JPH0419264B2 - - Google Patents

Info

Publication number
JPH0419264B2
JPH0419264B2 JP16701784A JP16701784A JPH0419264B2 JP H0419264 B2 JPH0419264 B2 JP H0419264B2 JP 16701784 A JP16701784 A JP 16701784A JP 16701784 A JP16701784 A JP 16701784A JP H0419264 B2 JPH0419264 B2 JP H0419264B2
Authority
JP
Japan
Prior art keywords
weight
resin
masterbatch
parts
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16701784A
Other languages
Japanese (ja)
Other versions
JPS6144943A (en
Inventor
Tetsuji Kakizaki
Ryoichi Ito
Yoshihiro Tomono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP16701784A priority Critical patent/JPS6144943A/en
Publication of JPS6144943A publication Critical patent/JPS6144943A/en
Publication of JPH0419264B2 publication Critical patent/JPH0419264B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、各種プラスチツクのカラーリングに
関するもので、着色剤を高度に均一に含有する着
色された樹脂組成物に関する。 (従来の技術) プラスチツクのカラーリング方法を大別すると
ドライカラー法、カラードペレツト法およびカラ
ーマスターバツチ法がある。 これらの中でカラーマスターバツチ法は、(1)顔
料の分散性が優れること、(2)顔料の高濃度のもの
が得られること、(3)取扱いが容易であること、(4)
飛散性、汚染性がないこと、(5)任意の濃度に希釈
できること、(6)計量が便利であること、(7)保存が
容易であること等々、数多くの利点を有していて
カラーリング法の中で極めて優位な手法であり、
特にポリオレフイン樹脂の着色においては大きな
地位を占めている。マスターバツチ用の樹脂成分
は、用いられるマトリツクス樹脂とを相溶性が良
く、その上着色剤を高濃度かつ均一に充填混合さ
せる必要がある。更に、マスターバツチとマトリ
ツクス樹脂の流動性レベルを大きく離反させない
必要があることから、結晶性のものは低融点、非
結晶のものは低ガラス転移点のものが良く、かつ
両方とも溶融粘度がある程度低いものが好まし
い。具体的には、例えば、ポリオレフインの場
合、ポリエチレンワツクス、低密度ポリエチレ
ン、直鎖状低密度ポリエチレン、高密度ポリエチ
レン、エチレン−酢酸ビニル共重合体(EVA)
等が代表的なものである。 一方、スチレン系樹脂、すなわち、ポリスチレ
ン(PS)、耐衡撃性ポリスチレン(HIPS)やア
クリロニトリル−ブタジエン−スチレン共重合体
(ABS)を着色する場合、またポリカーボネー
ト、変性ポリフエニレンオキサイド(変性
PPO)、ポリスルフオン、ポリエチレンテレフタ
レート(PET)、ポリブチレンテレフタレート
(PBT)等のエンジニアリング樹脂を着色する場
合の方法としては、ドライカラー法またはカラー
ドペレツト法が主体であり、カラーマスターバツ
チ法はあまり採用されていない。 (発明が解決しようとする問題点) スチレン系樹脂や先に述べたエンジニアリング
樹脂はポリオレフイン系樹脂に比べて顔料の分散
性が悪く、ドライカラー法やカラードペレツト法
においても、適用される顔料の種類および濃度に
制限があつたり、また顔料の分散を改良せしめる
為に用いられる顔料分散剤による着色成型品の表
面の汚れや物性の低下等が生じる為に、着色剤の
ブレンド作業や成形条件を厳密に工程管理しない
と望む着色成形品が得られないのが実情である。
また、カラーマスターバツチ法があまり採用され
ていない理由としては、先に述べたカラーマスタ
ーバツチ法の各種要件を満足するマスターバツチ
用樹脂成分に好適なものが得られていないことに
よる。たとえば、ポリエチレンワツクスとポリエ
チレンの混合物ないしはEVAをベースにした高
濃度の顔料を含むカラーマスターバツチは、それ
自体の製造性にも優れ、ポリオレフイン樹脂用と
しては極めて有用なものであるが、このものをス
チレン系樹脂やエンジニアリング樹脂に適用しよ
うとなるとマスターバツチ用樹脂成分とこれらの
樹脂の相溶性が乏しい為にマスターバツチの分散
性が劣り、結果として成型品の着色ムラやフロー
マーク等の発生により外観が悪化し、かつ成型品
の機械的特性を低下させる。スチレン系樹脂その
ものをマスターバツチ用樹脂として使用する場合
は、下記の問題点がある。すなわち、ポリマーの
溶融粘度が高いため着色剤の混練性が極めて悪い
(JIS−K6871準拠のメルトフローインデツクス値
はポリスチレンで30g/10分、ABSで8g/10
分である。)従つて、顔料の種類によつては殆ん
ど充填量をアツプできないものが多く、無理にマ
スターバツチの濃度を高しようとすると顔料の分
散性が極端に低下する。 また、低分子量ポリスチレンやスチレングラフ
トポリオレフインワツクスをドライカラー法、カ
ラードペレツト法の際の顔料分散剤に、あるいは
カラーマスターバツチ法のマスターバツチ用樹脂
に用いる試みもなされている。これらの低分子量
ポリマーをカラードペレツト法の分散剤として用
いた場合、溶融粘度が小さいことからスチレン系
樹脂やエンジニアリング樹脂との混練作業性に支
障をきたすことが多い。特に高融点あるいは高ガ
ラス転移点のエンジニアリング樹脂に適用する場
合、混練押出機の設定温度が高く供給ホツパー口
付近で低粘度化し混練トラブルを発生したり、か
えつて顔料分散性を悪化させるケースがある為特
殊な供給方式を考慮しなければならない。また、
これらの低分子量ポリマーをカラーマスターバツ
チ用樹脂として用いた場合、顔料濃度が高くなる
と溶融粘度が小さすぎる為顔料粒子を微細かつ均
一に分散させることが難かしいこと(混練時の剪
断応力がかかりにくい)、さらにマスターバツチ
の製造に当たり、通常の押出機を用いてのストラ
ンド押出しが粘弾性不足の為適用できず、バツチ
式の混練機で調製せざるを得ない為、マスターバ
ツチの形状はフレーク状となる。フレーク状のマ
スターバツチは実際の着色成形過程において、成
形機のホツパーや輸送パイプでの円滑な輸送に支
障をきたし、トラブル原因となることが多い。 (発明が目的とする点) 本発明は、このような欠点のない着色成型体あ
るいは着色剤マスターバツチの供給を目的として
なされ、特定の樹脂成分を用いることによつて、
着色剤の混練による分散性が良好でかつ高濃度の
マスターバツチとすることができ、得られる成型
体の品質(外観、機械的物性など)が優れた着色
された樹脂組成物を提供するものである。 (問題点を解決する為の手段) すなわち本発明は、(A)メルトフローインデツク
ス(MFR)が0.1〜400g/10分のα−オレフイ
ン系重合体樹脂と芳香族ビニルモノマーとをグラ
フト重合条件に付して得られる芳香族ビニルモノ
マー単位含有量が5〜70重量%の改質樹脂100〜
20重量%および(B)α−オレフイン系もしくはスチ
レン系重合体樹脂0〜80重量%からなる樹脂成分
100重量部と、(C)着色剤3〜150重量部とからなる
ことを特徴とする均一に着色された樹脂組成物で
ある。 本発明の組成物は、上記の点に優れるので、
種々のマトリツクス樹脂に対して着色剤マスター
バツチとしても有効である。 (作用) 本発明で用いる上記(A)成分は、MFRが0.1〜
400g/10分、好ましくは5〜200g/10分のα−
オレフイン系重合体樹脂と芳香族ビニルモノマー
とをグラフト重合条件に付して得られるもので、
芳香族ビニルモノマー単位含有量が5〜70重量
%、好ましくは25〜70重量%の改質樹脂である。 ここでいうMFRとは、JIS−K6758(プロピレ
ン系重合体)またはJIS−K6760(エチレン系重合
体)で定義されるものであつて、プロピレン系重
合体は230℃、エチレン系重合体は190℃にて測定
した値である。MFRが0.1g/10分未満のα−オ
レフイン系重合体を用いた時は、樹脂の押出トル
クが上昇し、剪断発熱が大きくなる為、着色剤の
高濃度充填が難かしい。また400g/10分より大
きい時は、顔料との混練作業性が悪く、マスター
バツチを粒状化する為の押出機よりのストランド
押出しが不可能になるほか、マトリツクス樹脂へ
の均一分散および得られた成型品の機械的強度が
悪化する。芳香族ビニルモノマー単位含有量が5
重量%未満では異種のマトリツクス樹脂との相溶
性向上が期待できず、70重量%超過では着色剤を
高濃度に均一に混練させるのには適さない。 ここで、α−オレフイン系重合体樹脂は、プロ
ピレン単独重合体、プロピレンを主体とする他の
α−オレフインまたはエチレンとのまたは不飽和
有機酸ないしその誘導体との共重合体等の結晶性
ポリプロピレン系樹脂の一群が好適に挙げられ
る。 具体的には、アイソタクチツクポリプロピレ
ン、プロピレン−エチレンランダム共重合体、プ
ロピレン−エチレンブロツク共重合体、プロピレ
ン−ブテン−1ランダム共重合体、無水マレイン
酸変性ポリプロピレン等が代表的なものである。
更には、次に示すエチレン系重合体が好適に挙げ
られる。すなわち、高・中・低密度エチレン重合
体の外、過半重量のエチレンと他のモノマー、例
えば、ビニルエステル(酢酸ビニル等)、不飽和
有機酸またはその誘導体(アクリル酸、メタクリ
ル酸、無水マレイン酸、メチルアクリレート、エ
チルアクリレート、ブチルアクリレート、メチル
メタアクリレート、アクリル酸の金属塩、メタク
リル酸の金属塩等)、α−オレフイン(プロピレ
ン、ブテン−1、ペンテン−1、4−メチルペン
テン−1、ヘキセン−1、ヘプテン−1、オクテ
ン−1等)など、とのブロツク、ランダムまたは
グラフト共重合体が適する。 これらの中でも、プロピレン−エチレンランダ
ム共重合体、プロピレン−ブテン−1共重合体、
低密度ポリエチレン、高密度ポリエチレン、直鎖
状低密度ポリエチレン、エチレン−酢酸ビニル共
重合体(EVA)、エチレン−エチルアクリレート
共重合体(EEA)等が好ましい。 また、芳香族ビニルモノマーとしては、一般式
(Industrial Application Field) The present invention relates to the coloring of various plastics, and relates to a colored resin composition containing a highly uniform coloring agent. (Prior Art) Plastic coloring methods can be broadly classified into dry coloring, colored pellet method, and color masterbatch method. Among these, the color master batch method has the following advantages: (1) excellent pigment dispersibility, (2) high pigment concentration, (3) easy handling, (4)
Coloring has many advantages, including no scattering or contamination, (5) dilution to any desired concentration, (6) convenient measurement, and (7) easy storage. It is an extremely advantageous method within the law,
In particular, it occupies a large position in the coloring of polyolefin resins. The resin component for the masterbatch must have good compatibility with the matrix resin used, and it is also necessary to fill and mix the colorant uniformly at a high concentration. Furthermore, since it is necessary not to greatly deviate between the fluidity levels of the masterbatch and matrix resin, it is better to have a crystalline material with a low melting point and an amorphous material with a low glass transition point, and both have a somewhat low melt viscosity. Preferably. Specifically, for example, in the case of polyolefin, polyethylene wax, low density polyethylene, linear low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer (EVA)
etc. are representative examples. On the other hand, when coloring styrenic resins, i.e., polystyrene (PS), impact-resistant polystyrene (HIPS), acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate, modified polyphenylene oxide (modified
The main methods for coloring engineering resins such as PPO), polysulfonate, polyethylene terephthalate (PET), and polybutylene terephthalate (PBT) are the dry color method or the colored pellet method, and the color master batch method is rarely used. Not adopted. (Problems to be solved by the invention) Styrene resins and the aforementioned engineering resins have poor pigment dispersibility compared to polyolefin resins, and even in dry color methods and colored pellet methods, pigments used in There are restrictions on the type and concentration, and the pigment dispersant used to improve the dispersion of pigments can stain the surface of colored molded products and reduce the physical properties. The reality is that the desired colored molded product cannot be obtained unless the process is strictly controlled.
Furthermore, the reason why the color masterbatch method is not widely adopted is that a suitable resin component for masterbatch that satisfies the various requirements of the color masterbatch method described above has not been obtained. For example, a color masterbatch containing a high concentration of pigment based on a mixture of polyethylene wax and polyethylene or EVA has excellent manufacturability and is extremely useful for polyolefin resin. When applied to styrene resins or engineering resins, the dispersibility of the masterbatch is poor due to poor compatibility between the masterbatch resin components and these resins, resulting in poor appearance due to uneven coloring and flow marks on the molded product. and deteriorate the mechanical properties of the molded product. When using styrene resin itself as a resin for masterbatch, there are the following problems. In other words, the kneading properties of the colorant are extremely poor due to the high melt viscosity of the polymer (the melt flow index value according to JIS-K6871 is 30 g/10 min for polystyrene and 8 g/10 min for ABS).
It's a minute. ) Therefore, depending on the type of pigment, it is often impossible to increase the loading amount, and if you try to forcibly increase the concentration of the masterbatch, the dispersibility of the pigment will be extremely reduced. Attempts have also been made to use low molecular weight polystyrene or styrene-grafted polyolefin wax as a pigment dispersant in the dry color method or colored pellet method, or as a masterbatch resin in the color masterbatch method. When these low molecular weight polymers are used as dispersants in the colored pellet method, their low melt viscosity often impedes kneading workability with styrenic resins and engineering resins. Particularly when applied to engineering resins with high melting points or high glass transition points, the set temperature of the kneading extruder is high and the viscosity decreases near the feed hopper opening, causing kneading troubles or even worsening pigment dispersibility. Therefore, special supply methods must be considered. Also,
When these low molecular weight polymers are used as resins for color master batches, when the pigment concentration becomes high, the melt viscosity is too small, making it difficult to disperse pigment particles finely and uniformly (shear stress during kneading In addition, when manufacturing the masterbatch, strand extrusion using a normal extruder cannot be applied due to lack of viscoelasticity, so it has to be prepared using a batch-type kneader, so the shape of the masterbatch is flaky. Become. Flake-like master batches often cause problems during the actual coloring and molding process, as they interfere with smooth transportation through the hopper of the molding machine and the transport pipe. (Objectives of the Invention) The present invention has been made for the purpose of supplying a colored molded product or a coloring agent masterbatch that does not have such drawbacks, and by using a specific resin component,
To provide a colored resin composition that has good dispersibility by kneading a colorant and can be made into a highly concentrated masterbatch, and the resulting molded product has excellent quality (appearance, mechanical properties, etc.) . (Means for Solving the Problems) That is, the present invention provides (A) a melt flow index (MFR) of 0.1 to 400 g/10 min for graft polymerization of an α-olefin polymer resin and an aromatic vinyl monomer. Modified resin with aromatic vinyl monomer unit content of 5 to 70% by weight obtained by subjecting to 100 to 70% by weight
20% by weight and (B) a resin component consisting of 0 to 80% by weight of α-olefin or styrene polymer resin
This is a uniformly colored resin composition characterized by comprising: 100 parts by weight, and 3 to 150 parts by weight of (C) colorant. Since the composition of the present invention is excellent in the above points,
It is also effective as a colorant masterbatch for various matrix resins. (Action) The above component (A) used in the present invention has an MFR of 0.1 to
400g/10min, preferably 5-200g/10min α-
It is obtained by subjecting an olefin polymer resin and an aromatic vinyl monomer to graft polymerization conditions,
The modified resin has an aromatic vinyl monomer unit content of 5 to 70% by weight, preferably 25 to 70% by weight. MFR here is defined by JIS-K6758 (propylene-based polymers) or JIS-K6760 (ethylene-based polymers), and is 230°C for propylene-based polymers and 190°C for ethylene-based polymers. This is the value measured at When an α-olefin polymer with an MFR of less than 0.1 g/10 minutes is used, the extrusion torque of the resin increases and shear heat generation increases, making it difficult to fill the colorant at a high concentration. Moreover, when it is larger than 400g/10 minutes, the kneading workability with the pigment is poor, and it becomes impossible to extrude the strands from the extruder to granulate the masterbatch, and it also becomes impossible to uniformly disperse the masterbatch into the matrix resin and to form the resulting molding. The mechanical strength of the product deteriorates. Aromatic vinyl monomer unit content is 5
If it is less than 70% by weight, no improvement in compatibility with different types of matrix resins can be expected, and if it exceeds 70% by weight, it is not suitable for uniformly kneading the colorant at a high concentration. Here, the α-olefin polymer resin is a crystalline polypropylene-based polymer such as propylene homopolymer, other α-olefin mainly composed of propylene, or a copolymer with ethylene or with an unsaturated organic acid or its derivative. A group of resins are preferably mentioned. Specifically, representative examples include isotactic polypropylene, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene-1 random copolymer, and maleic anhydride-modified polypropylene.
Furthermore, the following ethylene polymers are preferably mentioned. That is, in addition to high-, medium-, and low-density ethylene polymers, the majority of ethylene and other monomers, such as vinyl esters (vinyl acetate, etc.), unsaturated organic acids or their derivatives (acrylic acid, methacrylic acid, maleic anhydride, , methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, metal salts of acrylic acid, metal salts of methacrylic acid, etc.), α-olefins (propylene, butene-1, pentene-1, 4-methylpentene-1, hexene block, random or graft copolymers with heptene-1, heptene-1, octene-1, etc.) are suitable. Among these, propylene-ethylene random copolymer, propylene-butene-1 copolymer,
Low density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), etc. are preferred. In addition, as an aromatic vinyl monomer, the general formula

【式】(式中R1は水素原子または炭素 数1〜4のアルキル基、R2〜R6はそれぞれ水素
原子、塩素原子または炭素数1〜4のアルキル基
を示す)で表わされるスチレン系モノマー、例え
ば、スチレン、核置換スチレン(例えば、メチル
スチレン、イソプロピルスチレン、クロルスチレ
ン)、α置換スチレン(例えば、αメチルスチレ
ン、αエチルスチレン)などが挙げられる。また
スチレンとアクリル酸エステル、スチレンとメタ
クリル酸エステル、スチレンとアクリロニトリル
などの混合系も適用される。 中でも、スチレンを用いたとき、スチレングラ
フト鎖の外に副生するポリスチレンの分子量を小
さくすることが重合条件の選択で可能であり好ま
しい。また、スチレンと特にn−ブチルアクリレ
ート、2−エチルヘキシルアクリレート等の長鎖
アクリレートを併用することにより、改質樹脂の
ガラス転移点を下げるこができて好ましい。 グラフト重合条件は、溶融グラフト、溶液グラ
フト、懸濁グラフト、放射線グラフト、気相グラ
フト等通常の方法を採用できるが、好適には、例
えば、次の方法によることができる。 すなわち、α−オレフイン系重合体粒子30〜95
重量%、芳香族ビニルモノマー70〜5重量%およ
び10時間の半減期を得るための分解温度が50〜
150℃であるラジカル重合開始剤を芳香族ビニル
モノマー100重量部に対し、0.01〜5重量部含む
水性懸濁液を、この開始剤の分解が実質的に起ら
ない条件下に加熱して、芳香族ビニルモノマーが
α−オレフイン系重合体粒子に含浸されて遊離芳
香族ビニルモノマーの量が20重量%未満となるに
致らせ、その後この水性懸濁液の温度を上昇させ
て、芳香族ビニルモノマーの重合を完成させる。 このようにして得られる改質樹脂のうち好まし
いのは、スチレン改質EVA、スチレン改質低密
度ポリエチレン、スチレン改質プロピレン−エチ
レンランダム共重合体である。 次に、本発明で用いる上記(B)成分であるα−オ
レフイン系重合体樹脂は、先に挙げたα−オレフ
イン系重合体樹脂の中から適宜選択して用いるこ
とができる。また、スチレン系重合体樹脂は下記
の一般式で示される構造単位を樹脂中に少くとも
25
[Formula] (In the formula, R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 to R 6 are a hydrogen atom, a chlorine atom, or an alkyl group having 1 to 4 carbon atoms, respectively.) Monomers such as styrene, nuclear substituted styrenes (eg, methylstyrene, isopropylstyrene, chlorstyrene), alpha-substituted styrenes (eg, alpha-methylstyrene, alpha-ethylstyrene), and the like. Mixed systems such as styrene and acrylic ester, styrene and methacrylic ester, and styrene and acrylonitrile are also applicable. Among these, when styrene is used, it is possible to reduce the molecular weight of the polystyrene by-produced in addition to the styrene graft chains by selecting polymerization conditions, which is preferable. Further, it is preferable to use styrene together with a long chain acrylate such as n-butyl acrylate or 2-ethylhexyl acrylate, since the glass transition point of the modified resin can be lowered. As the graft polymerization conditions, conventional methods such as melt grafting, solution grafting, suspension grafting, radiation grafting, and gas phase grafting can be employed, but preferably, for example, the following method can be used. That is, α-olefin polymer particles 30 to 95
wt%, aromatic vinyl monomer 70-5 wt% and decomposition temperature 50-50 to obtain a half-life of 10 hours.
Heating an aqueous suspension containing 0.01 to 5 parts by weight of a radical polymerization initiator at 150°C based on 100 parts by weight of the aromatic vinyl monomer under conditions that do not substantially cause decomposition of the initiator, The aromatic vinyl monomer is impregnated into the alpha-olefinic polymer particles until the amount of free aromatic vinyl monomer is less than 20% by weight, and the temperature of the aqueous suspension is then raised to absorb the aromatic Complete the polymerization of vinyl monomer. Among the modified resins thus obtained, preferred are styrene-modified EVA, styrene-modified low-density polyethylene, and styrene-modified propylene-ethylene random copolymer. Next, the α-olefin polymer resin which is the component (B) used in the present invention can be appropriately selected from the above-mentioned α-olefin polymer resins. In addition, styrenic polymer resin has at least a structural unit represented by the following general formula in the resin.
twenty five

【式】重量%以上含有する樹脂であ る。(ここでRは水素原子またはメチル基を、Z
はハロゲン原子またはメチル基を、pは0または
1〜3の整数である。)具体的には、ポリスチレ
ンゴム変性ポリスチレン、スチレン−アクリルロ
ニトリル共重合体、スチレン−ブタジエン−アク
リロニトリル共重合体などで例示されるスチレン
およびその誘導体の単独重合体および共重合体が
挙げられる。これらの樹脂にスチレン−共役ジエ
ンブロツク共重合ゴムおよびその水添物をブレン
ドしたものも適用される。(B)成分であるこれらα
−オレフイン系重合体樹脂とスチレン系重合体樹
脂は併用して用いることができる。 また、本発明で用いる上記(C)成分の着色剤とし
ては、従来より熱可塑性樹脂の着色成形の際に使
用されている生顔料、および顔料と分散剤とその
他の添加成分からなる加工顔料が挙げられる。顔
料の具体的な例としては、チタンホワイト(ルチ
ル)、チタンホワイト(アナターゼ)、チタンイエ
ロー、カドミイエロー、イソインドリノンイエロ
ー、ポリアゾイエロー、キノフタロンイエロー、
フタロシアニングリーン、フタロシアニンブル
ー、群青、コバルトブルー、ポリアゾブラウン、
ベンガラ、ポリアゾレツド、ペリレンレツド、キ
ナクリドンレツド、アニリンブラツク、カーバン
ブラツクなどの有機および無機顔料がある。 これら本発明で用いる各成分の配合割合は、上
記(A)改質樹脂100〜20重量%、好ましくは40重量
%以上および(B)α−オレフイン系もしくはスチレ
ン系重合体樹脂0〜80重量%、好ましくは60重量
%以下の樹脂成分100重量部に対し、(C)着色剤3
〜150重量部、好ましくは5〜100重量部である。 改質樹脂が20重量%未満では異種マトリツクス
との相溶性が不満足となり、着色剤が150重量部
を越えると樹脂との十分な溶融混練が不可能とな
りマスターバツチとしても不適である。 本発明では他の成分として、例えば、酸化防止
剤、耐候性改良剤、帯電防止剤及び可塑剤などを
含有することもできる。 本発明の実施態様としては、例えば、以下の方
法が適用できる。 (1) 上記(A)+(B)+(C)よりなる着色剤マスターバツ
チペレツトを用いて各種マトリツクス樹脂を着
色成形する方法。マトリツクスが、PS、ABS、
ポリカーボネート、変性PPO、PPO、アクリ
ルニトリル−スチレン系樹脂、6ナイロン、
6・6ナイロン、PBTおよびPET等のときに
特に良好な結果が得られる。 (2) (A)+(B)+(C)+上記マトリツクス樹脂からなる
カラードペレツト方法。 (3) 既存のα−オレフイン系重合体用カラーマス
ターバツチ(ベース樹脂はα−オレフイン系重
合体)と成分(A)+(B)とマトリツクス樹脂を用い
て着色成形する方法。 本発明の組成物、例えば、上記方法(1)のマスタ
ーバツチ組成物は、バンバリーミキサー、ロール
混練機、二軸スクリユー押出機などの高剪断力混
練機を用いて十分に溶融ブレンド造粒する。マス
ターバツチペレツトを一工程で得られるという点
で二軸押出機が特に好ましい。 (実施例) 実施例 1 JIS−K6760で測定したMFRが80g/10分の
EVAにスチレンモノマー50重量%をグラフト重
合反応させて得られた改質重合体を平均粒径約80
ミクロンに冷凍粉砕したパウダー100重量部に対
して、キナクリドン:ペリレンレツド:ステアリ
ン酸マグネシウム(分散剤)の1:1:1からな
る赤色顔料25重量部をスーパーミキサーにて十分
に混合した。この粉末混合物を同方向回転式2軸
押出機にて溶融混練し、造粒ペレツト(マスター
バツチ)を得た。混練押出条件は、シリンダー温
度130℃〜150℃、ダイス温度150℃、スクリユー
回転数は200rpmであつた。実験の結果、シリン
ダー温度の上昇、モーターの過負荷もなく(スク
リユーモーターの電流は8〜10Aと通常運転域)、
ストランド状に安定に押し出し粒径の均一なマス
ターバツチペレツトを製造することができた。 比較例 1 JIS−K6871で測定したMFR30g/10分のポリ
スチレンを平均粒径約80ミクロンに冷凍粉砕した
パウダー100重量部に対し、実施例1で用いたの
と同じ赤色顔料25重量部をスーパーミキサーにて
ドライブレンドして実施例1と同条件にてマスタ
ーバツチペレツトの製造を試みた。実験の結果、
スクリユートルクが大きく、樹脂温度が上昇する
結果、粘度が急激に低下し顔料の分散性が劣り、
ストランド状で引き取つてペレツト化することが
困難であつた。 実施例 2 JIS−K6760で測定したMFRが150g/10分の
EVAにスチレンモノマー35重量%と2エチルヘ
キシルアクリレート15重量%とをグラフト重合反
応させて得られた改質重合体を平均粒径約80ミク
ロンに冷凍粉砕したパウダー60重量%と、
MFR60g/10分、平均粒径約150ミクロンの低密
度PEパウダー40重量%とをスーパーミキサーに
てドライブレンドしたもの100重量部に対し、実
施例1で用いたのと同じ赤色顔料40重量部を混合
し、実施例1と同条件でマスターバツチペレツト
を製造した。押出ストランドの安定性も良好で、
高濃度の顔料が良好に分散されたマスターバツチ
が得られた。 比較例 2 比較例1で用いたのと同じポリスチレンパウダ
ー60重量%と、MFR60g/10分、平均粒径約150
ミクロンの低密度ポリエチレン(PE)パウダー
40重量%とをスーパーミキサーにてドライブレン
ドしたもの100重量部に対し、実施例1で用いた
のと同じ赤色顔料20重量部を添加してマスターバ
ツチの製造を試みた。製造条件は、シリンダー温
度150℃〜180℃、ダイス温度180℃、スクリユー
回転数は200rpmであつた。 比較例1に比し、低密度PEのブレンド効果か
ら、スクリユートルクはやや小さくなり、樹脂温
度の上昇も比較的おさえられるものの、ポリスチ
レンと低密度のPEのブレンド相溶性が貧弱なた
め、ストランドダイスの出口周辺に目ヤニの発生
が激しくかつ押出ストランドが部分的にフイプリ
ル化(デラミネーシヨンによる)するため、顔料
が十分均一に分散した均一なマスターバツチペレ
ツトを得ることができなかつた。 実施例 3 JIS−K6758で測定したMFRが6g/10分のプ
ロピレン−エチレンランダム共重合体にスチレン
モノマー50重量%をグラフト重合させて得られた
改質重合体を平均粒径約80ミクロンに粉砕したパ
ウダー100重量部に対して、実施例1で用いたの
と同じ赤色顔料20重量部を添加し実施例1と同様
の方法でマスターバツチペレツトを製造した。 製造条件は、シリンダー温度180℃〜220℃、ダ
イス温度220℃、スクリユー回転数は200rpmであ
つた。 スクリユーモーターのアンペアの変動が少な
く、ストランドの引き取り状態も安定しており、
良好なペレツト形状のマスターバツチが得られ
た。 応用例 1 HIPS(三菱モンサント社製ダイヤレツクスHT
−88)100重量部に対し、実施例1で得られた顔
料濃度25重量部のマスターバツチを2.5または5
重量部添加した材料の射出成形を試みた。6ozの
スクリユーインライン式射出成形機を用いて、成
形条件は成形温度220℃、背圧は6Kg/cm2と15
Kg/cm2、射出圧力600Kg/cm2、射出速度2sec/
shot、金型温度76℃とした。得られた成形品は顔
料の分散ムラやフローマークがなく良好な外観を
呈していた。また、成形品の一部を切り出し、プ
レス成形にて0.1mmのフイルムを作製し、光学顕
微鏡にて顔料分散性を観察したが大きな顔料の凝
集塊(75ミクロン以上)は殆んど見られず良好な
分散性を示すことがわかつた。第1表に射出成形
品の物性を示す。
[Formula] is a resin containing at least % by weight. (Here, R is a hydrogen atom or a methyl group, Z
represents a halogen atom or a methyl group, and p is 0 or an integer of 1 to 3. ) Specific examples include homopolymers and copolymers of styrene and its derivatives, such as polystyrene rubber-modified polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer, and the like. Blends of these resins with styrene-conjugated diene block copolymer rubber and hydrogenated products thereof are also applicable. (B) component α
- Olefin polymer resin and styrene polymer resin can be used in combination. In addition, as the coloring agent of the above component (C) used in the present invention, raw pigments conventionally used in color molding of thermoplastic resins and processed pigments consisting of pigments, dispersants, and other additive components are used. Can be mentioned. Specific examples of pigments include titanium white (rutile), titanium white (anatase), titanium yellow, cadmi yellow, isoindolinone yellow, polyazo yellow, quinophthalone yellow,
Phthalocyanine green, phthalocyanine blue, ultramarine blue, cobalt blue, polyazo brown,
Organic and inorganic pigments include red red, polyazol, perylene, quinacridone, aniline black, carban black, etc. The blending ratio of each component used in the present invention is the above (A) modified resin 100 to 20% by weight, preferably 40% by weight or more, and (B) α-olefin or styrene polymer resin 0 to 80% by weight. , preferably 60% by weight or less of the resin component, (C) colorant 3
~150 parts by weight, preferably 5 to 100 parts by weight. If the modified resin is less than 20% by weight, the compatibility with a different matrix will be unsatisfactory, and if the colorant exceeds 150 parts by weight, sufficient melt-kneading with the resin will be impossible, making it unsuitable as a masterbatch. In the present invention, other components such as an antioxidant, a weather resistance improver, an antistatic agent, and a plasticizer can also be contained. As an embodiment of the present invention, for example, the following method can be applied. (1) A method of coloring and molding various matrix resins using a colorant masterbatch pellet consisting of the above (A) + (B) + (C). The matrix is PS, ABS,
Polycarbonate, modified PPO, PPO, acrylonitrile-styrene resin, 6 nylon,
Particularly good results are obtained with nylon 6.6, PBT and PET. (2) A colored pellet method consisting of (A) + (B) + (C) + the above matrix resin. (3) A method of coloring and molding using an existing color master batch for α-olefin polymers (base resin is α-olefin polymer), components (A) + (B), and matrix resin. The composition of the present invention, for example, the masterbatch composition of method (1) above, is thoroughly melt blended and granulated using a high shear kneader such as a Banbury mixer, a roll kneader, or a twin screw extruder. A twin-screw extruder is particularly preferred since masterbatch pellets can be obtained in one step. (Example) Example 1 MFR measured by JIS-K6760 is 80g/10min
A modified polymer obtained by grafting 50% by weight of styrene monomer onto EVA has an average particle size of approximately 80%.
25 parts by weight of a red pigment consisting of 1:1:1 of quinacridone:perylene red:magnesium stearate (dispersant) was thoroughly mixed with 100 parts by weight of powder frozen and ground into microns using a super mixer. This powder mixture was melt-kneaded in a co-rotating twin-screw extruder to obtain granulated pellets (masterbatch). The kneading and extrusion conditions were a cylinder temperature of 130°C to 150°C, a die temperature of 150°C, and a screw rotation speed of 200 rpm. As a result of the experiment, there was no rise in cylinder temperature or overload of the motor (screw motor current was 8 to 10A, normal operating range).
Masterbatch pellets with uniform particle size could be produced by stably extruding them in the form of strands. Comparative Example 1 25 parts by weight of the same red pigment used in Example 1 was added to 100 parts by weight of powder obtained by freezing and pulverizing polystyrene with an MFR of 30 g/10 minutes to an average particle size of approximately 80 microns as measured by JIS-K6871 using a super mixer. An attempt was made to produce masterbatch pellets under the same conditions as in Example 1 by dry blending. results of the experiment,
As the screw torque is large and the resin temperature rises, the viscosity decreases rapidly and the dispersibility of the pigment becomes poor.
It was difficult to collect the pellets in the form of strands and turn them into pellets. Example 2 MFR measured by JIS-K6760 is 150g/10min
60% by weight of a powder obtained by freezing and pulverizing a modified polymer obtained by graft polymerizing EVA with 35% by weight of styrene monomer and 15% by weight of 2-ethylhexyl acrylate to an average particle size of about 80 microns;
40 parts by weight of the same red pigment used in Example 1 was added to 100 parts by weight of a dry blend of MFR 60g/10 minutes and 40% by weight of low-density PE powder with an average particle size of about 150 microns in a super mixer. The mixture was mixed to produce masterbatch pellets under the same conditions as in Example 1. The stability of the extruded strand is also good,
A masterbatch in which a high concentration of pigment was well dispersed was obtained. Comparative Example 2 60% by weight of the same polystyrene powder used in Comparative Example 1, MFR 60g/10min, average particle size approximately 150
Micron low density polyethylene (PE) powder
An attempt was made to produce a masterbatch by adding 20 parts by weight of the same red pigment used in Example 1 to 100 parts by weight of a dry blend of 40% by weight in a super mixer. The manufacturing conditions were a cylinder temperature of 150°C to 180°C, a die temperature of 180°C, and a screw rotation speed of 200 rpm. Compared to Comparative Example 1, the screw torque is slightly smaller due to the blending effect of low-density PE, and the rise in resin temperature is relatively suppressed, but the blending compatibility of polystyrene and low-density PE is poor, so the strand It was not possible to obtain uniform masterbatch pellets in which the pigment was sufficiently evenly dispersed due to severe buildup of eye stains around the exit of the die and partial fibrillation (due to delamination) of the extruded strands. . Example 3 A modified polymer obtained by graft polymerizing 50% by weight of styrene monomer to a propylene-ethylene random copolymer with an MFR of 6 g/10 minutes as measured by JIS-K6758 was pulverized to an average particle size of approximately 80 microns. Master batch pellets were produced in the same manner as in Example 1 by adding 20 parts by weight of the same red pigment as used in Example 1 to 100 parts by weight of the powder. The manufacturing conditions were a cylinder temperature of 180°C to 220°C, a die temperature of 220°C, and a screw rotation speed of 200 rpm. There is little variation in the amperage of the screw motor, and the strand take-up condition is stable.
A masterbatch with a good pellet shape was obtained. Application example 1 HIPS (Dialex HT manufactured by Mitsubishi Monsanto)
-88) For 100 parts by weight, add 2.5 or 5 parts by weight of the masterbatch with a pigment concentration of 25 parts by weight obtained in Example 1.
Injection molding of the material to which parts by weight were added was attempted. Using a 6oz screw in-line injection molding machine, the molding conditions were a molding temperature of 220℃ and a back pressure of 6Kg/ cm2 .
Kg/cm 2 , injection pressure 600Kg/cm 2 , injection speed 2sec/
shot, and the mold temperature was 76°C. The obtained molded article had a good appearance without uneven pigment dispersion or flow marks. In addition, a part of the molded product was cut out, a 0.1 mm film was made by press molding, and the pigment dispersibility was observed using an optical microscope, but almost no large pigment agglomerates (75 microns or more) were observed. It was found that it exhibited good dispersibility. Table 1 shows the physical properties of the injection molded product.

【表】 応用例 2 PPO樹脂44重量%とHIPS56重量%とからなる
変性PPO樹脂100重量部に対し、実施例1で得ら
れたマスターバツチと実施例3で得られたマスタ
ーバツチ(顔料濃度20重量部)を各々5、2.5重
量部添加した材料の射出成形を試みた。6ozのス
クリユーインライン式射出成形機を用いて、成形
条件は成形温度270℃、射出圧力1000Kg/cm2、射
出速度2sec/shot、金型温度80℃とした。得られ
た成形品は顔料の分散ムラ、フローマークがなく
良好な外観であつた。第2表に射出成形品の物性
を示す。
[Table] Application example 2 The masterbatch obtained in Example 1 and the masterbatch obtained in Example 3 (pigment concentration 20 parts by weight ) were added in an amount of 5 and 2.5 parts by weight, respectively. A 6oz screw in-line injection molding machine was used, and the molding conditions were a molding temperature of 270°C, an injection pressure of 1000 kg/cm 2 , an injection speed of 2 sec/shot, and a mold temperature of 80°C. The obtained molded article had a good appearance without uneven pigment dispersion or flow marks. Table 2 shows the physical properties of the injection molded product.

【表】 応用例 3 ポリカーボネート樹脂(三菱ガス化学社製ユー
ピロンC−3000)100重量部に実施例2で得られ
た顔料濃度40重量部のマスターバツチを2重量部
添加した材料の射出成形を試みた。 応用例1および2と同様、成形品の外観及び成
形品物性を測定した。特に外観においては、マス
ターバツチのベース樹脂が良流動性であり、マト
リツクスのポリカーボネートの粘度を低下せしめ
る効果があるため、金型温度が比較的低くても高
光沢の成形品が得られることがわかつた。成形条
件は成形温度270℃、射出圧力1000Kg/cm2、射出
速度2sec/shot、金型温度70℃とした。第3表に
射出成形品の物性を示す。
[Table] Application example 3 Injection molding of a material was attempted by adding 2 parts by weight of the masterbatch with a pigment concentration of 40 parts by weight obtained in Example 2 to 100 parts by weight of polycarbonate resin (Iupilon C-3000 manufactured by Mitsubishi Gas Chemical Co., Ltd.). . As in Application Examples 1 and 2, the appearance and physical properties of the molded product were measured. Especially in terms of appearance, it was found that the base resin of the masterbatch has good fluidity and has the effect of lowering the viscosity of the polycarbonate matrix, making it possible to obtain molded products with high gloss even at relatively low mold temperatures. . The molding conditions were a molding temperature of 270°C, an injection pressure of 1000 Kg/cm 2 , an injection speed of 2 sec/shot, and a mold temperature of 70°C. Table 3 shows the physical properties of the injection molded product.

【表】 実施例 4 実施例3での改質重合体パウダー 5重量% 実施例1での赤色顔料 1.5重量部 HIPS(三菱モンサント社製ダイヤレツクスHT−
88) 95重量% をスーパーミキサーにて十分に混合した。この混
合物を単軸押出機(40m/m径、L/D=22)で
溶融混練しカラーペレツトを得た。混練押出条件
はシリンダー温度220℃、ダイス温度215℃、スク
リユー回転数60r.p.m.であつた。得られたカラー
ペレツトを用いて、応用例1と同様の方法で射出
成形を行なつた。得られた成形品は顔料の分散ム
ラやフローマークが全く見られず良好な外観を呈
していた。また射出成形品の物性も良好であり、
物性/外観バランスの優れたものが得られること
が判つた。第4表に射出成形品の物性を示す。 実施例 5 低密度ポリエチレン(MFR45g/10分)
100重量部 チタンホワイト/カーボンブラツクからなるグレ
ー顔料 50重量部 ステアリン酸マグネシウム(分散剤) 10重量部 とからなるポリオレフイン樹脂用カラーマスター
バツチ50重量%と実施例2での改質重合体50重量
%と同方向回転式2軸押出機にて溶融混練し、造
粒ペレツトを得た。ポリカーボネート(三菱ガス
化学社製ユーピロンC−3000)100重量部にこの
着色ペレツト2重量部を添加した材料の射出成形
を試みた。成形条件は成形温度270℃、射出圧力
1000Kg/cm2、射出速度2sec/shot、金型温度70℃
とした。得られた成形品は顔料分散が良好で優れ
た外観を有している。第4表に射出成形品の物性
を示す。
[Table] Example 4 Modified polymer powder in Example 3 5% by weight Red pigment in Example 1 1.5 parts by weight HIPS (Dialex HT- manufactured by Mitsubishi Monsanto)
88) 95% by weight was thoroughly mixed in a super mixer. This mixture was melt-kneaded using a single screw extruder (40 m/m diameter, L/D=22) to obtain color pellets. The kneading and extrusion conditions were a cylinder temperature of 220°C, a die temperature of 215°C, and a screw rotation speed of 60 rpm. Using the obtained color pellets, injection molding was carried out in the same manner as in Application Example 1. The obtained molded product had a good appearance with no uneven pigment dispersion or flow marks. In addition, the physical properties of the injection molded product are good,
It was found that a product with an excellent balance of physical properties and appearance could be obtained. Table 4 shows the physical properties of the injection molded product. Example 5 Low density polyethylene (MFR45g/10 minutes)
50 parts by weight of a color masterbatch for polyolefin resin consisting of 100 parts by weight of a gray pigment consisting of titanium white/carbon black, 50 parts by weight of magnesium stearate (dispersant) 10 parts by weight, and 50 parts by weight of the modified polymer in Example 2. % and was melt-kneaded in a co-rotating twin-screw extruder to obtain granulated pellets. Injection molding of a material prepared by adding 2 parts by weight of this colored pellet to 100 parts by weight of polycarbonate (Iupilon C-3000 manufactured by Mitsubishi Gas Chemical Co., Ltd.) was attempted. Molding conditions are molding temperature 270℃ and injection pressure.
1000Kg/cm 2 , injection speed 2sec/shot, mold temperature 70℃
And so. The obtained molded article has good pigment dispersion and an excellent appearance. Table 4 shows the physical properties of the injection molded product.

【表】 (発明の効果) 本発明は、着色剤の分散性が良いため分散剤と
してあるいは高濃度のマスターバツチとして使用
することができ、かつマトリツクス樹脂との相溶
性が良いため、得られる成形体の外観や機械的強
度等が優れる効果を有する。
[Table] (Effects of the Invention) The colorant of the present invention has good dispersibility, so it can be used as a dispersant or as a high-concentration masterbatch, and the colorant has good compatibility with the matrix resin, so the molded product obtained It has the effect of providing excellent appearance, mechanical strength, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)メルトフローインデツクスが0.1〜400g/
10分のα−オレフイン系重合体樹脂と芳香族ビニ
ルモノマーとをグラフト重合条件に付して得られ
る芳香族ビニルモノマー単位含有量が5〜70重量
%の改質樹脂100〜20重量%および(B)α−オレフ
イン系もしくはスチレン系重合体樹脂0〜80重量
%からなる樹脂成分100重量部と、(C)有機ないし
無機顔料からなる着色剤3〜150重量部とからな
ることを特徴とする均一に着色された樹脂組成
物。
1 (A) Melt flow index is 0.1 to 400g/
100 to 20% by weight of a modified resin with an aromatic vinyl monomer unit content of 5 to 70% by weight obtained by subjecting 10 minutes of α-olefin polymer resin and an aromatic vinyl monomer to graft polymerization conditions; B) 100 parts by weight of a resin component consisting of 0-80% by weight of an α-olefin or styrene polymer resin, and (C) 3-150 parts by weight of a coloring agent consisting of an organic or inorganic pigment. Uniformly colored resin composition.
JP16701784A 1984-08-09 1984-08-09 Colored resin composition Granted JPS6144943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16701784A JPS6144943A (en) 1984-08-09 1984-08-09 Colored resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16701784A JPS6144943A (en) 1984-08-09 1984-08-09 Colored resin composition

Publications (2)

Publication Number Publication Date
JPS6144943A JPS6144943A (en) 1986-03-04
JPH0419264B2 true JPH0419264B2 (en) 1992-03-30

Family

ID=15841840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16701784A Granted JPS6144943A (en) 1984-08-09 1984-08-09 Colored resin composition

Country Status (1)

Country Link
JP (1) JPS6144943A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306429A (en) * 1988-06-03 1989-12-11 Toyo Ink Mfg Co Ltd Resin composition for coloring
JP3039018B2 (en) * 1990-08-22 2000-05-08 住友化学工業株式会社 Thermoplastic elastomer composition
WO2003000793A1 (en) * 2001-06-21 2003-01-03 Idemitsu Petrochemical Co., Ltd. Pigment masterbatch composition for polyolefin resin
SG107659A1 (en) * 2002-06-13 2004-12-29 Sumitomo Chemical Co Composite material of polyolefin resin and filter and molded article made from the same

Also Published As

Publication number Publication date
JPS6144943A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
CN109824979B (en) Needle-shaped color master batch, preparation method thereof and plastic product
US20090105373A1 (en) Highly Filled Colorant Composition for Colouring Olefinic and Non-Olefinic Plastics
EP0143545B1 (en) Masterbatch composition containing a resin and a foaming agent
US20100179256A1 (en) Highly Filled Colorant Composition For Coloring Olefinic And Also Nonolefinic Plastics
JPH03200841A (en) Material for coloring synthetic resin molding in pattern, its preparation, and synthetic resin molding colored therewith
US5041259A (en) Method for producing filler-containing colored thermoplastic resin composition
JP2654979B2 (en) Pigment masterbatch for filler-containing polypropylene composition
JP3146828B2 (en) Method for producing resin composition for coloring and resin composition for coloring
JPS635419B2 (en)
JP3375262B2 (en) Masterbatch for coloring polypropylene-based composite materials
JPH0419264B2 (en)
JPH08325422A (en) Colorant composition for polypropylene
JPH054423B2 (en)
JPS63113057A (en) Resin composition
JP3589332B2 (en) Colorant composition for polypropylene
JPH0925447A (en) Colored master batch containing filler
JPH01306429A (en) Resin composition for coloring
JP3444383B2 (en) Antistatic masterbatch color for thermoplastic resin and method for producing the same
JPH0753772A (en) Resin composition for coloring
JPH08325423A (en) Colorant composition for highly crystalline polypropylene
JPH0621201B2 (en) Coloring composition
JP3616270B2 (en) Colored thermoplastic resin molding material, method for producing the same, and colored resin molded product using the molding material
JP3614188B2 (en) High concentration colorant composition
JP2000327794A (en) Resin composition for coloring
JP2000290513A (en) Resin composition for coloration and thermoplastic resin- molded product using resin composition for coloration

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term