JP2004131612A - Coloring agent for plastic, and its use - Google Patents

Coloring agent for plastic, and its use Download PDF

Info

Publication number
JP2004131612A
JP2004131612A JP2002298241A JP2002298241A JP2004131612A JP 2004131612 A JP2004131612 A JP 2004131612A JP 2002298241 A JP2002298241 A JP 2002298241A JP 2002298241 A JP2002298241 A JP 2002298241A JP 2004131612 A JP2004131612 A JP 2004131612A
Authority
JP
Japan
Prior art keywords
pigment
molding
resin
colorant
phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002298241A
Other languages
Japanese (ja)
Other versions
JP4406197B2 (en
Inventor
Yusaku Ide
井出 勇作
Takayoshi Ishigami
石上 隆義
Naoki Hamada
濱田 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2002298241A priority Critical patent/JP4406197B2/en
Publication of JP2004131612A publication Critical patent/JP2004131612A/en
Application granted granted Critical
Publication of JP4406197B2 publication Critical patent/JP4406197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coloring agent for plastics, which can reduce warpage and distortion and can give excellent dimensional accuracy in coloring and molding a polyolefin wherein a halogenated metal phthalocyanine is used, and a colored molding using the coloring agent. <P>SOLUTION: The coloring agent for plastics comprises a halogenated metal phthalocyanine having a metal phthalocyanine skeleton substituted by multiple halogen atoms, wherein the average number of halogen substituents is 1.0 to 14.5 with a breadth of the distribution of 5 or greater and wherein compounds having 1 to 14 halogen substituents are present in an amount of 50% or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、プラスチックを成形加工して得られる成形品の形状を制御する方法に関し、詳しくは、特定のハロゲン化金属フタロシアニンからなる低収縮性顔料組成物、およびそれを主な着色成分とする着色剤を用いて着色されたプラスチック成形品の反りや変形を小さくする方法に関する。
【0002】
【従来の技術】
【0003】プラスチック着色剤として使用されているハロゲン化金属フタロシアニンは、耐光性、耐熱性、耐移行性、鮮明な色相、高い着色力等の特性を有する。一般にハロゲン化金属フタロシアニンは黄味の色相が好まれ、ハロゲン置換基数が理論値の16に近いもの程黄味となる。しかしながら、ハロゲン置換基数の多いハロゲン化金属フタロシアニンは、ポリオレフィンやポリエステルなどの部分的に結晶性を有する樹脂の着色に用いた場合、造核作用が大きく、部分的に結晶性を有する樹脂の結晶化温度の上昇や球晶が小さくなる等の結晶性に影響を及ぼし、着色された樹脂の収縮性や収縮のバランス(成形収縮比、収縮差率)が変化する現象を引き起こす。その結果プラスチック成形品においては反り、変形あるいは寸法変化になって現れ、成形加工上の問題となっていた。反りや変形は、コンテナ、プラスチックパレット、キャップやボトルなどの成形品にとっては致命的な問題であった。
【0004】成形品の反りや変形を改善する方法としては、反り、変形、寸法変化を加味した金型を用いる方法がある。しかし、樹脂の種類、着色剤、添加剤、成形条件などにより成形品の収縮率が大きく異なる為、反りや変形を加味した金型の設計は難しく、何度も修正を行わなければならない。また、成形メーカーでは、成形温度、射出圧、射出時間、射出速度、冷却時間等の加工条件を変えることにより、反りや変形の改善を行っている。しかし、この場合も樹脂の種類、着色剤、添加剤及び成形品の大きさや形状により収縮率が異なる為、反りや変形を予測した加工条件の設定は困難で、加工条件を試行錯誤で何度も修正する必要があった。また、成形サイクルを長くし、生産性を悪くする場合が多かった。
【0005】反りや変形を改善する他の方法としては、結晶化剤(結晶核剤、造核剤あるいは結晶化促進剤)の添加が行われている。結晶化剤の添加は、結晶核となる成分を多く配合することにより、微細な結晶を均一にかつ急速に生成させて、顔料による収縮への影響を低減することに因る。あるいは、顔料による収縮方向とは異なる方向に収縮させる結晶化剤を加えることによって見かけ上の収縮差をなくすことによる。結晶化剤を用いることにより、成形サイクルを短くできること、また剛性や透明性が上がることなどが知られている。結晶化剤としては、例えば、安息香酸ナトリウム、4−第三ブチル安息香酸アルミニウム、アジピン酸ナトリウムなどのカルボン酸金属塩、ナトリウムビス(4−第三ブチルフェニル)ホスフェート、ナトリウム−2,2’−メチレンビス(4,6−ジ第三ブチルフェニル)ホスフェートなどの酸性燐酸エステル金属塩、ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトールなどのソルビトールのアセタールタイプが用いられている。しかし有機顔料によって引き起こされる成形歪みに対しては、効果が不十分であった。
【0006】従って、最良の方法は着色剤として用いられる顔料を改質して結晶核として働かないようにすることである。顔料の結晶形、粒子径、形状を変えること、顔料骨格に各種の置換基を導入した顔料誘導体(有機色素誘導体)を添加することによる顔料表面の改質、顔料に樹脂やシランカップリング剤等の表面処理を施すことによる顔料表面の改質などが行われている。
【0007】顔料の結晶形、粒子径、形状を変える方法としては、特開昭57−155242号公報、特開昭56−99245号公報等にイソインドリノンの顔料表面改質が例示されている。特許文献1にはアルミニウムフタロシアニンが例示されている。しかし、顔料の改質法は必ずしも十分な効果が得られておらず、色相、分散性、着色力、耐熱性、耐光性等の顔料元来の物性に影響を及ぼしてしまう。
【0008】反りや変形の改善を目的とした、顔料構造に置換基を導入したいわゆる顔料誘導体による表面改質の方法としては、特公昭53−7185号公報、特公昭56−10348号公報、特公昭61−36017号公報、特開昭51−18551号公報、特開昭58−23840号公報、特開昭62−45896号公報等に見られるごとく多数提案されているが、反りや変形は幾分改善されるものの十分ではなく、また、色移行性に問題があり、実用には至っていない。また、添加剤の色による色相の変化や、着色力の低下、分散性の低下があり、添加剤が高価である点等の欠点がある。
【0009】顔料誘導体以外の顔料の表面改質方法としては、有機シランや有機チタンによる表面処理、熱可塑性樹脂による顔料の表面コーティングが行われている。特開平05−194873号公報には、有機顔料残基を有するスルホン酸と水溶性高分子アンモニウム塩からなるポリマーを共存させ、顔料表面をポリマーで改質することが記載されている。しかし、いずれも効果は不十分であった。有機顔料を用いて樹脂、特に部分的に結晶性を有する樹脂を着色したときの成形品における成形歪みは上記いずれの方法でも改善されず大きな問題であった。
【0010】
【特許文献1】
特開平11−279338号公報
【発明が解決しようとする課題】本発明の目的は、ハロゲン化金属フタロシアニンを使用したポリオレフィンの着色成形において、反りや変形を小さくし寸法精度に優れたプラスチック用着色剤ならびにその着色成型物を提供することである。
【0011】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべくハロゲン化金属フタロシアニンのハロゲン置換基数と、ポリオレフィン着色成型物の反りや変形を詳細に調査検討を重ね、反りや変形にはハロゲン置換基数の分布が影響することを見いだした。その結果、特定のハロゲン置換基数を有するハロゲン化金属フタロシアニンからなる着色剤を用いて着色することにより、優れた耐光性、耐熱性、耐移行性等を失わず樹脂成形品の反りや変形を小さくできることを見出し、本発明を完成させるに至った。
すなわち本発明は、金属フタロシアニン骨格に複数個のハロゲンが置換したハロゲン化金属フタロシアニンからなり、ハロゲン置換基数の平均が1.0〜14.5個で分布幅が5個以上であり、ハロゲン置換基数1個から14個である化合物が50%以上存在するハロゲン化金属フタロシアニンからなるプラスチック用着色剤ならびにその使用に関する。
更に本発明は、上記着色剤、および部分的に結晶性を有する樹脂からなる着色樹脂組成物に関する。
更に本発明は、着色剤が着色樹脂組成物を全量を基準として、0.001〜80重量%である着色樹脂組成物に関する。
【発明の実施の形態】
【0012】
本発明の好ましい態様としては以下の如くである。
本発明に用いるハロゲン化金属フタロシアニンとしては、金属フタロシアニン骨格に複数個のハロゲンが置換したハロゲン化金属フタロシアニンからなり、ハロゲン置換基数の平均が1.0〜14.5個で分布幅が5個以上であり、ハロゲン置換基数1個から14個である化合物が50%以上存在するハロゲン化金属フタロシアニンが好ましい。
ここで、ハロゲン置換基数はマススペクトルによるピークが確認されたもので、含有量は強度比から求め、モル%で示す。
【0013】ハロゲン化金属フタロシアニンのハロゲン置換基数は第1図、第2図に示すマススペクトルに見られるごとく分布を持つ。
【0014】
本発明のハロゲン化金属フタロシアニンを用いて樹脂を着色する方法により、着色された成形品の反り、変形に優れるという機構については、必ずしも明らかになっていない。しかし、本発明のハロゲン化金属フタロシアニンは第1図に例示される様にハロゲン置換基数の分布幅が5以上と広く、着色樹脂組成物とした場合、部分的に結晶性有する樹脂の結晶化に対する核剤としての効果が防止されているためと考えられる。
ハロゲン置換基数が極端に低いもの、あるいは高いものは第2図に例示される様に置換基数分布幅が5より少なくなるため、好ましくない。
【0015】本発明のハロゲン化金属フタロシアニンの金属としては、銅、鉄、コバルト、ニッケル、アルミニウムが例示され、結晶構造的に安定で耐性が高く、色相が鮮明となる銅が特に好ましい。
【0016】本発明のハロゲン置換基数の分布幅の広いハロゲン化金属フタロシアニンの製法は、粗製ハロゲン化金属フタロシアニンの製法に係わり、ハロゲン置換基数分布が5以上となるものであれば特に制限はないが、クロルスルホン酸、あるいは、四塩化チタンの溶融塩を用いてハロゲンを導入する方法ではハロゲン化反応が均一化され、置換基数分布が狭くなる傾向がある。また、あらかじめハロゲン置換基を導入したハロゲン化フタル酸を用い粗製ハロゲン化金属フタロシアニンを合成する製法はさらに置換基数分布が狭くなる傾向があり、高ハロゲン化金属フタロシアニンが得にくいのに対し、粗製金属フタロシアニンを塩化アルミ、あるいは塩化アルミと食塩の溶融塩とした状態でハロゲンを導入する、いわゆる塩化アルミ法による製法は置換基数が広くなるため好ましい。
ハロゲン置換基数は導入するハロゲン量を制御することにより行う。導入するハロゲン量は、製法、装置、反応条件等で異なるが、ハロゲン量が少ない場合はハロゲン置換基数が少なく、ハロゲン量が多い場合はハロゲン置換基数が多くなる。導入するハロゲン量が過小、または、過大の場合は、ハロゲン置換基数の分布幅が狭くなるため、ハロゲン置換基数の平均が1.0〜14.5個となる量が好ましい。
【0017】粗製ハロゲン化金属フタロシアニンはこのまま用いても良いが、着色樹脂組成物としては発色が不十分のため、顔料化を行うのが好ましい。顔料化法としては、例えばキシレン等の芳香族溶剤処理、例えば塩と多価アルコールを使用したソルベントソルトミリング法による処理、例えば硫酸を使用したアシッドペースティング法による処理等従来公知の方法で行うことができるが、アシッドペースティング法での顔料化が粗製ハロゲン化金属フタロシアニン粒子を溶解後析出させるため、粒子形状が不均一で、かつ結晶性が弱まるため好ましい。
本発明において、ハロゲン化金属フタロシアニンの形態は限定されるものではなく、着色樹脂組成物の製法により粉末状あるいは、水ペースト状で使用することができる。
【0018】本発明はハロゲン化金属フタロシアニンを用いて樹脂を着色することを特徴とするが、着色剤においては、他の成分として、本発明の効果を阻害しないか、あるいは衛生上問題ない範囲で、他の有機顔料、無機顔料、ワックス、又その誘導体、重金属不活性剤、アルカリ金属、アルカリ土類金属または亜鉛の金属石けん、ハイドロタルサイト、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤などからなる帯電防止剤、ハロゲン系、リン系または金属酸化物等の難燃剤、エチレンビスアルキルアマイド等の滑剤、酸化防止剤や紫外線吸収剤、加工助剤、充填剤、公知のポリマー用の各種添加剤などを包含させることができる。
【0019】本発明に用いられる着色剤の好ましい一つの形態は、ドライカラーと呼ばれる顔料を高濃度に含有する粉末状の着色剤である。ドライカラーの場合、一般的にハロゲン化金属フタロシアニン100重量部に対して、脂肪族カルボン酸又は芳香族カルボン酸及びそれらの金属塩を分散剤として1〜1000重量部含有する。脂肪族カルボン酸又は芳香族カルボン酸及びそれらの金属塩の例としては、脂肪族カルボン酸としては、カプリル酸、オレイン酸、ステアリン酸等が挙げられ、芳香族カルボン酸としてはフタル酸、安息香酸等が挙げられ、又金属としては、リチウム、カルシウム、マグネシウム、亜鉛等が挙げられる。ドライカラーは粉末状で作業性は悪いものの、顔料の濃度が高く、少量で着色に寄与する為価格的に最も経済的であり、ポリオレフィンの着色に多く用いられる。成形に供する場合は、成形用熱可塑性樹脂100重量部に対して、ドライカラー0.001〜10重量部が用いられる。熱可塑性樹脂のペレットとドライカラーを混合機等で予め均一に混合した後に成形加工に供される。
【0020】本発明において、着色される樹脂、特に部分的に結晶性有する樹脂は、加熱により軟化し、冷却により再度、硬化するものであり、エチレン、プロピレン、ブチレン、スチレンおよび/またはジビニルベンゼンのホモポリマー、あるいはブロックもしくはランダムコポリマーまたはターポリマー、特にHDPE、LDPE、ポリプロピレンおよびポリスチレンのようなα−オレフィン類、またポリエチレンテレフタレートのようなポリエステル類、ナイロン6、ナイロン66のようなポリアミド類、および熱可塑性アイオノマー類等も挙げられる。本発明の方法は、これらの結晶性を有する樹脂、特に熱可塑性の結晶性を有する樹脂に対して高い効果を有し、特に、α−オレフィン、エチレン、プロピレンおよびブチレンのホモポリマー、コポリマー等のいわゆるポリオレフィン樹脂に対しは、特に顕著な効果を有する。
【0021】部分的に結晶性有する樹脂としては、MFR(メルトフローレート、すなわち溶解粘度)が0.01〜30のものが好ましく、MFRが0.01未満では着色樹脂組成物の溶融粘度が高過ぎるために成形加工性が悪かったり、成形品にウエルエドマークやフローマークが発生する。一方、MFRが30を越えると、成形品の機械物性の低下が懸念される。特に、高密度ポリエチレンを用いる場合には、MFRが0.05〜10、低密度ポリエチレン、ポリプロピレン、ポリブテンを用いる場合には、MFRが0.05〜20であることが好ましい。
【0022】本発明は、ハロゲン化金属フタロシアニンを含有する着色剤を用いて部分的に結晶性有する樹脂を着色することを特徴とするが、成形に供される前に、あらかじめ部分的に結晶性有する樹脂を着色したペレット状の着色樹脂組成物を製造し、その着色されたペレット状の着色樹脂組成物を用いて成形加工に供しても良い。
【0023】着色樹脂組成物とは、ハロゲン化金属フタロシアニンからなる着色剤と部分的に結晶性を有する樹脂から構成される。そのまま成形に供されるペレット状のもの(着色ペレット)であっても良いし、あるいは顔料を高濃度に含有するいわゆるマスターバッチと称されるペレット状の着色剤であっても良い。そして、顔料を高濃度に含有するマスターバッチの場合には、係わるマスターバッチを樹脂で希釈して成形に供し、成形品を得ればよい。
【0024】マスターバッチと着色ペレットを比較すると、加工工程等は大差なく、マスターバッチの方が顔料を高濃度に含有する分、着色ペレットよりややコスト高ではあるが、マスターバッチの場合には安価な樹脂で0.5〜200倍に希釈して成形品を得るので、最終成形品として比較すると着色ペレットで成形品を得る場合より、マスターバッチを用いて樹脂で希釈して成形品を得る方が、安価になり好ましい。
【0025】着色樹脂組成物のうち、そのまま成形に供されるいわゆる着色ペレットの場合には、樹脂100重量部、本発明の着色剤0.001〜10重量部を含有することが好ましい。着色剤が0.001重量部未満だと極めて淡色の着色しか得られない。また、10重量部よりも多く顔料を含有すると成形品としての機械物性等を損なう場合がある。
【0026】着色樹脂組成物のうち、顔料を高濃度に含有するマスターバッチの場合は、樹脂100重量部、本発明の着色剤0.1〜200重量部を含有することが好ましい。着色剤が0.1重量部未満だとマスターバッチとしての意味合いがなく、200重量部よりも多く着色剤を含有するとマスターバッチの造粒が困難になる。そして、顔料を高濃度に含有するマスターバッチの場合には、係るマスターバッチを部分的に結晶性有する樹脂で希釈して成形に供し、成形品を得ればよい。希釈に用いられる部分的に結晶性有する樹脂としては、顔料を高濃度に含有するペレット状の着色樹脂組成物を得る際に用いられた部分的に結晶性有する樹脂と同様のものが例示できる。なお、最終成形品は、前記した希釈を必要とせずそのまま成形に供されるペレットの場合と同様に、部分的に結晶性有する樹脂100重量部、着色剤0.001〜10重量部を含有することが好ましい。
【0027】着色樹脂組成物においては、本発明の効果を阻害しないか、あるいは衛生上問題ない範囲で他の有機顔料、無機顔料、他の樹脂及至ワックス、又その誘導体や、重金属不活性剤、アルカリ金属、アルカリ土類金属または亜鉛の金属石けん、ハイドロタルサイト、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤などからなる帯電防止剤、ハロゲン系、リン系または金属酸化物等の難燃剤、エチレンビスアルキルアマイド等の滑剤、酸化防止剤や紫外線吸収剤、加工助剤、充填剤、公知のポリマー用の各種添加剤などを包含させることができる。
【0028】着色樹脂組成物を得る際には、着色剤と部分的に結晶性有する樹脂を混練する前に、着色剤をポリエチレンワックス等の分散剤で処理を行い前加工することが好ましい。前加工する方法としては、単に着色剤と分散剤をミキサーに配合し混合したものと、着色剤と分散剤を配合し溶融混練後に粉砕したものがあるが、着色剤の均一分散性の点で、後者の溶融混練を行ったタイプの加工処理方法が好ましい。
【0029】本発明において、樹脂を成形加工して成形品を得る際の成形方法は特に限定されるものではない。射出成形、ブロー成形、インフレーション成形、Tダイ押出し成形、エンゲル成形、真空成形等、成形方法にかかわらず、着色された成形品の反りや変形を抑制する効果が得られる。
【0030】
【実施例】以下、実施例に基づき本発明をさらに詳しく説明するが、本発明は実施例に特に限定されるものではない。実施例中、部および%は、特に指定がない場合はそれぞれ重量部およびモル%を表す。なお、実施例、比較例で得られたハロゲン化金属フタロシアニンのハロゲン置換基数はマススペクトル(日本電子データム製JMS−DX303HF)により測定した。
【0031】反りや変形の評価は、射出成形機にて収縮性評価用の金型(射出方向とその垂直方向に100mmの標線が設けられた縦150mm、横120mm、厚さ2mmのプレートを作成する金型)を用いて成形温度は220℃、金型温度40℃で連続で20枚射出成形し、評価にはその内、14枚目から19枚目の6枚を用いた。成形されたプレートを恒温室で3日保存した後、精密ノギスにて標線間距離を計測し、その値から射出方向とその垂直方向の収縮率を求めた。その後、射出方向とその垂直方向の収縮率の比で計算される収縮差率と、目視で反りや変形の程度を評価した。なお収縮差率の計算式は以下の通りである。成形プレート一般的に樹脂のみ(以下ナチュラル樹脂と呼ぶ)で成形したプレートの収縮差率との差が10%以内に収まれば低収縮着色剤と呼ばれる。
収縮差率=(垂直方向の収縮率−射出方向の収縮率)/(垂直方向の収縮率)
目視評価の基準は、ナチュラル樹脂のプレートと比較して、反りや変形が同程度であれば顔料の影響が見られないとして○、反りや変形が激しいものは×、ナチュラルのプレートよりは反りや変形が見られるがその差が小さいものを△とした。
【0032】製造例1
塩化アルミニウム200部、食塩40部を加熱して溶融塩とし粗製銅タロシアニン40部を添加した後170℃に加熱し、塩素を毎時6部の割合で10時間導入した。塩素導入後、反応混合物を多量の水に注入し、濾過水洗、乾燥、粉砕を行い、54部の塩素化銅フタロシアニンを得た。得られた塩素化銅フタロシアニンの塩素置換基数の平均は13.3個、塩素置換基数分布幅8であった。また塩素置換基数1個から14個である化合物は79%であった。
塩素化銅フタロシアニン50部を98重量%硫酸300部に添加し、40〜45℃で4時間撹拌した後混合物を2000部の水に添加した。80℃で2時間撹拌後、濾過、水洗、乾燥、粉砕を行い塩素化銅フタロシアニン顔料46部を得た。
【0033】製造例2
製造例1の塩素の代わりに臭素を毎時2部の割合で29時間導入した後、さらに塩素を毎時6部の割合で6時間導入した以外は製造例1と同じ操作を行い、74部の臭素化塩素化銅フタロシアニン顔料を得た。臭素化塩素化銅フタロシアニンのハロゲン(塩素と臭素の合計)置換基数の平均は13.1個、ハロゲン置換基数分布幅7であった。またハロゲン置換基数1個から14個である化合物は86%であった。
【0034】製造例3〜12
各種ハロゲン化銅フタロシアニン顔料を製法例 1あるいは、製法例2に準じて製造した。得られたハロゲン化銅フタロシアニンのハロゲン置換基数の平均、ハロゲン置換基数分布幅、ハロゲン置換基数1個から14個である化合物の比率は表1に示す。
【0035】
【表1】

Figure 2004131612
【0036】実施例1
製造例1のハロゲン化銅フタロシアニン顔料100部にステアリン酸亜鉛100部をよく混合しドライカラーを得た。得られたドライカラーのうち2部に高密度ポリエチレン樹脂(三井住友ポリオレフィン社製Hizex 2100J)1000部を加え、タンブラーにて10分間よく混合した後、射出成形機(東芝機械製IS100FIV)にてプレート状に成形し評価した。ナチュラル樹脂のプレート同様の収縮差率や、反りを示した。
【0037】実施例2〜7
製造例1のハロゲン化銅フタロシアニン顔料を表2のように変更し、ほかは実施例1と同様に試験を行った。試験結果を表2に示す。
【0038】比較例1〜5
製造例1のハロゲン化銅フタロシアニン顔料を表2のように変更し、ほかは実施例1と同様に試験を行った。試験結果を表2に示す。
【0039】
【表2】
Figure 2004131612
【0040】実施例8
製造例1のハロゲン化銅フタロシアニン顔料100部にポリエチレンワックス(三井住友ポリオレフィン社製HiWax  NL−500)100部をよく混合したのち、3本ロールにてよく混練しパウダー状の着色剤を得た。得られた着色剤のうち1部に高密度ポリエチレン樹脂(三井住友ポリオレフィン社製Hizex2208J)100部を加え、スーパーミキサーにて5分間よく混合した後、単軸押出機にて着色ペレットを得た。得られた着色ペレットを射出成形機にてプレート状に成形し、成形品を得た。得られたプレートはナチュラル樹脂同様の収縮差率や、反りを示した。
【0041】実施例9
実施例1において高密度ポリエチレンの代わりにポリプロピレン樹脂(三井住友ポリオレフィン社製グランドポリプロJ−104)を用いた以外は同様にし、成形品を得た。得られたプレートはナチュラル樹脂同様の収縮差率や、反りを示した。
【0042】実施例10〜15
実施例9のハロゲン化銅フタロシアニン顔料を表3のように変更し、ほかは実施例9と同様に試験を行った。試験結果を表3に示す。
【0043】比較例6〜7
実施例9のハロゲン化銅フタロシアニン顔料を表3のように変更し、ほかは実施例9と同様に試験を行った。試験結果を表3に示す。
【0044】
【表3】
Figure 2004131612
【0045】実施例16
実施例8において高密度ポリエチレンの代わりにポリプロピレン樹脂(三井住友ポリオレフィン社製グランドポリプロJ−104)を用いた以外は同様にし、成形品を得た。得られたプレートはナチュラル樹脂同様の収縮差率や、反りを示した。
【0046】
【発明の効果】本発明のハロゲン化金属フタロシアニンは成形品の反りや変形による不良品が減少し、生産性の向上を図ることが出来た。そのため、コンテナ、プラスチックパレット、キャップやボトルなどの広範囲な分野で収縮性能が厳しく要求される用途に利用できる。
【図面の簡単な説明】
【図1】製造例1で得られたハロゲン化金属フタロシアニンのマススペクトル図
【図2】製造例8で得られたハロゲン化金属フタロシアニンのマススペクトル図[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the shape of a molded product obtained by molding a plastic, and more particularly, a low shrinkage pigment composition comprising a specific metal halide phthalocyanine, and The present invention relates to a method for reducing warpage and deformation of a plastic molded product colored using a colorant as a main coloring component.
[0002]
[Prior art]
[0003] Halogenated metal phthalocyanines used as plastic colorants have properties such as light resistance, heat resistance, migration resistance, clear hue, and high coloring power. In general, a halogenated metal phthalocyanine is preferred to have a yellowish hue, and the halogenated metal phthalocyanine becomes yellowish as the number of halogen substituents approaches 16. However, halogenated metal phthalocyanines with a large number of halogen substituents have a large nucleating effect when used to color partially crystalline resins such as polyolefins and polyesters. It affects the crystallinity such as an increase in temperature and spherulite, and causes a phenomenon that the shrinkability and shrinkage balance (molding shrinkage ratio, shrinkage difference rate) of the colored resin change. As a result, the plastic molded product appears to be warped, deformed or dimensionally changed, which has been a problem in molding. Warpage and deformation were fatal problems for molded products such as containers, plastic pallets, caps and bottles.
As a method for improving the warpage and deformation of a molded product, there is a method of using a mold in consideration of warpage, deformation and dimensional change. However, since the shrinkage of the molded product varies greatly depending on the type of resin, colorant, additive, molding conditions, etc., it is difficult to design a mold that takes into account warpage and deformation, and it is necessary to make corrections many times. Further, molding manufacturers improve warpage and deformation by changing processing conditions such as molding temperature, injection pressure, injection time, injection speed, and cooling time. However, in this case as well, since the shrinkage varies depending on the type of resin, colorant, additive, and size and shape of the molded product, it is difficult to set processing conditions that predict warpage and deformation. There was also a need to fix. Moreover, the molding cycle was lengthened and the productivity was often deteriorated.
As another method for improving warpage and deformation, a crystallization agent (crystal nucleating agent, nucleating agent or crystallization accelerator) is added. The addition of the crystallizing agent is due to the fact that fine crystals are uniformly and rapidly generated by blending many components that become crystal nuclei, and the influence on the shrinkage by the pigment is reduced. Alternatively, the apparent shrinkage difference is eliminated by adding a crystallizing agent that shrinks in a direction different from the shrinkage direction by the pigment. It is known that by using a crystallization agent, the molding cycle can be shortened and the rigidity and transparency are increased. Examples of crystallization agents include sodium benzoate, 4-tert-butylaluminum benzoate, carboxylic acid metal salts such as sodium adipate, sodium bis (4-tert-butylphenyl) phosphate, sodium-2,2′- Acetal types of acid phosphate metal salts such as methylenebis (4,6-ditert-butylphenyl) phosphate, sorbitol such as dibenzylidene sorbitol and bis (methylbenzylidene) sorbitol are used. However, the effect was insufficient on the molding distortion caused by the organic pigment.
Therefore, the best method is to modify the pigment used as the colorant so that it does not act as a crystal nucleus. Modification of pigment crystal shape, particle diameter, shape, modification of pigment surface by adding pigment derivatives (organic pigment derivatives) with various substituents introduced into the pigment skeleton, resin or silane coupling agent to the pigment, etc. The surface of the pigment is modified by applying the above surface treatment.
As a method for changing the crystal form, particle diameter and shape of the pigment, pigment surface modification of isoindolinone is exemplified in JP-A-57-155242 and JP-A-56-99245. . Patent Document 1 exemplifies aluminum phthalocyanine. However, the pigment modification method does not always have a sufficient effect, and affects the original physical properties of the pigment such as hue, dispersibility, coloring power, heat resistance, and light resistance.
As a method of surface modification by a so-called pigment derivative in which a substituent is introduced into the pigment structure for the purpose of improving warpage and deformation, JP-B-53-7185, JP-B-56-10348, Many proposals have been made as seen in Japanese Patent Publication No. 61-36017, Japanese Patent Publication No. 51-18551, Japanese Patent Publication No. 58-23840, Japanese Patent Publication No. 62-45896, etc. Although it is improved sufficiently, it is not sufficient, and there is a problem in color migration, and it has not been put into practical use. In addition, there are disadvantages such as a change in hue due to the color of the additive, a reduction in coloring power, a decrease in dispersibility, and an expensive additive.
As methods for modifying the surface of pigments other than pigment derivatives, surface treatment with organic silane or organic titanium, and surface coating of pigment with a thermoplastic resin are performed. Japanese Patent Application Laid-Open No. 05-194873 describes that the pigment surface is modified with a polymer by coexisting a sulfonic acid having an organic pigment residue and a polymer comprising a water-soluble polymer ammonium salt. However, the effect was insufficient. Molding distortion in a molded article when an organic pigment is used to color a resin, particularly a resin having a partial crystallinity, is not a problem with any of the above methods, and is a serious problem.
[0010]
[Patent Document 1]
JP, 11-279338, A SUMMARY OF THE INVENTION An object of the present invention is to provide a colorant for plastics which is less warped and deformed and excellent in dimensional accuracy in color molding of polyolefins using metal halide phthalocyanines. As well as providing colored moldings thereof.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have conducted detailed investigations on the number of halogen substituents of metal halide phthalocyanine and the warpage and deformation of polyolefin colored moldings, and the distribution of the number of halogen substituents affects the warpage and deformation. I found something to do. As a result, coloring with a colorant comprising a metal halide phthalocyanine having a specific number of halogen substituents reduces the warpage and deformation of the resin molded product without losing excellent light resistance, heat resistance, migration resistance, etc. The present inventors have found that the present invention can be accomplished and have completed the present invention.
That is, the present invention comprises a halogenated metal phthalocyanine in which a plurality of halogens are substituted on a metal phthalocyanine skeleton, the average number of halogen substituents is 1.0 to 14.5, the distribution width is 5 or more, and the number of halogen substituents The present invention relates to a colorant for plastics composed of a metal halide phthalocyanine in which 50 to 50% of 1 to 14 compounds are present, and use thereof.
Furthermore, this invention relates to the colored resin composition which consists of said colorant and resin which has crystallinity partially.
The present invention further relates to a colored resin composition in which the colorant is 0.001 to 80% by weight based on the total amount of the colored resin composition.
DETAILED DESCRIPTION OF THE INVENTION
[0012]
Preferred embodiments of the present invention are as follows.
The halogenated metal phthalocyanine used in the present invention is composed of a halogenated metal phthalocyanine in which a plurality of halogens are substituted on the metal phthalocyanine skeleton, the average number of halogen substituents is 1.0 to 14.5, and the distribution width is 5 or more. A metal halide phthalocyanine in which 50% or more of the compounds having 1 to 14 halogen substituents are present is preferable.
Here, the number of halogen substituents has been confirmed to have a peak by mass spectrum, and the content is determined from the intensity ratio and is expressed in mol%.
The number of halogen substituents of the metal halide phthalocyanine has a distribution as seen in the mass spectrum shown in FIGS.
[0014]
The mechanism of excellent warpage and deformation of a colored molded product by the method of coloring a resin using the metal halide phthalocyanine of the present invention is not necessarily clear. However, the halogenated metal phthalocyanine of the present invention has a wide distribution range of the number of halogen substituents of 5 or more as illustrated in FIG. 1, and in the case of a colored resin composition, the crystallization of partially crystalline resin This is probably because the effect as a nucleating agent is prevented.
Those having an extremely low or high number of halogen substituents are not preferred because the distribution of the number of substituents is less than 5 as illustrated in FIG.
Examples of the metal of the metal halide phthalocyanine of the present invention include copper, iron, cobalt, nickel, and aluminum, and copper having a stable crystal structure, high resistance, and a clear hue is particularly preferable.
The method for producing a halogenated metal phthalocyanine having a wide distribution range of the number of halogen substituents according to the present invention relates to a method for producing a crude metal halide phthalocyanine, and is not particularly limited as long as the halogen substituent number distribution is 5 or more. In the method of introducing halogen using chlorosulfonic acid or a molten salt of titanium tetrachloride, the halogenation reaction tends to be uniform, and the substituent number distribution tends to be narrow. In addition, the method of synthesizing crude halogenated metal phthalocyanine using halogenated phthalic acid into which halogen substituents have been introduced in advance tends to have a narrower distribution of the number of substituents, making it difficult to obtain highly halogenated metal phthalocyanine. The so-called aluminum chloride method, in which halogen is introduced in the state in which phthalocyanine is aluminum chloride or a molten salt of aluminum chloride and sodium chloride, is preferable because the number of substituents becomes wide.
The number of halogen substituents is determined by controlling the amount of halogen introduced. The amount of halogen to be introduced varies depending on the production method, apparatus, reaction conditions, etc., but the number of halogen substituents is small when the amount of halogen is small, and the number of halogen substituents is large when the amount of halogen is large. When the amount of halogen to be introduced is too small or too large, the distribution range of the number of halogen substituents is narrowed, so that the average number of halogen substituents is preferably 1.0 to 14.5.
The crude metal halide phthalocyanine may be used as it is, but it is preferably pigmented because the colored resin composition does not have enough color. As the pigmentation method, for example, treatment by an aromatic solvent such as xylene, for example, treatment by a solvent salt milling method using a salt and a polyhydric alcohol, for example, treatment by an acid pasting method using sulfuric acid, etc. However, the pigmentation by the acid pasting method is preferable because the crude metal halide phthalocyanine particles are precipitated after being dissolved, so that the particle shape is non-uniform and the crystallinity is weakened.
In the present invention, the form of the metal halide phthalocyanine is not limited, and the metal halide phthalocyanine can be used in the form of powder or water paste depending on the production method of the colored resin composition.
The present invention is characterized in that the resin is colored using a metal halide phthalocyanine. However, in the colorant, as an additional component, the effect of the present invention is not impaired or there is no problem in terms of hygiene. , Other organic pigments, inorganic pigments, waxes or derivatives thereof, heavy metal deactivators, alkali metal, alkaline earth metal or zinc metal soaps, hydrotalcite, nonionic surfactants, cationic surfactants, anions Anti-static agents composed of ionic surfactants, amphoteric surfactants, flame retardants such as halogen-based, phosphorus-based or metal oxides, lubricants such as ethylene bisalkylamide, antioxidants and UV absorbers, processing aids, Fillers, various additives for known polymers, and the like can be included.
One preferred form of the colorant used in the present invention is a powdery colorant containing a pigment called dry color at a high concentration. In the case of a dry color, generally, 1 to 1000 parts by weight of an aliphatic carboxylic acid or an aromatic carboxylic acid and a metal salt thereof are contained as a dispersant with respect to 100 parts by weight of a metal halide phthalocyanine. Examples of aliphatic carboxylic acids or aromatic carboxylic acids and metal salts thereof include caprylic acid, oleic acid, stearic acid and the like as aliphatic carboxylic acids, and phthalic acid and benzoic acid as aromatic carboxylic acids. In addition, examples of the metal include lithium, calcium, magnesium, and zinc. Although the dry color is powdery and has poor workability, it has the highest pigment concentration and contributes to coloring in a small amount, so it is the most economical in terms of price and is often used for coloring polyolefins. When used for molding, 0.001 to 10 parts by weight of a dry color is used with respect to 100 parts by weight of the thermoplastic resin for molding. The thermoplastic resin pellets and dry color are uniformly mixed in advance by a mixer or the like, and then subjected to molding.
In the present invention, a resin to be colored, particularly a resin having a partial crystallinity, is softened by heating and cured again by cooling, and is made of ethylene, propylene, butylene, styrene and / or divinylbenzene. Homopolymers, or block or random copolymers or terpolymers, in particular α-olefins such as HDPE, LDPE, polypropylene and polystyrene, polyesters such as polyethylene terephthalate, polyamides such as nylon 6, nylon 66, and heat Examples include plastic ionomers. The method of the present invention has a high effect on these crystalline resins, particularly thermoplastic crystalline resins, and in particular, homopolymers and copolymers of α-olefin, ethylene, propylene and butylene. It has a particularly remarkable effect on so-called polyolefin resins.
The partially crystalline resin preferably has an MFR (melt flow rate, that is, a melt viscosity) of 0.01 to 30, and if the MFR is less than 0.01, the colored resin composition has a high melt viscosity. As a result, molding processability is poor, and a well ed mark or a flow mark is generated on the molded product. On the other hand, when the MFR exceeds 30, there is a concern that the mechanical properties of the molded product may be deteriorated. In particular, when high density polyethylene is used, MFR is preferably 0.05 to 10, and when low density polyethylene, polypropylene, or polybutene is used, MFR is preferably 0.05 to 20.
The present invention is characterized in that a resin having partial crystallinity is colored using a colorant containing a metal halide phthalocyanine. However, the resin is partially crystalline before being subjected to molding. A colored resin composition in the form of a pellet colored with the resin it has may be produced and subjected to molding using the colored resin composition in the form of a pellet.
The colored resin composition is composed of a colorant composed of a metal halide phthalocyanine and a resin having partial crystallinity. It may be in the form of pellets (colored pellets) used for molding as it is, or may be a pellet-like colorant called a so-called master batch containing a pigment in a high concentration. In the case of a master batch containing a pigment in a high concentration, the master batch may be diluted with a resin and subjected to molding to obtain a molded product.
When the master batch and the colored pellet are compared, the processing steps are not much different, and the master batch is slightly more expensive than the colored pellet because it contains a higher concentration of pigment, but it is less expensive in the case of the master batch. Since the molded product is obtained by diluting 0.5 to 200 times with a simple resin, when compared with the final molded product, the molded product is obtained by diluting with a resin using a masterbatch rather than obtaining the molded product with colored pellets. However, it is inexpensive and preferable.
Of the colored resin composition, in the case of so-called colored pellets that are directly subjected to molding, it is preferable to contain 100 parts by weight of the resin and 0.001 to 10 parts by weight of the colorant of the present invention. If the colorant is less than 0.001 part by weight, only a very light color can be obtained. Further, if the pigment is contained in an amount of more than 10 parts by weight, the mechanical properties as a molded product may be impaired.
Of the colored resin compositions, in the case of a masterbatch containing a pigment at a high concentration, it is preferable to contain 100 parts by weight of the resin and 0.1 to 200 parts by weight of the colorant of the present invention. If the colorant is less than 0.1 parts by weight, there is no meaning as a masterbatch, and if it contains more than 200 parts by weight, granulation of the masterbatch becomes difficult. And in the case of the masterbatch which contains a pigment in high concentration, the masterbatch should just be diluted with the resin which has crystallinity, and it uses for shaping | molding, and should just obtain a molded article. Examples of the partially crystalline resin used for the dilution include the same resins as the partially crystalline resin used in obtaining a pellet-shaped colored resin composition containing a pigment in a high concentration. The final molded product contains 100 parts by weight of partially crystalline resin and 0.001 to 10 parts by weight of a colorant, as in the case of pellets that are directly subjected to molding without requiring dilution. It is preferable.
In the colored resin composition, other organic pigments, inorganic pigments, other resins and waxes, derivatives thereof, heavy metal deactivators, as long as the effects of the present invention are not hindered or are not sanitary problems. Antistatic agent composed of alkali metal, alkaline earth metal or zinc metal soap, hydrotalcite, nonionic surfactant, cationic surfactant, anionic surfactant, amphoteric surfactant, halogen, phosphorus Flame retardants such as system or metal oxides, lubricants such as ethylene bisalkyl amides, antioxidants and ultraviolet absorbers, processing aids, fillers, various additives for known polymers, and the like can be included.
In obtaining the colored resin composition, it is preferable to pre-process the colorant by treating it with a dispersant such as polyethylene wax before kneading the colorant and the resin having partial crystallinity. There are two methods of pre-processing: one in which a colorant and a dispersant are blended in a mixer, and one in which the colorant and a dispersant are blended and pulverized after melt kneading. The latter type of processing method in which melt kneading is performed is preferable.
In the present invention, the molding method for molding a resin to obtain a molded product is not particularly limited. Regardless of the molding method such as injection molding, blow molding, inflation molding, T-die extrusion molding, engel molding, vacuum molding, etc., the effect of suppressing warpage and deformation of the colored molded product can be obtained.
[0030]
The present invention will be described in more detail with reference to the following examples. However, the present invention is not particularly limited to the examples. In the examples, parts and% represent parts by weight and mol%, respectively, unless otherwise specified. In addition, the number of halogen substituents of the metal halide phthalocyanine obtained in Examples and Comparative Examples was measured by mass spectrum (JMS-DX303HF manufactured by JEOL Datum).
For evaluation of warpage and deformation, a mold for shrinkage evaluation using an injection molding machine (a plate having a length of 150 mm, a width of 120 mm and a thickness of 2 mm provided with a 100 mm mark in the injection direction and its vertical direction) 20 pieces were continuously injection-molded at a molding temperature of 220 ° C. and a mold temperature of 40 ° C., and six of the fourteenth to nineteenth sheets were used for the evaluation. After the molded plate was stored in a thermostatic chamber for 3 days, the distance between the marked lines was measured with a precision caliper, and the shrinkage rate in the injection direction and the vertical direction was determined from the measured value. Thereafter, the shrinkage difference rate calculated by the ratio between the injection direction and the shrinkage rate in the vertical direction, and the degree of warpage and deformation were visually evaluated. The calculation formula for the shrinkage difference rate is as follows. Molded plate Generally, if the difference from the shrinkage difference of a plate molded with resin only (hereinafter referred to as natural resin) is within 10%, it is called a low shrinkage colorant.
Shrinkage difference rate = (shrinkage rate in the vertical direction−shrinkage rate in the injection direction) / (shrinkage rate in the vertical direction)
The standard of visual evaluation is that the effect of the pigment is not observed if the warpage and deformation are comparable compared to the natural resin plate, ○, if the warpage and deformation are severe, ×, warpage and deformation than the natural plate Although the deformation was observed, the difference was small.
Production Example 1
200 parts of aluminum chloride and 40 parts of sodium chloride were heated to form a molten salt, 40 parts of crude copper talocyanine was added, and then heated to 170 ° C., and chlorine was introduced at a rate of 6 parts per hour for 10 hours. After introducing chlorine, the reaction mixture was poured into a large amount of water, washed with filtered water, dried and ground to obtain 54 parts of chlorinated copper phthalocyanine. The average number of chlorine substituents of the obtained chlorinated copper phthalocyanine was 13.3, and the distribution range of the number of chlorine substituents was 8. Further, 79% of the compounds had 1 to 14 chlorine substituents.
50 parts of chlorinated copper phthalocyanine was added to 300 parts of 98% by weight sulfuric acid, stirred at 40-45 ° C. for 4 hours, and then the mixture was added to 2000 parts of water. After stirring at 80 ° C. for 2 hours, filtration, washing with water, drying and pulverization were carried out to obtain 46 parts of a chlorinated copper phthalocyanine pigment.
Production Example 2
Instead of chlorine in Production Example 1, bromine was introduced at a rate of 2 parts per hour for 29 hours, and then chlorine was introduced at a rate of 6 parts per hour for 6 hours to obtain 74 parts of bromine. A chlorinated copper phthalocyanine pigment was obtained. The average number of halogen (total chlorine and bromine) substituents of brominated chlorinated copper phthalocyanine was 13.1 and the halogen substituent distribution width was 7. In addition, 86% of the compounds had 1 to 14 halogen substituents.
Production Examples 3 to 12
Various halogenated copper phthalocyanine pigments were produced according to Production Example 1 or Production Example 2. Table 1 shows the average number of halogen substituents of the obtained copper halide phthalocyanine, the distribution width of halogen substituents, and the ratio of compounds having 1 to 14 halogen substituents.
[0035]
[Table 1]
Figure 2004131612
Example 1
100 parts of zinc stearate was mixed well with 100 parts of the copper halide phthalocyanine pigment of Production Example 1 to obtain a dry color. Add 1000 parts of high-density polyethylene resin (Hizex 2100J, manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) to 2 parts of the resulting dry color, mix well with a tumbler for 10 minutes, and plate with an injection molding machine (IS100FIV, manufactured by Toshiba Machine) It was molded into a shape and evaluated. The shrinkage difference rate and warpage were the same as the natural resin plate.
Examples 2 to 7
The test was conducted in the same manner as in Example 1 except that the copper halide phthalocyanine pigment of Production Example 1 was changed as shown in Table 2. The test results are shown in Table 2.
Comparative Examples 1-5
The test was conducted in the same manner as in Example 1 except that the copper halide phthalocyanine pigment of Production Example 1 was changed as shown in Table 2. The test results are shown in Table 2.
[0039]
[Table 2]
Figure 2004131612
Example 8
After thoroughly mixing 100 parts of polyethylene wax (HiWax NL-500 manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) with 100 parts of the copper halide phthalocyanine pigment of Production Example 1, the mixture was well kneaded with three rolls to obtain a powdery colorant. One part of the obtained colorant was added with 100 parts of a high-density polyethylene resin (Hizex 2208J manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) and mixed well for 5 minutes with a super mixer, and then colored pellets were obtained with a single screw extruder. The obtained colored pellets were molded into a plate shape with an injection molding machine to obtain a molded product. The obtained plate exhibited shrinkage difference and warpage similar to natural resin.
Example 9
A molded product was obtained in the same manner as in Example 1 except that polypropylene resin (Grand Polypro J-104 manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) was used instead of high-density polyethylene. The obtained plate exhibited shrinkage difference and warpage similar to natural resin.
Examples 10-15
The test was conducted in the same manner as in Example 9 except that the copper halide phthalocyanine pigment of Example 9 was changed as shown in Table 3. The test results are shown in Table 3.
Comparative Examples 6-7
The test was conducted in the same manner as in Example 9, except that the copper halide phthalocyanine pigment of Example 9 was changed as shown in Table 3. The test results are shown in Table 3.
[0044]
[Table 3]
Figure 2004131612
Example 16
A molded product was obtained in the same manner as in Example 8 except that polypropylene resin (Grand Polypro J-104 manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) was used instead of high-density polyethylene. The obtained plate exhibited shrinkage difference and warpage similar to natural resin.
[0046]
As described above, the metal halide phthalocyanine of the present invention can reduce the number of defective products due to warping or deformation of the molded product, and can improve the productivity. Therefore, it can be used for applications where shrinkage performance is strictly required in a wide range of fields such as containers, plastic pallets, caps and bottles.
[Brief description of the drawings]
1 is a mass spectrum diagram of a metal halide phthalocyanine obtained in Production Example 1. FIG. 2 is a mass spectrum diagram of a metal halide phthalocyanine obtained in Production Example 8.

Claims (4)

金属フタロシアニン骨格に複数個のハロゲンが置換したハロゲン化金属フタロシアニンからなり、ハロゲン置換基数の平均が1.0〜14.5個で分布幅が5個以上であり、ハロゲン置換基数1個から14個である化合物が50%以上存在するハロゲン化金属フタロシアニンからなることを特徴とするプラスチック用着色剤。It consists of a halogenated metal phthalocyanine in which a plurality of halogens are substituted on the metal phthalocyanine skeleton, the average number of halogen substituents is 1.0 to 14.5, the distribution width is 5 or more, and the number of halogen substituents is 1 to 14 A plastic colorant comprising a metal halide phthalocyanine in which 50% or more of the compound is present. 請求項1記載の着色剤、およびプラスチックからなることを特徴とする着色樹脂組成物。A colored resin composition comprising the colorant according to claim 1 and a plastic. 着色剤が着色樹脂組成物の全量を基準として、0.001〜80重量%である請求項2記載の組成物。The composition according to claim 2, wherein the colorant is 0.001 to 80% by weight based on the total amount of the colored resin composition. プラスチックが部分的に結晶性を有する樹脂である請求項2または3記載の組成物。4. The composition according to claim 2, wherein the plastic is a resin having a partial crystallinity.
JP2002298241A 2002-10-11 2002-10-11 Colorant for polyolefin resin and use thereof Expired - Fee Related JP4406197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298241A JP4406197B2 (en) 2002-10-11 2002-10-11 Colorant for polyolefin resin and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298241A JP4406197B2 (en) 2002-10-11 2002-10-11 Colorant for polyolefin resin and use thereof

Publications (2)

Publication Number Publication Date
JP2004131612A true JP2004131612A (en) 2004-04-30
JP4406197B2 JP4406197B2 (en) 2010-01-27

Family

ID=32287717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298241A Expired - Fee Related JP4406197B2 (en) 2002-10-11 2002-10-11 Colorant for polyolefin resin and use thereof

Country Status (1)

Country Link
JP (1) JP4406197B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160805A (en) * 2004-12-03 2006-06-22 Toyo Ink Mfg Co Ltd Coloring composition
WO2015145792A1 (en) * 2014-03-24 2015-10-01 東洋インキScホールディングス株式会社 Coloring agent for plastic, coloring composition for plastic using same, and plastic molded article
JP2017160370A (en) * 2016-03-11 2017-09-14 東洋インキScホールディングス株式会社 Phthalocyanine pigment, coloring composition and color filter
KR20170104540A (en) * 2015-02-03 2017-09-15 토요잉크Sc홀딩스주식회사 Phthalocyanine pigments, coloring compositions and color filters
CN107383929A (en) * 2016-04-28 2017-11-24 东洋油墨Sc控股株式会社 Phthalocyanine color, coloured composition and colored filter
JP2020094121A (en) * 2018-12-12 2020-06-18 東洋インキScホールディングス株式会社 Phthalocyanine pigment, coloring composition, and color filter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160805A (en) * 2004-12-03 2006-06-22 Toyo Ink Mfg Co Ltd Coloring composition
WO2015145792A1 (en) * 2014-03-24 2015-10-01 東洋インキScホールディングス株式会社 Coloring agent for plastic, coloring composition for plastic using same, and plastic molded article
US20170107350A1 (en) * 2014-03-24 2017-04-20 Toyo Ink Sc Holdings Co., Ltd. Colorant for plastic, coloring composition for plastic using same, and plastic molded article
US10633510B2 (en) 2014-03-24 2020-04-28 Toyo Ink Sc Holdings Co., Ltd. Colorant for plastic, coloring composition for plastic using the same, and plastic molded article
KR20170104540A (en) * 2015-02-03 2017-09-15 토요잉크Sc홀딩스주식회사 Phthalocyanine pigments, coloring compositions and color filters
KR102029354B1 (en) * 2015-02-03 2019-10-07 토요잉크Sc홀딩스주식회사 Phthalocyanine Pigment, Coloring Composition and Color Filter
JP2017160370A (en) * 2016-03-11 2017-09-14 東洋インキScホールディングス株式会社 Phthalocyanine pigment, coloring composition and color filter
CN107383929A (en) * 2016-04-28 2017-11-24 东洋油墨Sc控股株式会社 Phthalocyanine color, coloured composition and colored filter
KR20190073337A (en) * 2016-04-28 2019-06-26 토요잉크Sc홀딩스주식회사 Phthalocyanine pigment, coloring composition and color filter
KR102116439B1 (en) * 2016-04-28 2020-05-29 토요잉크Sc홀딩스주식회사 Phthalocyanine pigment, coloring composition and color filter
JP2020094121A (en) * 2018-12-12 2020-06-18 東洋インキScホールディングス株式会社 Phthalocyanine pigment, coloring composition, and color filter
JP7192462B2 (en) 2018-12-12 2022-12-20 東洋インキScホールディングス株式会社 Phthalocyanine pigments, coloring compositions and color filters

Also Published As

Publication number Publication date
JP4406197B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JP3757081B2 (en) Water-insoluble nigrosine and related technologies
JP5764835B1 (en) Colorant for plastic, coloring composition using the same, and molded product
JP2005525444A (en) Highly active beta-nucleating additive for polypropylene
JP4406197B2 (en) Colorant for polyolefin resin and use thereof
JPH08239386A (en) Hexagonal system crystal of diacetal, nucleating agent containing the same, polyolefin-based resin composition containing the same, its molding and method for molding the same composition
KR100611546B1 (en) Colored thermoplastic resin composition and related arts thereof
CA2470741C (en) Pigment composition and use thereof in plastic
JP4525191B2 (en) Pigment compositions and their use in plastics
WO2011162354A1 (en) Nucleating agent for resins, and resin composition
JP4374836B2 (en) Colorants for plastics and their use
JPH0881592A (en) Colored polypropylene composition
JP4374837B2 (en) Colorants for plastics and their use
JP2001214068A (en) Crystalline resin composition
JP6164388B2 (en) Non-halogen yellow pigment composition for plastic coloring and plastic molded article
JP2007197666A (en) Granulated colorant and related art
JP2004083672A (en) Colorant for plastic and use thereof
EP3445810B1 (en) Additive composition, method of blending same and a low haze polyolefin material and preparation thereof
JP2004083675A (en) Colorant for plastic and use thereof
JP2002146223A (en) Colorant for plastic and its use
JPS6317973A (en) Colorant composition
JP2001240733A (en) Black polybutylene terephthalate resin composition
JP6322827B2 (en) Colored resin composition
JPS6345422B2 (en)
JPH0419264B2 (en)
JP2001207063A (en) Crystalline resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4406197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees