JP2004132447A - Bearing with power generation function - Google Patents

Bearing with power generation function Download PDF

Info

Publication number
JP2004132447A
JP2004132447A JP2002296860A JP2002296860A JP2004132447A JP 2004132447 A JP2004132447 A JP 2004132447A JP 2002296860 A JP2002296860 A JP 2002296860A JP 2002296860 A JP2002296860 A JP 2002296860A JP 2004132447 A JP2004132447 A JP 2004132447A
Authority
JP
Japan
Prior art keywords
bearing
power generation
generation function
generator
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002296860A
Other languages
Japanese (ja)
Inventor
Kenichi Iwamoto
岩本 憲市
Masatoshi Mizutani
水谷 政敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002296860A priority Critical patent/JP2004132447A/en
Publication of JP2004132447A publication Critical patent/JP2004132447A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/004Electro-dynamic machines, e.g. motors, generators, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing with the power generation function for obtaining a sufficient power generation quantity with a compact constitution. <P>SOLUTION: This bearing A with the power generation function is formed by supporting a rotary side member 3 and a nonrotatable side member 4 by a plurality of rolling bodies 5, and internally stores a generator 2 for generating electric power by rotation of the rotary side member 3. The generator 2 has a multipolar magnet 14 fixed to the rotary side member 3 and a winding coil 16 arranged in the nonrotatable side member 4 and housed in a magnetic member 15. The winding coil 16 is housed in the magnetic member 15, and is juxtaposed in a plurality in the shaft direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、各種の機器、例えば汎用内燃機関の駆動伝達系などに設置される発電機能付き軸受に関する。
【0002】
【従来の技術】
汎用エンジンでは、そのクランク軸に、支持軸受とは別に発電機が設置され、各種の負荷の電源として利用される。
一方、従来、自動車の車輪用軸受装置において、発電機を内蔵し、この発電機を回転検出に利用したものが提案されている(例えば特許文献1)。
【0003】
【特許文献1】
特開2002−055113号公報
【0004】
【発明が解決しようとする課題】
上記の汎用エンジンにおける支持軸受と発電機とを別置きとした構成では、組立が煩雑になるばかりか、コンパクト性に欠けるという問題点がある。また、発電機の設置空間を十分取れないので、十分な発電量を確保するのが難しいという問題点がある。特許文献1のものでは、軸受装置に発電機を内蔵したため、コパクト化が図れる。しかし、発電量の確保の面で課題が残っている。
【0005】
この発明の目的は、コンパクトに構成できて十分な発電量を得ることのできる発電機能付き軸受を提供することである。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、この発明の発電機能付き軸受は、回転側部材と非回転側部材が複数の転動体で支持されてなり、回転側部材に設置された多極磁石と、非回転側部材に設置され磁性部材に収納された巻回コイルとを備え、上記回転側部材の回転時に発電し電力を供給する発電機を内蔵した発電機能付き軸受において、上記磁性部材に収納された巻回コイルを複数個設置したことを特徴とする。すなわち、磁性部材に巻回コイルを収納したものであるステータを複数個設置する。
この構成によると、磁性部材に収納された巻回コイルを複数個に分けて設置したため、これら複数の巻回コイルを合わせた大きさの1個の巻回コイルとしたものに比べて、発電量が増大する。また、軸受に発電機を内蔵したものであるため、上記従来の発電機内蔵の軸受と同じく、内蔵によるコンパクト化の効果が得られる。そのため、全体の構成をコンパクトにできて、かつ十分な発電量を得ることができる。
【0007】
この発明において、回転側部材と非回転側部材とは互いにいずれか一方が内周側に他方が外周側に位置するものとしても良い。すなわち、ラジアル型の軸受としても良い。その場合に、上記複数個の磁性部材に収納された巻回コイルは、軸方向に並べて配置しても良い。ラジアル型の軸受において、複数個の磁性部材に収納された巻回コイルを軸方向に並べて配置すると、巻回コイルを複数個に分割したことによる発電量の増大効果が得易い。
【0008】
上記発電機はいわゆるクローポール型発電機であっても良い。すなわち、上記発電機の巻回コイルにおける磁性部材が、上記多極磁石と対面する部分に、互いに対向方向に延びる2組の櫛歯状の爪が形成されたものであって、両組の各爪が隙間を介して円周方向に交互に並ぶものであっても良い。このように発電機の磁性部材をクローポール型とした場合は、多極化、小型化が容易で、磁束の利用効率に優れた効率の良い発電が行える。
【0009】
上記発電機は、回転検出と電力供給を兼ねるものであっても良い。この兼用により、発電機とは別に回転検出装置を設置する場合に比べて全体の構成をよりコンパクトにできる。また、多極磁石を用いるため、回転検出を精度良く行える。多極磁石と上記クローポール型の磁性部材とを併用した場合は、より一層の多極化が可能で、より高精度の回転検出が可能になる。
【0010】
発電機が回転検出と電力供給を兼ねるものである場合に、上記磁性部材に収納された巻回コイルが2個であって、かつこれら両巻回コイルを収納した磁性部材が円周方向の相対位置をずらして設置されたものとしても良い。この円周方向の相対位置のずれは、90°であっても良い。ここで言う相対位置は、磁気的位相を言う。円周方向の相対位置のずれは、例えば2個の巻回コイルを収納した各磁性部材の爪の円周方向位置をずらすことによって実現する。
このように巻回コイルを収納した磁性部材の円周方向の位置をずらせると、各巻回コイルから取り出される信号の位相がずれるため、回転方向の検出が行える。ずれ量が90°である場合は、90°異なる2つの交流信号が取り出されるので、回転方向の検出が容易となる。
【0011】
この発明において、上記多極磁石はスキューして着磁されたものであっても良い。スキューして着磁すれば、コキングトルクを低減することが可能となる。
また、この発明の発電機能付き軸受は、内燃機械のクランク軸を支持する軸受として使用されるものであっても良い。その場合、発電機を軸受と別置きする場合に比べて、組立性が向上すると共に、コンパクトになる。
【0012】
【発明の実施の形態】
この発明の第1の実施形態にかかる発電機能付き軸受を図面と共に説明する。図1に示すように、この発電機能付き軸受Aは、転がり軸受1に発電機2を内蔵したものである。転がり軸受1はラジアル型の軸受であって、回転側部材である内輪3と、固定側部材である外輪4が、複数の転動体5で支持されてなる。転動体5は、保持器6で保持されており、内輪3および外輪4に設けられた対向する転走面3a,4aの間に介在している。転動体5はボールからなる。内外輪3,4間の一端はシール7で密封されている。発電機2は、内輪3に取付けられたロータ11と、このロータ11と対向して外輪4に取付けられた複数(図示の例では2つ)のステータ12,12とでなる。これら複数のステータ12,12は、軸方向に並べられている。
【0013】
発電機2のロータ11は、芯金13を設けた多極磁石14からなる。多極磁石14は、図2に示すようなリング状の磁石であって、円周方向に並べて磁極N,Sが等間隔で交互に着磁され、芯金13の外周に設けられている。各磁極N,Sは、同図(C)に展開図で示すように、軸方向に平行に形成されているが、同図(D)のように、軸方向に対して斜めになったもの、つまりスキューして着磁されたものであっても良い。多極磁石14にはゴム磁石、プラスチック磁石、または焼結合金等が用いられる。ロータ11は、その芯金13の一端部を内輪3の外径面に接着または圧入することにより、内輪3の端部に、軸方向外方へ突出した状態に取付けられる。ロータ11の取付側端は、シール7の設置側とは反対側の端部である。
【0014】
図3に示すように、各ステータ12はクローポール型のものとされている。ステータ12は、詳しくは、鋼板等の磁性材料からなるリング状の磁性部材15内に巻回コイル16を収納してなり、巻回コイル16の引き出し線17が磁性部材15の外部に引き出されている。磁性部材15は、内周側に向くコ字状の断面形状とされ、両側の側板部15a,15bの内周縁から対向側へ折れ曲がった櫛歯状の複数の爪18a,18bを有する。両側の櫛歯状の各爪18a,18bは、互いに所定の隙間をもって周方向に交互に配列されている。磁性部材15は、この例では一体のものとしてあるが、それぞれが一方の組の櫛歯状の爪18a,18bを持つ2つの磁性部材分割体(図示せず)に外周部で分割されていて、両磁性部材分割体が外周部で互いに重なるように結合されたものであっても良い。
このように構成された2つのステータ12,12が、図1のように軸方向に並べた状態でリング状の支持部材19の内径面に支持されている。これら2つのステータ12,12は、互いの位相を概ね90°ずらせて設置しても良い。これらステータ12,12の位相をずらせる場合、爪18a又は爪18bの円周方向位置がずれるように、両磁性部材15を互いに回転させた位置関係とする。ここで言う位相は、磁気的位相のことであり、例えば爪18aのピッチが360°となる。この支持部材19の一端部を外輪4の内径面に接着または圧入することにより、支持部材19を介して2つのステータ12,12が外輪4の端部に、軸方向外方に突出して取付けられる。この取付状態で、両ステータ12,12がロータ11と径方向に対向する。
【0015】
図4に示すように、発電機2の出力端子は、平滑回路21を介して負荷22に接続されると共に、回転信号成分処理回路24にも接続されている。回転信号成分処理回路24は、例えば波形成形回路からなり、ACカップラ25とコンパレータ26とで構成される。発電機2で発生した電流は、平滑回路21で平滑化されて負荷22に供給されると共に、その一部が回転信号成分処理回路24に入力され、この回路24からパルス列等による回転信号として出力される。この回転信号は、CPU(中央処理回路)等の制御回路27に入力される。このように発電機2は、発電手段と回転検出手段とに兼用される。回転信号成分処理回路24は、転がり軸受1の内部に設置しても、外部に設置しても良い。内部に設置する場合、例えば発電機2のステータ12を構成する磁性部材15の内部に配置しても良く、またステータ12の外部に配置しても良い。転がり軸受1の外部に配置する場合、CPU等の制御回路27を備えた制御装置23の一部として回路信号成分処理回路24を設けても良い。この発電機能付き軸受Aは、例えば内燃機関のクランク軸の支持に用いられ、その場合、上記制御回路27は回転速度に応じて内燃機関を制御する手段等とされる。
【0016】
この構成の発電機能付き軸受Aによると、発電機2における磁性部材15に収納された巻回コイル16を、軸方向に並べて2個設置したため、1個の大きな巻回コイルを設ける場合に比べて大きな発電量を得ることができる。このことは試験により確認された。
【0017】
図5は、この発明の有効性を示す比較試験の結果であり、発電機の出力電圧をグラフで示したものである。この比較試験は、次の表1に示す諸元の2つのタイプI,IIの発電機の出力電圧を比較したものである。タイプI,IIの発電機は、軸長が異なる他は同じ諸元であり、いずれも図3と共に示したクローポール型の磁性部材15と図2に示す多極磁石14とを有するものである。タイプIの発電機では多極磁石およびステータの軸長を10mmとし、タイプIIの発電機では多極磁石およびステータの軸長をタイプIの例の2倍の20mmとした。発電量の比較は、負荷抵抗14Ωの両端に発生する電圧を測定することで行った。その結果を図5に示す。
【0018】
【表1】

Figure 2004132447
【0019】
図5に示す比較結果から明らかなように、多極磁石やステータの軸長を2倍にしても、発電量は2割程度しか増大しないことがわかる。したがって、軸長20mmのものを1個使うよりも、軸長10mmのものを2個並べて使う方が有効であることがわかる。なお、その原因として、軸長を長くすると、磁性部材15の複数の櫛歯状の爪18a,18bの部分で磁気飽和が発生することが推定される。
【0020】
このように、この実施形態の発電機能付き軸受によると、同じ大きさの発電機で発電量を増大することができる。また、軸受1に発電機2を内蔵したものであるため、従来の発電機内蔵の軸受と同じく、内蔵によるコンパクト化の効果が得られる。そのため、全体の構成をコンパクトにできて、かつ十分な発電量を得ることができる。発電機2はクローポール型としているので、多極化、小型化が容易で、磁束の利用効率に優れた効率の良い発電が行える。
【0021】
この実施形態では、上記発電機2が回転検出と電力供給を兼ねるものとしているので、回転センサを別置きする必要がなく、発電機および回転センサの機能を一体にできて、スペースの節約効果が大きい。
また、上記2つのステータ12,12は、それらの巻回コイル16を収納した磁性部材15が円周方向の相対位置を90°ずらして設置されているので、各巻回コイル16からの発電出力である交流信号を回転信号として利用する場合に、両交流信号の位相差から回転方向も検出することができる。
さらに、発電機2のロータ11である多極磁石14が磁極N,Sをスキューして着磁したものである場合は、コキングトルクを低減することができる。
【0022】
図8に示すように、この発電機能付き軸受Aは、内燃機関31の駆動伝達系32における何処か、例えばクランク軸33の支持に用いられる。転がり軸受1の外輪4は、ケーシング34に設置され、内輪3をクランク軸33に嵌合させる。内燃機関31は、例えば汎用エンジンであり、刈払い機や、芝刈機、小型の農機、小型の土木機械等に装備される。内燃機関3は、自動車に設置されたものであっても良い。
このように、この発電機能付き軸受Aを内燃機関31の駆動伝達系32に用いた場合、図4のように発電機2から回転信号成分処理回路24を介して得られる回転信号を、制御回路27において、内燃機関の回転数異常等の検出に使用できる。また、回転数異常の場合に、制御回路27によって回転数を低減させる制御を行うことで、発電機2の巻回コイル16の焼損などの故障を未然に防止することが可能となる。
【0023】
図6は、この発明の他の実施形態を示す。この実施形態は、図1〜図5に示す第1の実施形態において、転がり軸受1の内外輪3,4の軸長を、転走面3a,4aに対して一端側へ長くし、その長くした箇所に発電機2を取付ける。この場合に、発電機2のロータ11は、芯金13を省略した多極磁石14からなるものを用い、内輪3の内径面に直接に取付ける。発電機2の2つのステータ12,12は、支持部材19を介さずに外輪4の内径面に直接に取付ける。内輪3は回転軸8に嵌合している。シール7は省略されているが、シール7が装着されていても良い。その他の構成は第1の実施形態と同様である。
このように内外輪3,4に直接に発電機2のロータ11とステータ12とを取付けた場合、ロータ11の芯金13や、ステータ12を支持する支持部材19を省略できる。
【0024】
図7は、この発明のさらに他の実施形態を示す。この実施形態は、図6に示す実施形態において、発電機2の取付座として、内輪3の端部の外径面に、他の外径面部分よりも小径とした段差面部3bを設け、外輪3の端部の内径面に、他の内径面部分より大径とした段差面部4bをそれぞれ形成している。これら段差面部3b,4bに、ロータ11である多極磁石14およびステータ12をそれぞれ直接に取付けてある。その他の構成は図6の実施形態と同様である。
このように段差面部3b,4bを形成した場合、ロータ11を構成する多極磁石14の厚みやステータ12を構成する巻回コイル16のターン数を大きくすることができ、より大きい発電量を得ることができる。
【0025】
なお、上記実施形態は、内輪3が回転側部材である場合につき説明したが、この発明は外輪4が回転側部材である場合にも適用できる。その場合、内輪3にステータ12を設置し、外輪4に多極磁石14を設置する。また、上記実施形態はステータ12と多極磁石14とを径方向に対面させる例を説明したが、ステータ12と多極磁石14とは軸方向に対面させても良い。その場合、複数のステータを径方向に並べて同心円状に配置する。さらに、この発明は、ラジアル軸受に限らず、アキシアル軸受に適用することもできる。
【0026】
【発明の効果】
この発明の発電機能付き軸受は、回転側部材と非回転側部材が複数の転動体で支持されてなり、回転側部材に設置された多極磁石と、非回転側部材に設置され磁性部材に収納された巻回コイルとを備え、上記回転側部材の回転により発電し電力を供給する発電機を内蔵した発電機能付き軸受であって、上記磁性部材に収納された巻回コイルを複数個設置したため、全体の構成をコンパクトにできて十分な発電量を得ることができる。
上記発電機が回転検出と電力供給を兼ねるものである場合は、発電機とは別に回転検出装置を設置する場合に比べて全体の構成をよりコンパクトにできる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態にかかる発電機能付き軸受の断面図である。
【図2】(A),(B)は各々同軸受における発電機ロータの破断側面図および正面図、(C),(D)は、各々発電機ロータの着磁状態を示す図である。
【図3】(A),(B)は各々同軸受における発電機ステータの破断側面図および正面図である。
【図4】同発電機と負荷および回転信号成分処理回路との接続関係を示すブロック図である。
【図5】同発電機の有効性を示す比較実験の結果である発電電圧比較グラフである。
【図6】この発明の他の実施形態にかかる発電機能付き軸受の断面図である。
【図7】この発明のさらに他の実施形態にかかる発電機能付き軸受の断面図である。
【図8】この発明の発電機能付き軸受を応用した内燃機関の駆動伝達系を示す断面図である。
【符号の説明】
1…転がり軸受
2…発電機
3…内輪(回転側部材)
4…外輪(非回転側部材)
5…転動体
14…多極磁石
15…磁性部材
16…巻回コイル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bearing with a power generation function installed in various devices, for example, a drive transmission system of a general-purpose internal combustion engine.
[0002]
[Prior art]
In a general-purpose engine, a generator is installed on a crankshaft separately from a support bearing, and is used as a power source for various loads.
On the other hand, in the past, there has been proposed an automobile wheel bearing device that incorporates a generator and uses the generator for rotation detection (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-0555113
[Problems to be solved by the invention]
The configuration of the above-described general-purpose engine in which the support bearing and the generator are separately provided has a problem that not only the assembly becomes complicated but also the compactness is lacking. In addition, there is a problem that it is difficult to secure a sufficient amount of power generation because a sufficient installation space for the generator cannot be obtained. In the case of Patent Document 1, since a generator is built in the bearing device, compactness can be achieved. However, issues remain in terms of securing power generation.
[0005]
An object of the present invention is to provide a bearing with a power generation function that can be configured compactly and can obtain a sufficient power generation amount.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, a bearing with a power generation function of the present invention includes a rotating member and a non-rotating member supported by a plurality of rolling elements. A winding coil installed on the rotating member and housed in a magnetic member, and a generator with a built-in generator that supplies power and generates power when the rotating member rotates. A plurality of wound coils are provided. That is, a plurality of stators each having a wound coil housed in a magnetic member are installed.
According to this configuration, since the wound coils housed in the magnetic member are divided into a plurality of pieces and installed, the amount of power generation is larger than that of a single wound coil having a size obtained by combining the plurality of wound coils. Increase. Further, since the generator is built in the bearing, the effect of downsizing by the built-in can be obtained as in the above-described conventional bearing with a built-in generator. Therefore, the entire configuration can be made compact and a sufficient amount of power generation can be obtained.
[0007]
In the present invention, one of the rotating side member and the non-rotating side member may be located on the inner peripheral side, and the other may be located on the outer peripheral side. That is, a radial type bearing may be used. In this case, the wound coils housed in the plurality of magnetic members may be arranged side by side in the axial direction. In a radial type bearing, when the wound coils housed in a plurality of magnetic members are arranged side by side in the axial direction, the effect of increasing the power generation amount by dividing the wound coils into a plurality of pieces is easily obtained.
[0008]
The generator may be a so-called claw-pole generator. That is, the magnetic member in the wound coil of the generator is formed with two sets of comb-shaped claws extending in opposite directions at a portion facing the multipolar magnet. The claws may be alternately arranged in the circumferential direction via a gap. When the magnetic member of the generator is of a claw pole type as described above, it is easy to increase the number of poles and reduce the size, and it is possible to generate power efficiently with excellent magnetic flux utilization efficiency.
[0009]
The generator may serve both as rotation detection and power supply. By this dual use, the overall configuration can be made more compact than when a rotation detector is installed separately from the generator. In addition, since a multi-pole magnet is used, rotation detection can be performed with high accuracy. When a multi-pole magnet is used in combination with the claw-pole type magnetic member, the number of poles can be further increased, and rotation detection can be performed with higher accuracy.
[0010]
In the case where the generator is used for both rotation detection and power supply, the magnetic member contains two wound coils, and the magnetic members containing both wound coils are arranged in a circumferential direction. It is good also as what was installed in the position shifted. The deviation of the relative position in the circumferential direction may be 90 °. Here, the relative position refers to a magnetic phase. The displacement of the relative position in the circumferential direction is realized by, for example, shifting the position of the claw of each magnetic member accommodating two wound coils in the circumferential direction.
When the circumferential position of the magnetic member accommodating the winding coils is shifted in this way, the phase of the signal taken out from each winding coil is shifted, so that the rotation direction can be detected. When the shift amount is 90 °, two AC signals differing by 90 ° are extracted, so that the rotation direction can be easily detected.
[0011]
In the present invention, the multipole magnet may be magnetized by skew. If the magnet is skewed and magnetized, the coking torque can be reduced.
Further, the bearing with a power generation function of the present invention may be used as a bearing for supporting a crankshaft of an internal combustion machine. In this case, as compared with a case where the generator is separately provided from the bearing, the assemblability is improved and the generator is compact.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
A bearing with a power generation function according to a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a bearing A with a power generation function is one in which a generator 2 is built in a rolling bearing 1. The rolling bearing 1 is a radial type bearing in which an inner ring 3 as a rotating member and an outer ring 4 as a fixed member are supported by a plurality of rolling elements 5. The rolling element 5 is held by a retainer 6 and is interposed between opposing rolling surfaces 3a and 4a provided on the inner ring 3 and the outer ring 4. The rolling elements 5 are formed of balls. One end between the inner and outer rings 3 and 4 is sealed with a seal 7. The generator 2 includes a rotor 11 attached to the inner ring 3 and a plurality (two in the illustrated example) of stators 12 attached to the outer ring 4 so as to face the rotor 11. The plurality of stators 12 are arranged in the axial direction.
[0013]
The rotor 11 of the generator 2 includes a multi-pole magnet 14 provided with a metal core 13. The multipole magnet 14 is a ring-shaped magnet as shown in FIG. 2, and the magnetic poles N and S are alternately magnetized at equal intervals in a circumferential direction and provided on the outer periphery of the cored bar 13. The magnetic poles N and S are formed in parallel to the axial direction as shown in a developed view in FIG. 3C, but are oblique to the axial direction as shown in FIG. That is, it may be skewed and magnetized. As the multipole magnet 14, a rubber magnet, a plastic magnet, a sintered alloy, or the like is used. The rotor 11 is attached to the end of the inner ring 3 in a state of protruding outward in the axial direction by bonding or press-fitting one end of the core metal 13 to the outer diameter surface of the inner ring 3. The mounting side end of the rotor 11 is the end opposite to the side where the seal 7 is installed.
[0014]
As shown in FIG. 3, each stator 12 is of a claw pole type. More specifically, the stator 12 has a wound coil 16 housed in a ring-shaped magnetic member 15 made of a magnetic material such as a steel plate, and a lead 17 of the wound coil 16 is drawn out of the magnetic member 15. I have. The magnetic member 15 has a U-shaped cross-sectional shape facing the inner peripheral side, and has a plurality of comb-shaped claws 18a, 18b bent from the inner peripheral edges of the side plates 15a, 15b on both sides to the opposite side. The comb-shaped claws 18a and 18b on both sides are alternately arranged in the circumferential direction with a predetermined gap therebetween. The magnetic member 15 is integral in this example, but is divided into two magnetic member divided bodies (not shown) each having one set of comb-like claws 18a and 18b at an outer peripheral portion. Alternatively, the two magnetic member divided bodies may be coupled so as to overlap each other at the outer peripheral portion.
The two stators 12, 12 configured as described above are supported on an inner diameter surface of a ring-shaped support member 19 in a state of being arranged in the axial direction as shown in FIG. These two stators 12, 12 may be installed such that their phases are shifted from each other by approximately 90 °. When the phases of the stators 12 and 12 are shifted, the magnetic members 15 are rotated relative to each other so that the positions of the claws 18a or 18b in the circumferential direction are shifted. The phase referred to here is a magnetic phase, for example, the pitch of the claws 18a is 360 °. By bonding or press-fitting one end of the support member 19 to the inner diameter surface of the outer race 4, the two stators 12, 12 are attached to the end of the outer race 4 via the support member 19 so as to protrude axially outward. . In this mounting state, the stators 12 and 12 face the rotor 11 in the radial direction.
[0015]
As shown in FIG. 4, the output terminal of the generator 2 is connected to a load 22 via a smoothing circuit 21 and also to a rotation signal component processing circuit 24. The rotation signal component processing circuit 24 includes, for example, a waveform shaping circuit, and includes an AC coupler 25 and a comparator 26. The current generated by the generator 2 is smoothed by a smoothing circuit 21 and supplied to a load 22, and a part of the current is input to a rotation signal component processing circuit 24, which outputs a rotation signal by a pulse train or the like. Is done. This rotation signal is input to a control circuit 27 such as a CPU (central processing circuit). As described above, the generator 2 is used also as a power generation unit and a rotation detection unit. The rotation signal component processing circuit 24 may be installed inside the rolling bearing 1 or may be installed outside. When it is installed inside, for example, it may be arranged inside the magnetic member 15 constituting the stator 12 of the generator 2 or may be arranged outside the stator 12. When it is arranged outside the rolling bearing 1, a circuit signal component processing circuit 24 may be provided as a part of the control device 23 including the control circuit 27 such as a CPU. This bearing A with a power generation function is used, for example, to support a crankshaft of an internal combustion engine. In this case, the control circuit 27 is a means for controlling the internal combustion engine according to the rotation speed.
[0016]
According to the bearing A with the power generation function of this configuration, the two wound coils 16 housed in the magnetic member 15 of the generator 2 are arranged in the axial direction, so that two coils are installed as compared with the case where one large wound coil is provided. Large power generation can be obtained. This was confirmed by testing.
[0017]
FIG. 5 shows the result of a comparative test showing the effectiveness of the present invention, and shows the output voltage of the generator in a graph. In this comparative test, the output voltages of two types I and II generators having the specifications shown in Table 1 below are compared. The generators of types I and II have the same specifications except that the shaft length is different, and each has a claw-pole type magnetic member 15 shown in FIG. 3 and a multipole magnet 14 shown in FIG. . In the type I generator, the axial length of the multipolar magnet and the stator was 10 mm, and in the type II generator, the axial length of the multipolar magnet and the stator was 20 mm, which was twice that of the example of the type I. The comparison of the power generation was performed by measuring the voltage generated at both ends of the load resistance of 14Ω. The result is shown in FIG.
[0018]
[Table 1]
Figure 2004132447
[0019]
As is clear from the comparison result shown in FIG. 5, even if the axial length of the multipole magnet or the stator is doubled, the amount of power generation increases only by about 20%. Therefore, it is found that it is more effective to use two 10 mm long shafts side by side than to use one 20 mm long shaft. As a cause thereof, it is presumed that when the axial length is increased, magnetic saturation occurs at the plurality of comb-shaped claws 18a and 18b of the magnetic member 15.
[0020]
As described above, according to the bearing with a power generation function of this embodiment, the amount of power generation can be increased with a generator having the same size. Moreover, since the generator 2 is built in the bearing 1, the effect of compactness by the built-in can be obtained like the conventional bearing with a built-in generator. Therefore, the entire configuration can be made compact and a sufficient amount of power generation can be obtained. Since the generator 2 is of a claw-pole type, it is easy to increase the number of poles and reduce the size, and it is possible to generate power efficiently with excellent magnetic flux utilization efficiency.
[0021]
In this embodiment, since the generator 2 serves both rotation detection and power supply, there is no need to separately install a rotation sensor, and the functions of the generator and the rotation sensor can be integrated, resulting in a space saving effect. large.
In addition, since the magnetic members 15 accommodating the wound coils 16 of the two stators 12 and 12 are installed with their relative positions in the circumferential direction shifted by 90 °, the power output from each of the wound coils 16 is used. When a certain AC signal is used as a rotation signal, the direction of rotation can also be detected from the phase difference between the two AC signals.
Furthermore, when the multipolar magnet 14 as the rotor 11 of the generator 2 is magnetized by skewing the magnetic poles N and S, the coking torque can be reduced.
[0022]
As shown in FIG. 8, the bearing A with a power generation function is used for supporting a part of a drive transmission system 32 of an internal combustion engine 31, for example, a crankshaft 33. The outer ring 4 of the rolling bearing 1 is installed on a casing 34, and the inner ring 3 is fitted on the crankshaft 33. The internal combustion engine 31 is, for example, a general-purpose engine, and is provided in a brush cutter, a lawn mower, a small agricultural machine, a small civil engineering machine, and the like. The internal combustion engine 3 may be installed in an automobile.
As described above, when the bearing A with the power generation function is used for the drive transmission system 32 of the internal combustion engine 31, the rotation signal obtained from the generator 2 via the rotation signal component processing circuit 24 as shown in FIG. At 27, it can be used to detect abnormalities in the rotational speed of the internal combustion engine. Further, in the case of a rotational speed abnormality, by performing control to reduce the rotational speed by the control circuit 27, it becomes possible to prevent a failure such as burning of the winding coil 16 of the generator 2 beforehand.
[0023]
FIG. 6 shows another embodiment of the present invention. This embodiment is different from the first embodiment shown in FIGS. 1 to 5 in that the axial length of the inner and outer rings 3 and 4 of the rolling bearing 1 is increased toward one end with respect to the rolling surfaces 3a and 4a. The generator 2 is installed in the place where it was done. In this case, the rotor 11 of the generator 2 is composed of a multipolar magnet 14 from which the core metal 13 is omitted, and is directly mounted on the inner diameter surface of the inner ring 3. The two stators 12 of the generator 2 are directly mounted on the inner diameter surface of the outer race 4 without the support member 19 therebetween. The inner ring 3 is fitted on the rotating shaft 8. Although the seal 7 is omitted, the seal 7 may be mounted. Other configurations are the same as those of the first embodiment.
When the rotor 11 and the stator 12 of the generator 2 are directly attached to the inner and outer rings 3 and 4 as described above, the core metal 13 of the rotor 11 and the support member 19 that supports the stator 12 can be omitted.
[0024]
FIG. 7 shows still another embodiment of the present invention. This embodiment is different from the embodiment shown in FIG. 6 in that a stepped surface portion 3b having a smaller diameter than the other outer diameter surface portions is provided on the outer diameter surface at the end of the inner ring 3 as a mounting seat for the generator 2. A step surface portion 4b having a diameter larger than that of the other inner diameter surface portions is formed on the inner diameter surface of the end portion of No.3. The multi-pole magnet 14 and the stator 12, which are the rotor 11, are directly attached to the step surfaces 3b and 4b, respectively. Other configurations are the same as those of the embodiment of FIG.
When the step surface portions 3b and 4b are formed in this manner, the thickness of the multipole magnet 14 forming the rotor 11 and the number of turns of the wound coil 16 forming the stator 12 can be increased, and a larger power generation amount can be obtained. be able to.
[0025]
Although the above embodiment has been described with reference to the case where the inner race 3 is a rotating member, the present invention is also applicable to a case where the outer race 4 is a rotating member. In that case, the stator 12 is installed on the inner ring 3 and the multipolar magnet 14 is installed on the outer ring 4. In the above embodiment, the example in which the stator 12 and the multipole magnet 14 face each other in the radial direction has been described. However, the stator 12 and the multipole magnet 14 may face each other in the axial direction. In this case, a plurality of stators are arranged concentrically in a radial direction. Further, the present invention can be applied not only to the radial bearing but also to an axial bearing.
[0026]
【The invention's effect】
The bearing with a power generation function according to the present invention includes a rotating member and a non-rotating member supported by a plurality of rolling elements, and a multipolar magnet provided on the rotating member and a magnetic member provided on the non-rotating member. A bearing having a housed winding coil, and a generator with a built-in generator that supplies electric power by generating power by rotation of the rotating side member, wherein a plurality of winding coils housed in the magnetic member are installed. As a result, the entire configuration can be made compact and a sufficient amount of power generation can be obtained.
In the case where the generator functions as both rotation detection and power supply, the overall configuration can be made more compact than when a rotation detection device is installed separately from the generator.
[Brief description of the drawings]
FIG. 1 is a sectional view of a bearing with a power generation function according to a first embodiment of the present invention.
FIGS. 2 (A) and 2 (B) are a cutaway side view and a front view of a generator rotor in the same bearing, respectively, and FIGS. 2 (C) and 2 (D) are diagrams each showing a magnetized state of the generator rotor.
FIGS. 3A and 3B are a cutaway side view and a front view of a generator stator in the same bearing, respectively.
FIG. 4 is a block diagram showing a connection relationship between the generator and a load and a rotation signal component processing circuit.
FIG. 5 is a power generation voltage comparison graph as a result of a comparative experiment showing the effectiveness of the generator.
FIG. 6 is a cross-sectional view of a bearing with a power generation function according to another embodiment of the present invention.
FIG. 7 is a cross-sectional view of a bearing with a power generation function according to still another embodiment of the present invention.
FIG. 8 is a sectional view showing a drive transmission system of an internal combustion engine to which the bearing with a power generation function of the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Generator 3 ... Inner ring (rotation side member)
4: Outer ring (non-rotating side member)
5 rolling element 14 multi-pole magnet 15 magnetic member 16 wound coil

Claims (8)

回転側部材と非回転側部材が複数の転動体で支持されてなり、回転側部材に設置された多極磁石と、非回転側部材に設置され磁性部材に収納された巻回コイルとを備え、上記回転側部材の回転により発電し電力を供給する発電機を内蔵した発電機能付き軸受において、上記磁性部材に収納された巻回コイルを複数個設置したことを特徴とする発電機能付き軸受。The rotating member and the non-rotating member are supported by a plurality of rolling elements, and include a multipolar magnet installed on the rotating member and a wound coil installed on the non-rotating member and housed in a magnetic member. A bearing with a power generation function, wherein a plurality of wound coils housed in the magnetic member are provided in a bearing with a power generation function which incorporates a generator for generating and supplying electric power by rotation of the rotation-side member. 請求項1において、回転側部材と非回転側部材とは互いにいずれか一方が内周側に他方が外周側に位置し、上記複数個の磁性部材に収納された巻回コイルは、軸方向に並べて配置した発電機能付き軸受。In claim 1, one of the rotating side member and the non-rotating side member is located on the inner peripheral side and the other is located on the outer peripheral side, and the wound coils housed in the plurality of magnetic members are arranged in the axial direction. Bearings with a power generation function arranged side by side. 請求項1または請求項2において、上記発電機の巻回コイルにおける磁性部材は、上記多極磁石と対面する部分に、互いに対向方向に延びる2組の櫛歯状の爪が形成されたものであって、両組の各爪が隙間を介して円周方向に交互に並ぶものである発電機能付き軸受。The magnetic member in the wound coil of the generator according to claim 1 or 2, wherein a pair of comb-shaped claws extending in opposite directions are formed at a portion facing the multipole magnet. In addition, a bearing with a power generation function in which both sets of claws are alternately arranged in the circumferential direction via a gap. 請求項1ないし請求項3のいずれかにおいて、上記発電機が回転検出と電力供給を兼ねるものである発電機能付き軸受。The bearing with a power generation function according to any one of claims 1 to 3, wherein the power generator performs both rotation detection and power supply. 請求項1ないし請求項4のいずれかにおいて、上記磁性部材に収納された巻回コイルが2個であり、かつこれら両巻回コイルを収納した磁性部材は円周方向の相対位置がずれて設置されている発電機能付き軸受。5. The magnetic member according to claim 1, wherein the magnetic member includes two wound coils, and the magnetic members housing both of the wound coils are arranged so that their relative positions in the circumferential direction are shifted. Bearing with power generation function. 請求項5において、上記両巻回コイルを収納した磁性部材は、円周方向の相対位置が90°ずれて設置されている発電機能付き軸受。The bearing with a power generation function according to claim 5, wherein the magnetic members accommodating the double-wound coils are installed with their relative positions in the circumferential direction shifted by 90 °. 請求項1ないし請求項6のいずれかにおいて、上記多極磁石がスキューして着磁されたものである発電機能付き軸受。The bearing with a power generation function according to any one of claims 1 to 6, wherein the multipole magnet is skewed and magnetized. 請求項1ないし請求項7のいずれかにおいて、内燃機械のクランク軸を支持する軸受として使用されるものである発電機能付き軸受。A bearing with a power generation function according to any one of claims 1 to 7, which is used as a bearing for supporting a crankshaft of an internal combustion machine.
JP2002296860A 2002-10-10 2002-10-10 Bearing with power generation function Pending JP2004132447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296860A JP2004132447A (en) 2002-10-10 2002-10-10 Bearing with power generation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296860A JP2004132447A (en) 2002-10-10 2002-10-10 Bearing with power generation function

Publications (1)

Publication Number Publication Date
JP2004132447A true JP2004132447A (en) 2004-04-30

Family

ID=32286709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296860A Pending JP2004132447A (en) 2002-10-10 2002-10-10 Bearing with power generation function

Country Status (1)

Country Link
JP (1) JP2004132447A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687961B2 (en) 2005-03-01 2010-03-30 Honda Motor Co., Ltd. Stator, motor, and method of manufacturing such stator
WO2011144476A1 (en) * 2010-05-21 2011-11-24 Schaeffler Technologies Gmbh & Co. Kg Roller bearing with integrated generator
WO2015158338A3 (en) * 2014-04-15 2015-12-10 Schaeffler Technologies AG & Co. KG Rolling element bearing comprising an integrated lundell alternator with a sectored stator, and a lundell alternator with a sectored stator
US9328766B2 (en) 2010-05-21 2016-05-03 Schaefller Technologies AG & Co. KG Rolling bearing having an integrated generator and method for the energy management of a rolling bearing of said type
DE102008017262B4 (en) * 2008-04-04 2016-06-09 Schaeffler Technologies AG & Co. KG Rolling bearing slewing connection with integrated direct drive and with integrated brake
DE102010021159B4 (en) * 2010-05-21 2019-03-28 Schaeffler Technologies AG & Co. KG Rolling bearings with an integrated permanent-magnet electric machine
WO2020200340A1 (en) * 2019-04-05 2020-10-08 Schaeffler Technologies AG & Co. KG Wheelset bearing for a rail vehicle and method for operating a sensor system of a wheelset bearing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687961B2 (en) 2005-03-01 2010-03-30 Honda Motor Co., Ltd. Stator, motor, and method of manufacturing such stator
DE102008017262B4 (en) * 2008-04-04 2016-06-09 Schaeffler Technologies AG & Co. KG Rolling bearing slewing connection with integrated direct drive and with integrated brake
WO2011144476A1 (en) * 2010-05-21 2011-11-24 Schaeffler Technologies Gmbh & Co. Kg Roller bearing with integrated generator
US9328766B2 (en) 2010-05-21 2016-05-03 Schaefller Technologies AG & Co. KG Rolling bearing having an integrated generator and method for the energy management of a rolling bearing of said type
EP2572114B1 (en) * 2010-05-21 2016-07-13 Schaeffler Technologies AG & Co. KG Rolling bearing having an integrated generator
DE102010021159B4 (en) * 2010-05-21 2019-03-28 Schaeffler Technologies AG & Co. KG Rolling bearings with an integrated permanent-magnet electric machine
WO2015158338A3 (en) * 2014-04-15 2015-12-10 Schaeffler Technologies AG & Co. KG Rolling element bearing comprising an integrated lundell alternator with a sectored stator, and a lundell alternator with a sectored stator
CN106133356A (en) * 2014-04-15 2016-11-16 舍弗勒技术股份两合公司 There is rolling bearing and the claw pole electric generator of integrated claw pole electric generator
CN106133356B (en) * 2014-04-15 2018-12-28 舍弗勒技术股份两合公司 Rolling bearing and claw pole electric generator with integrated claw pole electric generator
US10436255B2 (en) 2014-04-15 2019-10-08 Schaeffler Technologies AG & Co. KG Rolling element bearing comprising an integrated lundell alternator, and a lundell alternator
WO2020200340A1 (en) * 2019-04-05 2020-10-08 Schaeffler Technologies AG & Co. KG Wheelset bearing for a rail vehicle and method for operating a sensor system of a wheelset bearing
CN113412213A (en) * 2019-04-05 2021-09-17 舍弗勒技术股份两合公司 Wheel set bearing for a rail vehicle and method for operating a sensor system

Similar Documents

Publication Publication Date Title
JP2003269474A (en) Bearing with power generating function
JP5796569B2 (en) Rotor and rotating electric machine using the same
JP5262583B2 (en) Resolver integrated rotary electric machine and rotor core
US9143014B2 (en) Rotor, dynamo-electric machine having the rotor and rotor manufacturing method
JP5279691B2 (en) Rotating electric machine
EP1612912A1 (en) Permanent magnet electric machine
JP4912417B2 (en) Rotary / linear motor
JP5764393B2 (en) DC motor
JP2008241405A (en) Resolver
JP6406355B2 (en) Double stator type rotating machine
JP2012178926A (en) Motor rotor, and motor structure integrated with motor housing
JP2004159450A (en) Rotating electric machine for vehicle
JP2012050219A (en) Flat type coreless motor and flat type core loess vibration motor
JP2004132447A (en) Bearing with power generation function
JP2010178493A (en) Outer rotor type brushless motor
JP2005261022A (en) Axial gap rotating electric machine
JP3573086B2 (en) Randell type rotating electric machine having magnetic rotation angle detecting device
JP2006197786A (en) Brushless motor
JP2011067070A (en) Motor
JP2004064857A (en) Brushless motor
JP5984695B2 (en) Rotation angle detector and vehicle rotating electric machine
JP2012125021A (en) Axial gap rotating machine
JP5795170B2 (en) Power generation system
JP5037827B2 (en) Mounting structure of hall sensor in electric motor
GB2408154A (en) Stator/rotor arrangement and exciter for an axial flux AC machine