ素を含まない部分と含む部分から、引張り試験片を採取して、制御棒の軸方向の引張り強さを測定した。ホウ素を含む部分は141MPaであった。ホウ素を含まない部分は115MPaであった。本発明のホウ素混合2D−C/C複合材はいずれも脆性的な破壊をすることなく、通常市販の2D−C/Cが示すようなクロスヘッド変位を示し、本来の2D−C/C複合材が有する靭性を保持していることが確認された。
【0036】
なお、HTTR多目的高温ガス炉における条件を参考にして材料設計すると以下の結果が得られた。引張り強さが141MPaであれば、直径23mmを有しておれば設計上使用可能であると計算される。従って本実施例のホウ素混合2D−C/C複合材は充分な強度を有する。
【0037】
計算は、99%非破壊確率で95%信頼、材料の標準偏差差を15.3MPaとして、安全率を3として設計強さ33.6MPaが得られる。HTTRでの1つの制御棒に掛かる荷重を地震荷重も考慮して1360kgである。これらの値から直径23mmが得られた。
【0038】
【発明の効果】
従来の構造物である制御棒容器に炭化ホウ素やホウ素化黒鉛などの中性子吸収材を格納した制御棒は、その構造物である制御棒容器にアロイ800などの耐熱合金が使用されているが、800℃を超えて1000℃若しくはそれ以上の耐熱性を有していない。
【0039】
これに対し、本発明における、原子炉内の中性子吸収材と構造物が一体化したホウ素混合炭素繊維強化炭素複合材料からなる制御棒は、上記耐熱性を十分に満足するものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control rod made of a boron-mixed carbon fiber reinforced carbon composite material in which a neutron absorber and a structure in a nuclear reactor are integrated.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a multipurpose high-temperature gas reactor or a gas-cooled fast breeder reactor, a neutron absorbing material such as boron carbide or boron boride is stored in a control rod container as a structure and used as a control rod. A heat-resistant alloy such as Alloy 800 is currently used for the control rod container as this structure. However, in the next furnace, heat resistance exceeding 800 ° C. and 1000 ° C. or more is required.
[0003]
As a countermeasure, the use of a carbon fiber reinforced carbon composite material as the above structure has been studied, which is disclosed in Patent Document 1 below. Regarding this, even within the Japan Atomic Energy Research Institute, for example, As described in Document 1, research on the irradiation characteristics and the like of carbon fiber reinforced carbon composite materials has been advanced. The control rod is one of the most important members in a nuclear reactor, and further improvement in performance and safety are required. On the other hand, improvement in cost performance is also required.
[0004]
[Patent Document 1]: Japanese Patent No. 2784304 [Non-Patent Document 1]: JAERI-Research 2001-028
[0005]
[Problems to be solved by the invention]
An object of the present invention is to further improve the performance and safety of such a control rod, and to pursue further cost reduction.
[0006]
[Means for Solving the Problems]
As a means for solving the above problems, as a result of intensive studies, a control rod in which a control rod container as a structure and a neutron absorbing material are integrated has been invented. The control rod of the present invention is solved by integrating boron having a neutron absorbing capacity and a structure. Hereinafter, the control rod according to the present invention is referred to as a boron-mixed control rod. In addition, the boron having a neutron absorption ability is, precisely, a boron isotope having a mass number of 10 has its neutron absorption action, and a certain amount of it is contained in ordinary boron and boron compounds. .
[0007]
Further, the conventional control rod has a cylindrical shape because a neutron absorbing material is separately added to the control rod container. On the other hand, since the control rod of the present invention is formed by integrating the control rod container and the neutron absorbing material, the shape of the control rod can be a cylinder, a cylinder, a plate, a cross-shaped combination of plates, or the like. Good shape can be used.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As a boron-mixed control rod, a borated graphite (for example, described in Patent Literature 2 and Non-Patent Literature 2) used in a high-temperature gas furnace may be used as it is as a heat-resistant material as it is. Some are theoretically possible.
[0009]
[Patent Document 2]: No. 1820502 [Non-Patent Document 2]: IAEA-TECDOC-690 “The status of graphite development for gas cooled reactors” issued in February 1993.
However, borated graphite has a sufficient heat resistance but has a drawback of poor mechanical toughness, so that it is actually used only as a neutron absorber contained in a control rod container.
[0010]
A boron mixed carbon fiber reinforced carbon composite material (hereinafter referred to as boron mixed C / C composite material) combining boron and a carbon fiber reinforced carbon composite material also having high toughness can constitute an excellent boron mixed type control rod. it can. The reasons can be given as follows.
[0011]
{Circle around (1)} Since the C / C composite material is used as the base material, the performance can be mainly improved.
(2) There is no interaction between the structure and the neutron absorber because it is an integral type. For example, when an earthquake or the like occurs, it is not necessary to consider stress generation due to mutual impact.
[0012]
{Circle around (3)} Compared to the C / C composite material alone, the boron-mixed C / C composite material has higher oxidation resistance, and is less oxidized by, for example, impurity oxygen in helium gas.
(4) Assuming that air is introduced in the event of an accident such as a pipe break, the boron-mixed C / C composite has high oxidation resistance, so unlike the C / C composite alone, higher safety can be ensured. it can.
[0013]
{Circle around (5)} The cost is lower than in the case where the structure and the neutron absorber are separately manufactured. Since the form of the C / C composite material is not particularly limited, any one can be applied. However, a one-dimensional, two-dimensional, 2.5-dimensional, three-dimensional C / C composite material is suitable for this application. Conceivable. This is because these C / C composite materials generally have particularly high mechanical strength in tension and high toughness. Therefore, it is desirable to mix boron based on these C / C composite forms.
[0014]
Further, it is desirable to use a two-dimensional (2D) C / C composite as a base. At present, the most commonly used 2D-C / C composite materials include those using a two-dimensional cloth and those alternately laminated in different directions of the one-dimensional cloth. The two-dimensional C / C composite material using a two-dimensional cloth has a wide range of manufacturability such as shape and size, is produced in a relatively large amount, and is cost-effective. Also, research is being conducted on two-dimensional C / C composites as control rods for high-temperature gas furnaces.
[0015]
The C / C composite material is a material in which bundles of carbon fibers are arranged in a certain array and have a high density in a matrix, and the carbon fibers are made of a material such as pitch, polyacrylonitrile (PAN), rayon, or the like. It becomes.
[0016]
The one-dimensional C / C composite material was manufactured by aligning long carbon fibers in one direction, the volume fraction of the carbon fibers was 20% or more, and was used in the axial direction of the carbon fibers. The characteristics of the carbon fiber are remarkably exhibited, and the carbon fiber has a large tensile strength in one direction. The two-dimensional C / C composite material is manufactured by laminating a cloth or a non-woven fabric in which long carbon fibers are woven two-dimensionally in a vertical direction and a horizontal direction, and the density thereof is generally increased by pitch or resin impregnation. And is a two-dimensionally reinforced material with high toughness. The multi-dimensional C / C composite material such as the 2.5-dimensional and 3-dimensional C / C composite materials is manufactured by orienting long fiber bundles in a multi-dimensional direction. It is made by impregnation and is multidimensionally reinforced with carbon fibers and therefore has isotropic physical properties.
[0017]
Although there is no particular limitation on the method of causing boron or its carbide as a boron source to be present in the C / C composite material, a method in which boron is more uniformly dispersed in consideration of manufacturing difficulty such as cost is desirable.
[0018]
The following three methods can be exemplified as a method for dispersing boron.
(1) A method of finely dispersing boron using a metal alkoxide,
(2) Patent Document 3 below discloses a method in which boron oxide is impregnated using a heating impregnation device (hot isostatic pressing device) and heat treatment is performed at a high temperature of 1500 ° C. or more to make boron or its carbide exist. [0019]
[Patent Document 3]: Japanese Patent No. 3034919 [3] In Patent Document 4 below, a mixture of a thermosetting resin, coal tar or pitch serving as a matrix in the production of an oxidation-resistant material, and boron carbide powder mixed with pitch is used. It shows a method of coating and a method of containing boron in a C / C composite material by thermal decomposition of a boron-containing gas.
[0020]
[Patent Document 4]: The method disclosed in Japanese Patent No. 3058180 (1) can finely disperse boron, but has the disadvantage that alkoxides are expensive and unsuitable for allowing boron to be present in large amounts. The method (2) has an advantage that the boron can be finely dispersed, but requires a heating and impregnating device (hot isostatic pressing device), increases the cost, and limits the size of the device. . The method of (3) is the same as that of borated graphite used as a neutron absorber in the sense that boron carbide is mixed.
[0021]
The uniformity of boron when using boron carbide powder is considered as follows. The average particle size of boron carbide used in borated graphite is 3 micrometers, and it is considered sufficient to use boron carbide powder having such a particle size as a raw material.
[0022]
Further, the boron is substituted and solid-solved in the carbon part by the heat treatment at about 2000 ° C., so that the uniformity of the boron dispersion is achieved. Needless to say, in order to satisfy these conditions, boron carbide itself must be uniformly dispersed in the material. In producing the borated material, the heat treatment temperature is preferably from 1600 ° C. to 2300 ° C., and more preferably from 1900 ° C. to 2100 ° C. If the temperature is 1600 ° C. or less, boron does not form a solid solution in carbon.
[0023]
No method has been disclosed for uniformly dispersing boron carbide in a 2D-C / C composite material using a two-dimensional carbon fiber cloth so that it can be industrially and effectively mass-produced or used. Little is produced. However, in the present invention, these materials are necessary.
[0024]
Next, the boron concentration of the boron-mixed C / C composite will be described. The boron concentration is determined by the design of the furnace including the control rod. Therefore, although the concentration cannot be uniquely defined, it is considered empirically that if a boron concentration of at most about 30 to 50% by weight can be secured, it is suitable. The boron concentration in the material does not affect the essence of the invention.
[0025]
Here, the distribution state of boron is important. It is believed that boron must have the same concentration along the length of the composite control rod. This is because the nuclear reaction is controlled by moving the control rod up and down.
[0026]
It is possible to use boron-mixed control rods even if boron is uniformly distributed in the radial direction, but it is more effective to change the boron distribution in the boron-mixed control rods in the radial direction. And clarified.
[0027]
That is, during use of the boron mixed control rod, boron reacts with neutrons to generate helium. At that time, voids are generated. It is believed that the voids created in the material reduce the material strength. Therefore, if a portion not containing boron is present, for example, in the center portion of the diameter, the portion can be prevented from having a decrease in material strength, and the safety and the life of the material can be ensured. In addition, a so-called functionally graded material in which the boron concentration is increased in the radial direction of the cylinder or the cylinder to increase the concentration in the outside and decrease the concentration in the inside to sequentially change the boron concentration can be obtained. By doing so, the thermal and mechanical properties of the material change gently, and the reliability in thermal shock resistance and the like is further improved.
[0028]
In addition, it is conceivable that the portion of the boron-mixed control rod that does not contain boron is alternately provided outside the central portion and outside. In any case, boron must be present on the outer surface in order to prevent deterioration of the control rods due to oxidation due to air intrusion in the event of an accident.
[0029]
【Example】
An example in which a control rod of a boron mixed 2D-C / C composite material is manufactured is shown. In order to produce a boron-mixed 2D-C / C composite material, a boron carbide powder having an average particle size of 3 μm and a carbon fiber cloth @ PAN (polyacrylonitrile) -based 6K (carbon fiber bundle having 6000 fibers) A plain weave (a fabric in which fibers are folded over each other) was used.
[0030]
In molding, a stainless steel rod having a diameter of 5 mm was used as a mandrel, and a prepreg of a carbon fiber cloth was continuously wound to form a molded body having a diameter of 100 mm and a length of 200 mm. This molded body does not contain boron up to a diameter of 30 mm on the radially inner side.
[0031]
A method for manufacturing a prepreg of a carbon fiber cloth will be described. The carbon fiber cloth is divided into a portion containing no boron and a portion containing boron.
In the portion not containing boron, first, 100 parts by weight of a resol type phenol resin was dissolved in ethyl alcohol and applied to 100 parts by weight of the carbon fiber cloth.
[0032]
In the subsequent portion containing boron, 100 parts by weight of boron carbide powder and 100 parts by weight of an ethyl alcohol slurry of a resol-type phenol resin were applied to the carbon fiber cloth surface. In order to manufacture a composite material in which the concentration of boron is sequentially changed, a slurry in which the concentration of boron carbide to be added is changed may be sequentially applied.
[0033]
A cloth coated with the resin alone or with boron carbide and the resin was laminated and air-dried.
Next, the molded body was subjected to a heat treatment at 1000 ° C. while flowing nitrogen gas. The heat-treated material was impregnated with a resol-type phenol resin, and the same heat treatment was performed again. This operation was repeated three times in total.
[0034]
Next, heat treatment was performed at 2000 ° C. under an argon gas atmosphere of 5 Torr to obtain a boron-mixed 2D-C / C composite material. The measurement was performed using a chemical titration technique such as the Mannitour titration method. The boron concentration was 30% by weight. The concentration of boron oxide was 0.02% by weight. The bulk density of the entire boron mixed 2D-C / C composite material was 1.62 g / cm 3.
[0035]
Tensile test specimens were taken from the boron-free portion and the portion containing no boron in the manufactured boron-mixed 2D-C / C composite material, and the tensile strength in the axial direction of the control rod was measured. The portion containing boron was 141 MPa. The portion not containing boron was 115 MPa. Any of the boron-containing 2D-C / C composites of the present invention show a crosshead displacement as shown by a commercially available 2D-C / C without any brittle fracture, and exhibit the original 2D-C / C composite. It was confirmed that the toughness of the material was maintained.
[0036]
When the material was designed with reference to the conditions in the HTTR multipurpose high temperature gas furnace, the following results were obtained. If the tensile strength is 141 MPa, it is calculated that if it has a diameter of 23 mm, it can be used in design. Therefore, the boron-mixed 2D-C / C composite of this example has a sufficient strength.
[0037]
The calculation is 95% reliable with 99% non-destructive probability, the standard deviation difference of the material is 15.3 MPa, the safety factor is 3, and the design strength is 33.6 MPa. The load applied to one control rod in the HTTR is 1360 kg in consideration of the seismic load. From these values, a diameter of 23 mm was obtained.
[0038]
【The invention's effect】
A control rod containing a neutron absorbing material such as boron carbide or boride graphite in a control rod container that is a conventional structure uses a heat-resistant alloy such as Alloy 800 in the control rod container that is the structure. It does not have heat resistance exceeding 800 ° C. and 1000 ° C. or more.
[0039]
On the other hand, the control rod of the present invention made of a boron-mixed carbon fiber reinforced carbon composite material in which a neutron absorbing material in a nuclear reactor and a structure are integrated satisfies the above heat resistance sufficiently.

Claims (6)

炭素繊維強化炭素複合材料とホウ素が組み合わされたホウ素混合炭素繊維強化炭素複合材料から構成される制御棒容器とその内部に格納された中性子吸収材とが一体化された原子炉の制御棒。A control rod for a nuclear reactor, in which a control rod container composed of a boron-mixed carbon fiber-reinforced carbon composite material in which carbon fiber-reinforced carbon composite material and boron are combined, and a neutron absorbing material stored therein are integrated. 心棒に、炭素繊維クロスを巻き付けて積層した後、ホウ素源を含浸させた炭素繊維クロスを巻き付けて積層して熱処理することにより形成される請求項1記載の制御棒。The control rod according to claim 1, wherein the control rod is formed by winding and laminating a carbon fiber cloth impregnated with a boron source, winding and laminating a carbon fiber cloth impregnated with a mandrel. 炭素繊維強化炭素複合材料の炭素繊維の配列が1次元、2次元、2.5次元若しくは3次元的に炭素繊維が配列した請求項1又は請求項2記載の制御棒。The control rod according to claim 1 or 2, wherein the carbon fibers of the carbon fiber reinforced carbon composite material are arranged one-dimensionally, two-dimensionally, 2.5-dimensionally, or three-dimensionally. ホウ素源が炭化ホウ素粉末を使用してなる請求項2記載の制御棒。The control rod according to claim 2, wherein the boron source uses boron carbide powder. 制御棒の径方向において外表面から内側にかけて順次ホウ素濃度が少なくなる請求項1乃至請求項4のいずれかに記載の制御棒。The control rod according to any one of claims 1 to 4, wherein the boron concentration gradually decreases from the outer surface to the inner side in the radial direction of the control rod. 制御棒の形が、円筒、円柱、板状、又は板を十字に組み合わせた適宜の形状のものである請求項1乃至請求項5のいずれかに記載の制御棒。The control rod according to any one of claims 1 to 5, wherein the shape of the control rod is a cylinder, a cylinder, a plate, or an appropriate shape obtained by combining plates in a cross shape.
JP2002295621A 2002-10-09 2002-10-09 Control rod made of boron mixed carbon fiber reinforced carbon composite material Expired - Fee Related JP4000382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295621A JP4000382B2 (en) 2002-10-09 2002-10-09 Control rod made of boron mixed carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295621A JP4000382B2 (en) 2002-10-09 2002-10-09 Control rod made of boron mixed carbon fiber reinforced carbon composite material

Publications (2)

Publication Number Publication Date
JP2004132758A true JP2004132758A (en) 2004-04-30
JP4000382B2 JP4000382B2 (en) 2007-10-31

Family

ID=32285805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295621A Expired - Fee Related JP4000382B2 (en) 2002-10-09 2002-10-09 Control rod made of boron mixed carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JP4000382B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139668A (en) * 2005-11-21 2007-06-07 Bussan Nanotech Research Institute Inc Control rod for reactor and manufacturing method for the same
WO2012102430A1 (en) * 2011-01-27 2012-08-02 한국수력원자력 주식회사 Coil assembly for a control rod driver having improved thermal resistance, and method for manufacturing same
CN114300163A (en) * 2021-11-29 2022-04-08 华能核能技术研究院有限公司 Absorber material for pebble-bed high-temperature gas cooled reactor control rod and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139668A (en) * 2005-11-21 2007-06-07 Bussan Nanotech Research Institute Inc Control rod for reactor and manufacturing method for the same
WO2012102430A1 (en) * 2011-01-27 2012-08-02 한국수력원자력 주식회사 Coil assembly for a control rod driver having improved thermal resistance, and method for manufacturing same
US9564265B2 (en) 2011-01-27 2017-02-07 Korea Hydro & Nuclear Power Co., Ltd. Coil assembly for a control rod driver having improved thermal resistance, and method for manufacturing the same
CN114300163A (en) * 2021-11-29 2022-04-08 华能核能技术研究院有限公司 Absorber material for pebble-bed high-temperature gas cooled reactor control rod and preparation method thereof
CN114300163B (en) * 2021-11-29 2023-06-27 华能核能技术研究院有限公司 Absorber material for pebble-bed high-temperature gas cooled reactor control rod and preparation method thereof

Also Published As

Publication number Publication date
JP4000382B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US8085894B2 (en) Swelling-resistant nuclear fuel
US7700202B2 (en) Precursor formulation of a silicon carbide material
CA2661603C (en) Spherical fuel element and production thereof for gas-cooled high temperature pebble bed nuclear reactors (htr)
CN105706177B (en) A kind of enhanced fuel ball of thermal conductivity and preparation method thereof
CN111009332A (en) Nuclear radiation shielding structure and manufacturing method thereof
EP3685407B1 (en) High temperature ceramic nuclear fuel system for light water reactors and lead fast reactors
CN108806804B (en) SiC fiber reinforced fuel pellet and preparation method thereof
JP4000382B2 (en) Control rod made of boron mixed carbon fiber reinforced carbon composite material
US4076775A (en) Block fuel elements for high temperature power reactors
Burchell et al. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials
KR101574224B1 (en) oxide nuclear fuel pellet and the method for manufacturing thereof
Burchell et al. Material properties data for fusion reactor plasma facing carbon-carbon composites
JPH04175698A (en) Heat-resisting radiation shielding material
JP3069519B2 (en) High performance neutron absorbing material
US4017567A (en) Process for the production of block fuel elements for gas cooled high temperature power reactor
JP2630477B2 (en) High density graphite fiber
David Carbon/carbon materials for Generation IV nuclear reactors
RU2698309C1 (en) Aluminum-based composite material (versions) and article made therefrom
JPH0881261A (en) Highly heat-conductive carbon fiber/boron carbide composite material
CA2140556A1 (en) Neutron-absorbing material and its production process
JPH0891933A (en) Graphite-boron carbide complex sintered compact
JP2003302486A (en) Neutron absorbing material
US20230059151A1 (en) Ceramic matrix composites enable through metal halide assisted sintering
RU2578680C1 (en) Nuclear reactor pebble
RU2335814C2 (en) Nuclear fuel based on plating threads and method of its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees