JP2004132087A - Shield machine for underground connection - Google Patents

Shield machine for underground connection Download PDF

Info

Publication number
JP2004132087A
JP2004132087A JP2002298747A JP2002298747A JP2004132087A JP 2004132087 A JP2004132087 A JP 2004132087A JP 2002298747 A JP2002298747 A JP 2002298747A JP 2002298747 A JP2002298747 A JP 2002298747A JP 2004132087 A JP2004132087 A JP 2004132087A
Authority
JP
Japan
Prior art keywords
hood
excavator
underground
solidifying agent
cutter head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002298747A
Other languages
Japanese (ja)
Other versions
JP4037237B2 (en
Inventor
Hideaki Katayama
片山 英明
Yutaka Shibata
柴田 豊
Shunsuke Shirai
白井 俊輔
Nobuaki Yari
谷利 信明
Hiromasa Igarashi
五十嵐 寛昌
Yuzuru Yoshida
吉田 譲
Shigeo Fujii
藤井 茂男
Takashi Nakabayashi
中林 貴
Yuji Kobayashi
小林 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Chubu Electric Power Co Inc
IHI Corp
Original Assignee
Kajima Corp
Chubu Electric Power Co Inc
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Chubu Electric Power Co Inc, IHI Corp filed Critical Kajima Corp
Priority to JP2002298747A priority Critical patent/JP4037237B2/en
Publication of JP2004132087A publication Critical patent/JP2004132087A/en
Application granted granted Critical
Publication of JP4037237B2 publication Critical patent/JP4037237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shield machine for underground connection capable of enlarging wrapping allowance with a receiving hood as much as possible when the machine is inserted in the receiving hood arranged underground. <P>SOLUTION: The shield machine 1 for underground connection is put in the receiving hood 8 arranged underground for connection. In this connection system is provided with a cylindrical body 7 provided in the cutter head 2 cutting the heading and inserted in the receiving hood 8 at the connecting time, a fixed hood 9 provided in shield machine body 11 at the rear side of the cutter head 2 with a specified gap W from the cylindrical body 7, and a movable hood 13 slidably provided in the axial direction at the inner peripheral face of the fixed hood 9 to cover the gap from the cylindrical body 7 in advancing motion. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、地中に配置された受入フードとのラップ代を大きくできる地中接合用シールド掘進機に関する。
【0002】
【従来の技術】
本発明者等は、地中に配置された受入フード内に嵌入して接合される地中接合用シールド掘進機として、図7に示すものを開発した。
【0003】
図示するように、このシステムは、受入側のシールド掘進機aに対して挿入側のシールド掘進機bを対向して掘進させ、受入側掘進機aのカッタヘッドcをコピーカッタdを縮めてシールドフレームe内に後退させつつその前方に固化剤(コンクリート等)を充填し、そのシールドフレームe内に挿入側掘進機bを掘進させてカッタヘッドfおよびフードgを挿入し、フードgとシールドフレームeとの間(ラップ代L)に固化剤を注入して止水し、双方のトンネル同士を連通させるものである。
【0004】
このシステムでは、受入側掘進機aのシールドフレームeが上記受入フードとなり、挿入側掘進機bが上記地中接合用シールド掘進機に相当することになる。
【0005】
なお、関連する先行技術として特許文献1に記載されたものがある。
【0006】
【特許文献1】
特開2002−155696号公報(第3頁−第5頁、図1−図8)
【0007】
【発明が解決しようとする課題】
ところで、上記フードgとシールドフレームeとのラップ部分の止水性を高めるためには、ラップ代Lを大きくすることが重要となる。しかし、受入側掘進機aの構造上、カッタヘッドcの後退量を大きくできない場合には、挿入側掘進機bの挿入深さが浅くなって、止水に必要なラップ代Lを確保できないケースが生じる。このため、止水が不安定になりかねない。
【0008】
特に、発進または到達立坑等に設けた掘削可能壁を掘り抜くタイプの掘進機では、掘削可能壁の中の炭素繊維(補強材)を切断するために、カッタヘッドcには通常のビットhよりも高さが高い炭素繊維切断用の専用ビットを取り付けるため、図7のように掘進機同士を対向させたとき、専用ビットによって両掘進機a、bが通常よりも離間することになり、上記ラップ代Lが小さくなってしまう。
【0009】
以上の事情を考慮して創案された本発明の目的は、地中に配置された受入フード内に嵌入されたときに、受入フードとのラップ代を可及的に大きくできる地中接合用シールド掘進機を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明は、地中に配置された受入フード内に嵌入して接合される地中接合用シールド掘進機であって、切羽を切削するカッタヘッドに設けられ接合時に上記受入フード内に挿入される筒体と、上記カッタヘッド後方の掘進機本体に上記筒体から所定隙間を隔てて設けられた固定フードと、該固定フードの内周面に軸方向にスライド自在に設けられ前進時に上記筒体との隙間を塞ぐ可動フードとを備えたものである。
【0011】
本発明に係る地中接合用シールド掘進機によれば、カッタヘッドの筒体および掘進機本体の固定フードの一部(前部)を受入フード内に挿入した後、可動フードを前進させて筒体と固定フードとの隙間を塞ぐことにより、固定フードのみならず筒体および可動フードをもラップ部材として機能することになる。よって、ラップ代が従来よりも大きくなり、止水の安定性が向上する。
【0012】
また、上記可動フードに、その後退時に上記固定フードの内周面に覆われ前進時に上記隙間に露出する出口を有する第1固化剤注入通路を形成することが好ましい。こうすれば、固化剤を、第1固化剤注入通路の出口から筒体と固定フードとの隙間に、即ち上記ラップ部材(固定フード、可動フード、筒体)と受入フードとのラップ部分の略中央に注入できるので、止水性が高まる。また、出口は、通常固定フードの内周面に覆われているので、土砂等が詰まることはない。
【0013】
また、上記カッタヘッドに上記筒体に出口を有する第2固化剤注入通路を形成すると共に、上記掘進機本体に上記固定フードに出口を有する第3固化剤注入通路を形成することが好ましい。こうすれば、固化剤を、第2固化剤注入通路の出口および第3固化剤注入通路の出口から、それぞれ上記ラップ部分の前部および後部に注入できるので、固化剤がラップ部分に均等に注入される。よって、ラップ部分に容易に止水壁を形成できる。
【0014】
また、上記カッタヘッドに、上記筒体を避けて斜め前方に出没する傾斜コピーカッタを設けることが好ましい。こうすれば、筒体にコピーカッタを出没させるための出没穴や切欠等を設ける必要がなくなるので、筒体の全長をラップ部材として使用することができる。よって、ラップ代を可及的に大きくでき、止水性が高まる。
【0015】
【発明の実施の形態】
本発明の一実施形態を添付図面に基いて説明する。
【0016】
図1は本実施形態に係る地中接合用シールド掘進機の正面図、図2は上記地中接合用シールド掘進機の側断面図、図3は図2の部分拡大図であり、図4および図5は上記地中接合用シールド掘進機が地中に配置された受入フード内に嵌入する様子を示す説明図である。
【0017】
図1および図2に示すように、この地中接合用シールド掘進機1は、切羽を切削するカッタヘッド2を有する。カッタヘッド2は、図例では4本のカッタスポーク3を有するがスポークの数は何本でもよく、また、スポークタイプに限られず面板タイプであってもよい。
【0018】
カッタヘッド2には、切羽を切削する通常のカッタビット4が取り付けられていると共に、専用ビット5が取り付けられている。専用ビット5は、既述のように発進または到達立坑等に設けた掘削可能壁の中の炭素繊維(補強材)を切断するものであり、通常のビット4よりも高さが高く設定されている。
【0019】
かかるカッタヘッド2の外周部には、回転軸6と同芯的に筒体7が取り付けられている。筒体7は、図3(b)に示すように、接合時に受入フード8内に挿入されるものであり、その外径が受入フード8の内径よりもある程度小径に成形されていると共に、軸方向の長さが後述する固定フード9と所定隙間Wを隔てる長さに成形されている。
【0020】
カッタヘッド2には、図1および図2に示すように、筒体7を避けて斜め前方に出没する傾斜コピーカッタ10が設けられている。よって、筒体7には、傾斜コピーカッタ10を出没させるための出没穴や切欠等が、一切設けられていない。傾斜コピーカッタ10は、カーブ掘進時に、カーブの内側を余掘りするものである。
【0021】
また、図2および図3に示すように、カッタヘッド2の後方の掘進機本体11には、筒体7から所定隙間Wを隔てて固定フード9が設けられている。固定フード9は、掘進機本体11の外郭を成す円筒状のシールドフレーム12の前部に取り付けられており、その内外周面がカッタヘッド2の筒体7の内外周面と面一となっている。
【0022】
固定フード9の前端と筒体7の後端との間に所定隙間Wを設定する理由は、カッタヘッド2を掘進機本体11に対して回転させるためであることは勿論、この隙間Wが余り狭いと掘進中にその間を通過する土砂によって筒体7の後端および固定フード9の前端が摩耗するため、ある程度の隙間(50mm程度)をあける必要があるからである。
【0023】
固定フード9の内周面には、図3に示すように、可動フード13が軸方向にスライド自在に設けられている。可動フード13は、図3(a)に示すように後退時には固定フード9の内側に完全に収容されて上記隙間Wを確保し、図3(b)に示すように前進時にはその先端がカッタヘッド2に設けられたストッパ14に当接し上記隙間Wを塞ぐ。
【0024】
可動フード13は、掘進機本体11内を切羽側と坑内側とに仕切る隔壁15に設けられたアクチュエータ16(ジャッキ)によって、軸方向にスライド移動される。ジャッキ16は、可動フード13の周方向に所定間隔を隔てて複数配置されており、ピン17を介して可動フード13に接続されている。
【0025】
可動フード13には、図3(a)に示すようにその後退時に固定フード9の内周面に覆われ図3(b)に示すように前進時に隙間Wに露出する出口18を有する第1固化剤注入通路19が形成されている。この出口18は、可動フード13の外周面にその周方向に間隔を隔てて複数(例えば14箇所)設けられている。
【0026】
第1固化剤注入通路19には、可撓性ホース20(ゴムホース等)を介して、隔壁15を貫通して取り付けられた注入管21から、固化剤(コンクリート等)が導入されるようになっている。可撓性ホース20を用いる理由は、図3(a),(b)に示すように、可動フード13のスライド時にホース20自身が伸縮し、スライドを許容するためである。
【0027】
これら可撓性ホース20および注入管21は、各第1固化剤注入通路19毎に設けてもよいが、幾つかの又は全ての第1固化剤注入通路19を集合させて纏めて設けてもよい。また、上記可撓性ホース20およびジャッキ16のロッド部は、隔壁15に取り付けられた円錐面状のカバー22によって覆われ、土砂から防護されている。
【0028】
また、図6に示すように、カッタヘッド2には、筒体7に出口23を有する第2固化剤注入通路24が形成されている。第2固化剤注入通路24は、図1に示すように、傾斜コピーカッタ10が装着されないカッタスポーク3に形成されることになる。但し、この通路24は、コピーカッタ10が装着されたスポーク3と筒体7とを連結する部材25にも形成してもよい。
【0029】
また、図6に示すように、掘進機本体11には、固定フード9に出口26を有する第3固化剤注入通路27が形成されている。第3固化剤注入通路27は、隔壁15および固定フード9を貫通する配管からなり、固定フード9の周方向に間隔を隔てて複数(例えば14箇所)設けられている。
【0030】
また、図6に示すように、掘進機本体11には、シールドフレーム12に出口28を有する補助固化剤注入通路29が形成されている。補助固化剤注入通路29は、シールドフレーム12を貫通する配管からなり、シールドフレーム12の周方向に間隔を隔てて複数(例えば16箇所)設けられている。
【0031】
以上の構成からなる地中接合用シールド掘進機1は、図4(a),(b)および図5(c),(d)に示すようにして、地中に配置された受入フード8内に嵌入して接合される。以下、地中接合用シールド掘進機1を挿入側シールド掘進機とし、受入フード8を受入側掘進機30のシールドフレームとして、接合の工程を説明する。
【0032】
先ず、図4(a)に示すように、受入側のシールド掘進機30のカッタヘッド31をコピーカッタ32を縮めてシールドフレーム8内に後退させつつ、その前方に固化剤33(コンクリート等)を充填し、内部の土砂を固める。そして、かかる受入側掘進機30に対して挿入側のシールド掘進機1を対向して掘進させる。
【0033】
このとき、挿入側掘進機1の可動フード13は、図3(a)に示すように、ジャッキ16によって固定フード9の内側に引き込まれており、掘進機本体11の固定フード9とカッタヘッド2の筒体7との間に、土砂流れによる摩耗が生じない程度の所定隙間Wが形成されている。よって、筒体7の後端および固定フード9の前端に生じ得る土砂流れ摩耗が抑えられる。
【0034】
そして、挿入側掘進機1は、所定距離まで近づいたなら、傾斜コピーカッタ10を伸長させて側部地山をほぐし、同時に第2固化剤注入通路24から固化剤34を径方向外方に噴射してほぐした地山を固めながら掘進する。また、カッタヘッド2から前方に固化剤35を噴射し、カッタ室36内に取り込まれる土砂を固める。
【0035】
そして、図4(b)に示すように、挿入側掘進機1が受入側掘進機30の地盤改良域33まで近接したら、傾斜コピーカッタ10を収縮させる。そして、図5(c)に示すように、挿入側掘進機1を前進させ、受入側掘進機30のシールドフレーム8内に嵌入させる。このとき、第2固化剤注入通路24からの固化剤34の噴射を継続する。
【0036】
何故なら、挿入側掘進機1のカッタヘッド2が受入側掘進機30のシールドフレーム8内に侵入したとき、カッタヘッド2とシールドフレーム30との間の地盤改良土砂33(固化された土砂)がカッタヘッド2の回転によって緩むため、これを再び固化させる必要があるからである。
【0037】
そして、図5(d)に示すように、挿入側掘進機1を更に前進させ、双方の掘進機1、30のカッタヘッド2、31が接触する寸前とする。そして、図3(b)に示すように、可動フード13をジャッキ16によって前進させてその先端をカッタヘッド2のストッパ14に当接させ、固定フード9と筒体7との隙間Wを塞ぐ。
【0038】
これにより、固定フード9のみならず筒体7および可動フード13をも止水ゾーンのラップ部材として機能する。よって、ラップ代L2が従来タイプ(可動フード13および筒体7の無いタイプ:図7参照)のラップ代L1よりも大きくなり、止水の安定性が向上する。すなわち、本実施形態では、受入フード8に対する掘進機1の挿入深さからビット4、5の高さを除いた分が、実質的なラップ代L2となる。
【0039】
そして、図6に示すように、第1、第2および第3固化剤注入通路19、24、27にそれぞれ固化剤を供給し、挿入側掘進機1の筒体7と可動フード13と固定フード9と、受入側掘進機30のシールドフレーム8とのラップ部分に、固化剤を注入する。これにより、固化剤がラップ部分に略均等に注入され、迅速かつ適正に止水される。
【0040】
すなわち、上記ラップ部分の土砂は、図4(a)の段階では固化33されているものの、挿入側掘進機1の嵌入時に緩むため、これを第1、第2および第3固化剤注入通路19、24、27からの固化剤によって再び固化させているのである。また、各通路19、24、27から固化剤を夫々注入することで、注入ゾーンが等配となり、止水が確実となる。
【0041】
ここで、可動フード13に設けられる第1固化剤注入通路19の出口18は、図3(a)に示すように通常時(後退時)には固定フード9の内周面で覆われているので土砂等が詰まることはなく、図3(b)に示すように前進時には隙間Wに臨むので固化剤を的確にラップ部分の略中央に注入できる。
【0042】
また、コピーカッタ10を、筒体7を避けて斜め前方に出没する傾斜コピーカッタとしているので、筒体7にコピーカッタ10を出没させるための出没穴や切欠等を設ける必要がなくなり、筒体7の軸方向の全長をラップ部材として使用することができる。よって、ラップ代を可及的に大きくでき、止水性が高まる。
【0043】
その後、図6に示すように、補助固化剤注入通路29から注入管を側部地山に斜め前方に延出し、固化剤37を注入する。これにより、受入側掘進機30のシールドフレーム8の先端部分(ラップ部の開口部分)の側部地山が固化され、上記各通路19、24、27から注入された固化剤と相俟って止水が万全となる。
【0044】
各通路19、24、27、29から注入された固化剤が固化した後、双方の掘進機1、30の隔壁15、カッタヘッド2、31等を取り外し、双方のトンネルを連通させる。これにより、双方の掘進機1、30によって構築されたトンネルを、完全な止水の下で、迅速・確実に連通できる。
【0045】
なお、本実施形態では、受入側掘進機30のシールドフレーム8を受入フードとし、掘進機1、30同士を対向掘進させて双方のトンネルを連通するシステムを説明したが、本発明は、これに限らず、地中の構造物に筒体状の受入フードを設け、この受入フード内に地中接合用掘進機が嵌入するタイプにも適用できる。
【0046】
【発明の効果】
以上説明したように本発明に係る地中接合用シールド掘進機によれば、地中に配置された受入フード内に嵌入されたときに、受入フードとのラップ代を可及的に大きくできる。よって、止水性を高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る地中接合用シールド掘進機の正面図である。
【図2】上記地中接合用シールド掘進機の側断面図である。
【図3】図2の部分拡大図であり、図3(a)は可動フードを引き込んで傾斜コピーカッタを突出させた状態、図3(b)は可動フードを押し出して傾斜コピーカッタを引き込んだ状態を示す説明図である。
【図4】上記地中接合用シールド掘進機が受入フード内に嵌入する工程を示す説明図であり、図4(a)は第1工程、図4(b)は第2工程を示す図である。
【図5】図4の続きの工程を示す説明図であり、図5(c)は第3工程、図5(d)は第4工程を示す図である。
【図6】図5(d)の部分拡大図である。
【図7】本発明者等が先に開発した地中接合用シールド掘進機の説明図である。
【符号の説明】
1 地中接合用シールド掘進機としての挿入側掘進機
2 カッタヘッド
7 筒体
8 受入フードとしての受入側掘進機のシールドフレーム
9 固定フード
10 傾斜コピーカッタ
11 掘進機本体
13 可動フード
18 第1固化剤注入通路の出口
19 第1固化剤注入通路
23 第2固化剤注入通路の出口
24 第2固化剤注入通路
26 第3固化剤注入通路の出口
27 第3固化剤注入通路
W 所定隙間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an underground joining shield machine capable of increasing a wrap margin with a receiving hood disposed underground.
[0002]
[Prior art]
The present inventors have developed an underground joining shield machine shown in FIG. 7 that is fitted and joined in a receiving hood arranged underground.
[0003]
As shown in the figure, in this system, a shield excavator b on the insertion side is digged in opposition to a shield excavator a on the receiving side, and the cutter head c of the receiving side excavator a is shrunk by the copy cutter d to reduce the shielding. The solidifying agent (concrete or the like) is filled in front of the frame e while being retracted, and the insertion side excavator b is dug into the shield frame e to insert the cutter head f and the hood g. A solidifying agent is injected into the space between the tunnels (e) and (e.g., lap margin L) to stop the water, thereby allowing both tunnels to communicate with each other.
[0004]
In this system, the shield frame e of the receiving excavator a serves as the receiving hood, and the inserting excavator b corresponds to the underground joining shield excavator.
[0005]
Note that there is a related prior art described in Patent Document 1.
[0006]
[Patent Document 1]
JP-A-2002-155696 (pages 3 to 5, FIGS. 1 to 8)
[0007]
[Problems to be solved by the invention]
By the way, in order to increase the waterproofness of the wrap portion between the hood g and the shield frame e, it is important to increase the wrap margin L. However, when the retreat amount of the cutter head c cannot be increased due to the structure of the receiving side excavator a, the insertion depth of the insertion side excavator b becomes shallow, and the lap allowance L required for stopping water cannot be secured. Occurs. For this reason, water stoppage may become unstable.
[0008]
In particular, in an excavator of a type that excavates an excavable wall provided in a starting or reaching shaft or the like, in order to cut carbon fibers (reinforcing material) in the excavable wall, a cutter h is provided with a normal bit h. When the excavators are opposed to each other as shown in FIG. 7 to attach a dedicated bit for cutting carbon fiber having a high height, the excavators a and b are separated from each other by a dedicated bit, and The lap margin L becomes small.
[0009]
SUMMARY OF THE INVENTION An object of the present invention, which has been made in view of the above circumstances, is to provide a shield for underground bonding that can increase a wrap margin with a receiving hood as much as possible when fitted into a receiving hood disposed underground. To provide an excavator.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an underground joining shield excavator that is fitted and joined in a receiving hood arranged in the ground, provided on a cutter head for cutting a face, and A cylinder inserted into the receiving hood, a fixed hood provided on the excavator body behind the cutter head with a predetermined gap from the cylinder, and slidably axially on an inner peripheral surface of the fixed hood. And a movable hood provided to close a gap with the cylindrical body during forward movement.
[0011]
ADVANTAGE OF THE INVENTION According to the shield excavator for underground joining which concerns on this invention, after inserting the cylindrical body of a cutter head and a part (front part) of the fixed hood of an excavator main body into a receiving hood, the movable hood is advanced and the cylinder is advanced. By closing the gap between the body and the fixed hood, not only the fixed hood but also the cylinder and the movable hood function as a wrap member. Therefore, the wrap margin becomes larger than before, and the stability of the water stoppage is improved.
[0012]
Preferably, the movable hood is provided with a first solidifying agent injection passage having an outlet which is covered by the inner peripheral surface of the fixed hood when retracted and is exposed to the gap when moving forward. With this configuration, the solidifying agent is supplied from the outlet of the first solidifying agent injection passage to the gap between the cylinder and the fixed hood, that is, substantially the wrap portion between the wrap member (fixed hood, movable hood, cylinder) and the receiving hood. Since it can be injected into the center, the water stoppage is increased. Further, since the outlet is usually covered with the inner peripheral surface of the fixed hood, the outlet is not clogged with earth and sand.
[0013]
It is preferable that a second solidifying agent injection passage having an outlet in the cylindrical body is formed in the cutter head, and a third solidifying agent injection passage having an outlet in the fixed hood is formed in the excavator body. With this configuration, the solidifying agent can be injected into the front portion and the rear portion of the wrap portion from the outlet of the second solidifying agent injection passage and the outlet of the third solidifying agent injection passage, respectively. Is done. Therefore, the water stop wall can be easily formed in the wrap portion.
[0014]
Further, it is preferable that the cutter head is provided with an oblique copy cutter that protrudes and retracts diagonally forward avoiding the cylindrical body. In this case, there is no need to provide an indentation hole, a notch, or the like for allowing the copy cutter to protrude and retract in the cylindrical body, so that the entire length of the cylindrical body can be used as the wrap member. Therefore, the wrap margin can be made as large as possible, and the water stoppage is enhanced.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the accompanying drawings.
[0016]
FIG. 1 is a front view of a shield excavator for underground joining according to the present embodiment, FIG. 2 is a side sectional view of the shield excavator for underground joining, and FIG. 3 is a partially enlarged view of FIG. FIG. 5 is an explanatory view showing a state in which the underground shield excavator is fitted into a receiving hood arranged underground.
[0017]
As shown in FIGS. 1 and 2, the underground shield excavator 1 has a cutter head 2 for cutting a face. Although the cutter head 2 has four cut-spokes 3 in the illustrated example, the number of spokes may be any number, and it is not limited to the spoke type and may be a face plate type.
[0018]
A normal cutter bit 4 for cutting a face and a dedicated bit 5 are mounted on the cutter head 2. The dedicated bit 5 is for cutting carbon fiber (reinforcing material) in an excavable wall provided in a starting or reaching shaft or the like as described above, and is set higher than a normal bit 4. I have.
[0019]
A cylindrical body 7 is attached to the outer peripheral portion of the cutter head 2 coaxially with the rotating shaft 6. As shown in FIG. 3B, the cylindrical body 7 is inserted into the receiving hood 8 at the time of joining, and the outer diameter thereof is formed to be smaller than the inner diameter of the receiving hood 8 to some extent. The length in the direction is formed so as to separate a predetermined gap W from a fixed hood 9 described later.
[0020]
As shown in FIGS. 1 and 2, the cutter head 2 is provided with an inclined copy cutter 10 that protrudes obliquely forward and avoids the cylinder 7. Therefore, the cylindrical body 7 is not provided with any indentation holes, notches, and the like for allowing the inclined copy cutter 10 to appear and disappear. The inclined copy cutter 10 is for excavating the inside of a curve when excavating the curve.
[0021]
As shown in FIGS. 2 and 3, a fixed hood 9 is provided on the excavator main body 11 behind the cutter head 2 at a predetermined gap W from the cylindrical body 7. The fixed hood 9 is attached to a front portion of a cylindrical shield frame 12 which forms an outer shell of the excavator body 11, and its inner and outer peripheral surfaces are flush with the inner and outer peripheral surfaces of the cylinder 7 of the cutter head 2. I have.
[0022]
The reason why the predetermined gap W is set between the front end of the fixed hood 9 and the rear end of the cylindrical body 7 is not only to rotate the cutter head 2 with respect to the excavator body 11 but also to leave this gap W This is because if it is narrow, the rear end of the cylindrical body 7 and the front end of the fixed hood 9 are worn by earth and sand passing therethrough during excavation, so that it is necessary to provide a certain gap (about 50 mm).
[0023]
As shown in FIG. 3, a movable hood 13 is provided on the inner peripheral surface of the fixed hood 9 so as to be slidable in the axial direction. When the movable hood 13 is retracted, as shown in FIG. 3A, it is completely accommodated inside the fixed hood 9 to secure the gap W. When the movable hood 13 is advanced, as shown in FIG. 2 and closes the gap W.
[0024]
The movable hood 13 is slid in the axial direction by an actuator 16 (jack) provided on a partition 15 that divides the inside of the excavator body 11 into a face side and an inside of a pit. A plurality of jacks 16 are arranged at predetermined intervals in the circumferential direction of the movable hood 13, and are connected to the movable hood 13 via pins 17.
[0025]
The movable hood 13 has an outlet 18 which is covered with the inner peripheral surface of the fixed hood 9 at the time of retreat as shown in FIG. 3A and is exposed to the gap W at the time of forward movement as shown in FIG. 3B. A solidifying agent injection passage 19 is formed. A plurality of outlets 18 (for example, 14 locations) are provided on the outer peripheral surface of the movable hood 13 at intervals in the circumferential direction.
[0026]
The solidifying agent (concrete or the like) is introduced into the first solidifying agent injection passage 19 from an injection pipe 21 attached through the partition wall 15 through a flexible hose 20 (a rubber hose or the like). ing. The reason for using the flexible hose 20 is that the hose 20 itself expands and contracts when the movable hood 13 slides as shown in FIGS.
[0027]
The flexible hose 20 and the injection pipe 21 may be provided for each of the first solidifying agent injection passages 19, or some or all of the first solidifying agent injection passages 19 may be collectively provided. Good. The flexible hose 20 and the rod portion of the jack 16 are covered by a conical surface-shaped cover 22 attached to the partition wall 15 and protected from earth and sand.
[0028]
As shown in FIG. 6, a second solidifying agent injection passage 24 having an outlet 23 in the cylinder 7 is formed in the cutter head 2. As shown in FIG. 1, the second solidifying agent injection passage 24 is formed in the cut-spoke 3 to which the inclined copy cutter 10 is not attached. However, the passage 24 may also be formed in a member 25 connecting the spoke 3 on which the copy cutter 10 is mounted and the cylinder 7.
[0029]
Further, as shown in FIG. 6, a third solidifying agent injection passage 27 having an outlet 26 in the fixed hood 9 is formed in the excavator main body 11. The third solidifying agent injection passage 27 is composed of a pipe penetrating the partition wall 15 and the fixed hood 9, and is provided in a plurality (for example, 14 places) at intervals in the circumferential direction of the fixed hood 9.
[0030]
As shown in FIG. 6, an auxiliary solidifying agent injection passage 29 having an outlet 28 in the shield frame 12 is formed in the excavator main body 11. The auxiliary solidifying agent injection passage 29 is formed of a pipe penetrating the shield frame 12, and is provided in a plurality (for example, 16 places) at intervals in a circumferential direction of the shield frame 12.
[0031]
The underground shield excavator 1 having the above-described configuration is arranged in the receiving hood 8 arranged underground as shown in FIGS. 4 (a) and 4 (b) and FIGS. 5 (c) and 5 (d). And joined. Hereinafter, the joining process will be described using the shield excavator 1 for underground joining as an insertion-side shield excavator and the receiving hood 8 as a shield frame of the receiving-side excavator 30.
[0032]
First, as shown in FIG. 4A, the cutter head 31 of the shield excavator 30 on the receiving side is retracted into the shield frame 8 by shrinking the copy cutter 32, and a solidifying agent 33 (concrete or the like) is provided in front thereof. Fill and harden the soil inside. Then, the shield excavator 1 on the insertion side is excavated so as to face the receiving excavator 30.
[0033]
At this time, as shown in FIG. 3A, the movable hood 13 of the insertion side excavator 1 is drawn into the inside of the fixed hood 9 by the jack 16, and the fixed hood 9 of the excavator body 11 and the cutter head 2 A predetermined gap W is formed between the cylindrical body 7 and the cylindrical body 7 to such an extent that abrasion due to the flow of earth and sand does not occur. As a result, sediment flow wear that may occur at the rear end of the cylindrical body 7 and the front end of the fixed hood 9 is suppressed.
[0034]
Then, when the insertion side excavator 1 approaches a predetermined distance, the inclined copy cutter 10 is extended to loosen the side ground, and at the same time, the solidifying agent 34 is injected radially outward from the second solidifying agent injection passage 24. Excavate while solidifying the loosened ground. Further, the solidifying agent 35 is sprayed forward from the cutter head 2 to solidify earth and sand taken into the cutter chamber 36.
[0035]
Then, as shown in FIG. 4B, when the insertion side excavator 1 approaches the ground improvement area 33 of the receiving side excavator 30, the inclined copy cutter 10 is contracted. Then, as shown in FIG. 5C, the insertion side excavator 1 is advanced, and fitted into the shield frame 8 of the receiving side excavator 30. At this time, the injection of the solidifying agent 34 from the second solidifying agent injection passage 24 is continued.
[0036]
This is because when the cutter head 2 of the insertion side excavator 1 enters the shield frame 8 of the receiving side excavator 30, the ground improvement soil 33 (solidified soil) between the cutter head 2 and the shield frame 30 is formed. This is because the cutter head 2 is loosened by the rotation, and thus needs to be solidified again.
[0037]
Then, as shown in FIG. 5D, the insertion side excavator 1 is further advanced, and the cutter heads 2 and 31 of both excavators 1 and 30 are on the verge of contact. Then, as shown in FIG. 3B, the movable hood 13 is advanced by the jack 16, and the tip of the movable hood 13 contacts the stopper 14 of the cutter head 2, thereby closing the gap W between the fixed hood 9 and the cylinder 7.
[0038]
Thereby, not only the fixed hood 9 but also the cylindrical body 7 and the movable hood 13 function as a wrap member of the water stop zone. Therefore, the lap allowance L2 is larger than the lap allowance L1 of the conventional type (the type without the movable hood 13 and the cylindrical body 7: see FIG. 7), and the stability of water stoppage is improved. That is, in the present embodiment, the amount of the insertion depth of the excavator 1 into the receiving hood 8 excluding the height of the bits 4 and 5 is a substantial wrap margin L2.
[0039]
Then, as shown in FIG. 6, the solidifying agent is supplied to the first, second, and third solidifying agent injection passages 19, 24, 27, respectively, and the cylindrical body 7, the movable hood 13, and the fixed hood of the insertion side excavator 1 are supplied. A solidifying agent is injected into a wrap portion between the shield frame 8 and the receiving side excavator 30. As a result, the solidifying agent is substantially uniformly injected into the wrap portion, and the water is quickly and appropriately stopped.
[0040]
That is, although the earth and sand in the wrap portion is solidified 33 at the stage of FIG. 4A, it loosens when the insertion side excavator 1 is fitted, so that it is removed from the first, second and third solidifying agent injection passages 19. , 24, 27 are again solidified. Further, by injecting the solidifying agent from each of the passages 19, 24, and 27, the injection zones are evenly distributed, and water stoppage is ensured.
[0041]
Here, the outlet 18 of the first solidifying agent injection passage 19 provided in the movable hood 13 is covered with the inner peripheral surface of the fixed hood 9 at normal times (at the time of retreat) as shown in FIG. Therefore, the soil and the like are not clogged, and as shown in FIG. 3 (b), the solidifying agent faces the gap W at the time of advancing, so that the solidifying agent can be injected exactly into the approximate center of the wrap portion.
[0042]
In addition, since the copy cutter 10 is an inclined copy cutter that projects obliquely forward and away from the cylinder 7, it is not necessary to provide a projection hole or a notch or the like for allowing the copy cutter 10 to appear and retract in the cylinder 7. 7 can be used as the wrap member. Therefore, the wrap margin can be made as large as possible, and the water stoppage is enhanced.
[0043]
Thereafter, as shown in FIG. 6, an injection pipe extends obliquely forward from the auxiliary solidifying agent injection passage 29 to the side ground and the solidifying agent 37 is injected. Thereby, the side ground at the tip portion (opening portion of the wrap portion) of the shield frame 8 of the receiving side excavator 30 is solidified, and is combined with the solidifying agent injected from each of the passages 19, 24, 27. Water stoppage is perfect.
[0044]
After the solidifying agent injected from each of the passages 19, 24, 27, and 29 is solidified, the partition walls 15, the cutter heads 2, 31, and the like of both the excavators 1, 30 are removed, and the tunnels are connected. As a result, the tunnels constructed by the two excavators 1 and 30 can be communicated quickly and reliably under complete water stoppage.
[0045]
In the present embodiment, a system in which the shield frame 8 of the receiving side excavator 30 is used as a receiving hood and the excavators 1 and 30 are mutually excavated to communicate with both tunnels has been described. The present invention is not limited to this, and may be applied to a type in which a tubular receiving hood is provided in an underground structure, and an underground joining excavator fits into the receiving hood.
[0046]
【The invention's effect】
As described above, according to the shield excavator for underground joining according to the present invention, when it is inserted into a receiving hood arranged underground, a wrap margin with the receiving hood can be made as large as possible. Therefore, the water stoppage can be improved.
[Brief description of the drawings]
FIG. 1 is a front view of a shield excavator for underground joining according to an embodiment of the present invention.
FIG. 2 is a side sectional view of the underground shield shield machine.
3 is a partially enlarged view of FIG. 2; FIG. 3 (a) shows a state in which a movable hood is pulled in to protrude an inclined copy cutter; FIG. 3 (b) shows a state in which the movable hood is pushed out and a tilted copy cutter is retracted; It is explanatory drawing which shows a state.
FIG. 4 is an explanatory view showing a step in which the underground shield excavating machine is fitted into a receiving hood, FIG. 4 (a) showing a first step, and FIG. 4 (b) showing a second step. is there.
5 is an explanatory view showing a step subsequent to that of FIG. 4. FIG. 5C is a view showing a third step, and FIG. 5D is a view showing a fourth step.
FIG. 6 is a partially enlarged view of FIG.
FIG. 7 is an explanatory view of a shield excavator for underground joining developed earlier by the present inventors.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 insertion side excavator as underground shield excavator 2 cutter head 7 cylinder 8 shield frame of receiving side excavator as receiving hood 9 fixed hood 10 inclined copy cutter 11 excavator body 13 movable hood 18 first solidification Outlet 19 of the agent injection passage 19 first solidifying agent injection passage 23 outlet of the second solidifying agent injection passage 24 second solidifying agent injection passage 26 outlet of the third solidifying agent injection passage 27 third solidifying agent injection passage W predetermined gap

Claims (4)

地中に配置された受入フード内に嵌入して接合される地中接合用シールド掘進機であって、切羽を切削するカッタヘッドに設けられ接合時に上記受入フード内に挿入される筒体と、上記カッタヘッド後方の掘進機本体に上記筒体から所定隙間を隔てて設けられた固定フードと、該固定フードの内周面に軸方向にスライド自在に設けられ前進時に上記筒体との隙間を塞ぐ可動フードとを備えたことを特徴とする地中接合用シールド掘進機。An underground joining shield excavator that is fitted and joined in a receiving hood arranged in the ground, and is provided on a cutter head that cuts a face and is inserted into the receiving hood at the time of joining, A fixed hood provided on the excavator body behind the cutter head at a predetermined gap from the cylindrical body, and a gap between the cylindrical body at the time of forward movement provided slidably in an axial direction on an inner peripheral surface of the fixed hood. A shield excavator for underground joining, comprising a movable hood for closing. 上記可動フードに、その後退時に上記固定フードの内周面に覆われ前進時に上記隙間に露出する出口を有する第1固化剤注入通路を形成した請求項1記載の地中接合用シールド掘進機。2. The underground shield excavator according to claim 1, wherein the movable hood is provided with a first solidifying agent injection passage having an outlet which is covered by an inner peripheral surface of the fixed hood when retreating and is exposed to the gap when moving forward. 上記カッタヘッドに上記筒体に出口を有する第2固化剤注入通路を形成すると共に、上記掘進機本体に上記固定フードに出口を有する第3固化剤注入通路を形成した請求項1乃至2記載の地中接合用シールド掘進機。3. The cutter head according to claim 1, wherein a second solidifying agent injection passage having an outlet in the cylinder is formed in the cutter head, and a third solidifying agent injection passage having an outlet in the fixed hood is formed in the excavator body. Underground shield excavator. 上記カッタヘッドに、上記筒体を避けて斜め前方に出没する傾斜コピーカッタを設けた請求項1乃至3記載の地中接合用シールド掘進機。4. The underground shield excavator according to claim 1, wherein the cutter head is provided with an inclined copy cutter which obliquely protrudes and protrudes forward, avoiding the cylindrical body.
JP2002298747A 2002-10-11 2002-10-11 Underground welding shield machine Expired - Fee Related JP4037237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298747A JP4037237B2 (en) 2002-10-11 2002-10-11 Underground welding shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298747A JP4037237B2 (en) 2002-10-11 2002-10-11 Underground welding shield machine

Publications (2)

Publication Number Publication Date
JP2004132087A true JP2004132087A (en) 2004-04-30
JP4037237B2 JP4037237B2 (en) 2008-01-23

Family

ID=32288068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298747A Expired - Fee Related JP4037237B2 (en) 2002-10-11 2002-10-11 Underground welding shield machine

Country Status (1)

Country Link
JP (1) JP4037237B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091972A (en) * 2012-11-05 2014-05-19 Alpha Civil Engineering:Kk Rectangular boring machine
JP2020007819A (en) * 2018-07-10 2020-01-16 株式会社奥村組 Cutter board, shield machine with the same, and tunnel excavation method using shield machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091972A (en) * 2012-11-05 2014-05-19 Alpha Civil Engineering:Kk Rectangular boring machine
JP2020007819A (en) * 2018-07-10 2020-01-16 株式会社奥村組 Cutter board, shield machine with the same, and tunnel excavation method using shield machine

Also Published As

Publication number Publication date
JP4037237B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP2007077677A (en) Construction method for underground structure
JP2004132087A (en) Shield machine for underground connection
JPH1181877A (en) Outbreak device for shield boring machine
JP4090323B2 (en) Underground welding shield machine
JP2002309894A (en) Tunnel and method for constructing the same
JP2004238831A (en) Sharp curve excavating method
JP3829348B2 (en) Shaft junction shield
JP3879105B2 (en) Shield connection method to existing tunnel
JP3841624B2 (en) Expansion / contraction tunnel excavator and expansion / contraction method of expansion / contraction tunnel excavator body
JP2004218280A (en) Tunnel boring machine for underground connection and underground connection method for the tunnel
JP4172023B2 (en) Shield excavator, tunnel widening method and tunnel narrowing method
JP3890526B2 (en) Segment and tunnel construction method using the same
JP3014969B2 (en) Buried pipe replacement equipment and method
JPH10331593A (en) Leading cutter for back-filling material injection pipe of shield excavator
JP3248885B2 (en) Cutting machine for shield machine
JP3408723B2 (en) Excavation method of different diameter tunnel
JP3733796B2 (en) Shield device and shield method
JP3832005B2 (en) Shield machine
JP2004068377A (en) Tunnel boring machine and tunnel construction method
JP3811482B2 (en) Shield tunnel joining method
JPH0978981A (en) Tunnel outside lining method
JP2009203734A (en) Obstacle removing method and working method by worker used in tunnel excavation
JP2007239269A (en) Shield machine and wide part constructing method of shield tunnel
JP2004060233A (en) Shield machine and tail seal replacing method of shield machine
JP4079754B2 (en) Drilling method of shield machine for partial hard ground

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Ref document number: 4037237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees