【0001】
【発明の属する技術分野】
本発明は高力率型の放電灯点灯装置に関するものである。
【0002】
【従来の技術】
従来例を図9に示す。図9のインバータ装置は交流電源電圧11を整流する整流電源10を備える。順直列一対の第一スイッチング素子21・第二スイッチング素子22を備える。前記各スイッチング素子と逆並列に接続するフライホイールダイオード31・32を備える。放電灯41と該放電灯に直列のバラスト用インダクタ42を含むインバータ負荷40を備える。前記両スイッチング素子21O22を跨ぐ位置に接続する平滑用コンデンサ90を備える。前記インバータ負荷40と前記両スイッチング素子21・22のいずれかを跨ぐ位置に接続するアーム用コンデンサ91を備える。
【0003】
【発明が解決しようとする課題】
従来装置では、交流電源11の電圧を整流する整流電源10と平滑用コンデンサ90が並列接続されるため、整流電源10の電圧が平滑用コンデンサ90の電圧を超えたときにのみ、交流電源11から瞬時に電力を取り込む。これは交流電源11電圧のピーク付近で起こり、高い充電電流が流れる。このため交流電源11の導通角が小さく、入力電流は波高値の大きな高調波成分を含む歪んだ波形となり、力率を著しく悪化させる原因となっていた。
【発明が解決しようとする課題】
従来の技術では、入力電源の導通角が小さく、入力電流は高調波成分を含んだ波形となり、力率低下の原因になっていた。本発明は、入力電源の導通角を大きくし、入力電流を電源電圧と同相の正弦波に近づけることにより、力率を改善するものである。
【0004】
【課題を解決するための手段】
本発明装置においては、交流電源電圧11を整流する整流電源10を備える。交互にオンオフするように制御する順直列の第一スイッチング素子21および第二スイッチング素子22を備える。整流電源10電圧を前記両スイッチング素子21・22の回路に順方向に接続し、前記第一スイッチング素子21に逆並列に接続する第一フライホイールダイオード31を備える。前記第二スイッチング素子22に逆並列に接続する第二フライホイールダイオード32を備える。誘導性負荷40を備える。第一主コンデンサ51および第二主コンデンサ52を備える。一方の前記第一スイッチング素子21と前記誘導性負荷40と前記第一主コンデンサ51と前記第二主コンデンサ52を直列に含む開回路を形成し、前記整流電源10側の前記第一主コンデンサ51を前記整流電源10に並列に接続する補助インダクタ60を備える。前記整流電源10・前記補助インダクタ60のいずれかと並列に接続する補助コンデンサ70を備える。
【0005】
【発明の実施の形態】
図1を用いて本発明の請求項1の実施形態について説明する。図1のインバータ装置は、交流電源11電圧を整流する整流電源10を備え、交互にオンオフするように制御する順直列の第一スイッチング素子21および第二スイッチング素子22を備え、整流電源10電圧を前記両スイッチング素子21・22の回路に順方向に印加し、前記第一スイッチング素子21に逆並列に接続する第一フライホイールダイオード31を備え、前記第二スイッチング素子22に逆並列に接続する第二フライホイールダイオード32を備え、誘導性負荷40を備え、第一主コンデンサ51および第二主コンデンサ52を備え、一方の前記第一スイッチング素子21と前記誘導性負荷40と前記第一主コンデンサ51と前記第二コンデンサ52を直列に含む開回路を形成し、前記整流電源10側の前記第一主コンデンサ51を前記整流電源10に並列に接続する補助インダクタ60を備え、前記整流電源10・前記補助インダクタ60のいずれかと並列に補助コンデンサ70を接続する。
図1のインバータ装置の構成について補足する。前記整流電源10は交流電源11およびダイオード12・13・14・15で構成される。前記誘導性負荷40は放電灯4・インダクタ42・予熱用コンデンサ43で構成される。放電灯41とインダクタ42は直列接続され、放電灯41と予熱用コンデンサ43は並列接続されている。図1ではスイッチング素子21・22がトランジスタになっているが、MOS−FETでもよい。スイッチング素子21・22にMOS−FETを使用した場合には、フライホイールダイオード31・32は省略できる。
図2から図8を用いて本インバータ装置の動作について簡単に説明する。
(1)スイッチング素子21・22共にオフのとき(電源投入時)。
電源投入時にはスイッチング素子21・22共にオフしているため、図2のi1TOOに示すように電流が流れ、整流電源10より補助コンデンサ70および、補助インダクタ60を介して第一主コンデンサ51に初期充電がなされる。
(2)スイッチング素子21がオン・スイッチング素子22がオフのとき。
次にスイッチング素子21がオンすると、第一主コンデンサ52に蓄えられた電荷は、スイッチング素子21を介して誘導負荷40へと流れ、図3のi1T21の経路で電流が流れる。
(3)スイッチング素子21がオフ・スイッチング素子22がオンのとき。
スイッチング素子21がオフすると、図4のi1T32に示すように、誘導負荷40に蓄えられた電磁エネルギーにより、誘導負荷40−第二主コンデンサ52−第一主コンデンサ51−補助コンデンサ70−フライホイールダイオード32の経路で電流が流れ、補助コンデンサ70が充電される。誘導負荷40による電流i1T32が消滅すると、図5のi1T22に示すように電流が流れ、補助コ.ンデンサ70に蓄えられた電荷は第一主コンデンサ51−誘導負荷40−スイッチング素子22を介して放電される。この間、補助コンデンサ70の電圧が整流電源10の電圧より低くなると、第一主コンデンサ51−誘導負荷40−スイッチング素子22を流れる電流は、整流電源10より給電され、図6のi2T22に示すように電流が流れる。続いて、第二主コンデンサ52の電荷によ−り、誘導負荷40−スイッチング素子22−補助インダクタ60の経路で図7に示すi3T22なる電流が流れる。
図7のi3T22で示す電流は、スイッチング素子22がオンし、誘導負荷40の電磁エネルギーによる電流が消滅した瞬間から流れはじめるが、補助インダクタ60により、電流の立ち上がりは緩慢であるため、スイッチング素子22がオンした直後は補助インダクタ60を介する第二主コンデンサ62の放電による電流i3T22は軽微であり、スイッチング素子22がオンした後の誘導負荷40の電流は補助コンデンサ70の放電による電流I1T22→整流電源10からの給電による電流i2T22→補助インダクタ60を介する第二主コンデンサ62の放電による電流I3T22の順に流れる。
(4)スイッチング素子21がオン・スイッチング素子22がオフのとき。
スイッチング素子22がオフすると、補助インダクタ60の電磁エネルギーにより、図8のi1T31に示すとおり、第二主コンデンサ52−誘導負荷40−フライホイールダイオード31を介して補助コンデンサ70が充電される。
以後前記(2)、(3)、(4)の動作を、繰り返す。
前記インバータ装置の動作について補足する。
図6に示す電流i2T22が流れるときに、インバータ装置の高周波動作よって整流電源10から給電が行われるため、前記インバータ装置の給電時における導通角は大きくなり、高力率動作となる。
【0008】
【発明の効果】
本発明によれば、入力力率を高くすることがで
【図面の簡単な説明】
【図1】本発明のインバータ装置の回路図である。
【図2】本発明のインバータ装置の回路動作を説明する回路図である。
【図3】本発明のインバータ装置の回路動作を説明する回路図である。
【図4】本発明のインバータ装置の回路動作を説明する回路図である。
【図5】本発明のインバータ装置の回路動作を説明する回路図である。
【図6】本発明のインバータ装置の回路動作を説明する回路図である。
【図7】本発明のインバータ装置の回路動作を説明する回路図である。
【図8】本発明のインバータ装置の回路動作を説明する回路図である。
【図9】従来の技術を説明する回路図である。
【符号の説明】
10:整流電源
11:交流電源
21:第一スイッチング素子
22:第二スイッチング素子
31:第一フライホイールダイオード
32:第二フライホイールダイオード
40:誘導性負荷
51:第一主コンデンサ
52:第二主コンデンサ
60:補助インダクタ
70:補助コンデンサ70[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high power factor type discharge lamp lighting device.
[0002]
[Prior art]
FIG. 9 shows a conventional example. The inverter device of FIG. 9 includes a rectified power supply 10 that rectifies an AC power supply voltage 11. It includes a pair of first switching element 21 and second switching element 22 in a normal series. Flywheel diodes 31 and 32 are connected in anti-parallel with the switching elements. A discharge lamp 41 and an inverter load 40 including a ballast inductor 42 in series with the discharge lamp are provided. A smoothing capacitor 90 is connected to a position straddling the two switching elements 21O22. An arm capacitor 91 is connected to a position across the inverter load 40 and one of the switching elements 21 and 22.
[0003]
[Problems to be solved by the invention]
In the conventional device, the rectified power supply 10 for rectifying the voltage of the AC power supply 11 and the smoothing capacitor 90 are connected in parallel. Therefore, only when the voltage of the rectified power supply 10 exceeds the voltage of the smoothing capacitor 90, the AC power supply 11 Take in power instantly. This occurs near the peak of the voltage of the AC power supply 11, and a high charging current flows. For this reason, the conduction angle of the AC power supply 11 is small, and the input current has a distorted waveform including a harmonic component having a large peak value, which causes the power factor to be significantly deteriorated.
[Problems to be solved by the invention]
In the prior art, the conduction angle of the input power supply is small, and the input current has a waveform including harmonic components, which causes a reduction in the power factor. The present invention improves the power factor by increasing the conduction angle of the input power supply and bringing the input current closer to a sine wave in phase with the power supply voltage.
[0004]
[Means for Solving the Problems]
The apparatus of the present invention includes a rectified power supply 10 for rectifying an AC power supply voltage 11. It includes a first switching element 21 and a second switching element 22 in a forward series that are controlled to be turned on and off alternately. A first flywheel diode 31 is connected to the rectified power supply 10 voltage in the forward direction to the circuit of the two switching elements 21 and 22 and is connected in anti-parallel to the first switching element 21. A second flywheel diode 32 is connected in antiparallel to the second switching element 22. An inductive load 40 is provided. A first main capacitor 51 and a second main capacitor 52 are provided. An open circuit including one of the first switching element 21, the inductive load 40, the first main capacitor 51, and the second main capacitor 52 is formed in series, and the first main capacitor 51 on the rectified power supply 10 side is formed. To the rectified power supply 10 in parallel. An auxiliary capacitor 70 is connected in parallel with either the rectified power supply 10 or the auxiliary inductor 60.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The first embodiment of the present invention will be described with reference to FIG. The inverter device of FIG. 1 includes a rectifying power supply 10 that rectifies an AC power supply 11 voltage, and includes a first series switching element 21 and a second switching element 22 that are controlled to be turned on and off alternately. A first flywheel diode 31 that is applied to the circuit of the two switching elements 21 and 22 in the forward direction and is connected in antiparallel to the first switching element 21, and is connected in antiparallel to the second switching element 22. A first main capacitor 51 and a second main capacitor 52; one of the first switching element 21, the inductive load 40, and the first main capacitor 51; And an open circuit including the second capacitor 52 in series with the first main capacitor on the rectified power supply 10 side. An auxiliary inductor 60 that connects one in parallel to the rectifying power supply 10, to connect the auxiliary capacitor 70 in parallel with one of said rectifying power supply 10, the auxiliary inductor 60.
The configuration of the inverter device of FIG. 1 will be supplemented. The rectified power supply 10 includes an AC power supply 11 and diodes 12, 13, 14, and 15. The inductive load 40 includes a discharge lamp 4, an inductor 42, and a preheating capacitor 43. The discharge lamp 41 and the inductor 42 are connected in series, and the discharge lamp 41 and the preheating capacitor 43 are connected in parallel. In FIG. 1, the switching elements 21 and 22 are transistors, but may be MOS-FETs. When MOS-FETs are used for the switching elements 21 and 22, the flywheel diodes 31 and 32 can be omitted.
The operation of the present inverter device will be briefly described with reference to FIGS.
(1) When both the switching elements 21 and 22 are off (when the power is turned on).
When the power is turned on, both the switching elements 21 and 22 are off, so that a current flows as shown by i1TOO in FIG. 2 and the rectified power supply 10 initially charges the first main capacitor 51 via the auxiliary capacitor 70 and the auxiliary inductor 60. Is made.
(2) When the switching element 21 is on and the switching element 22 is off.
Next, when the switching element 21 is turned on, the electric charge stored in the first main capacitor 52 flows to the inductive load 40 via the switching element 21, and a current flows through the path i1T21 in FIG.
(3) When the switching element 21 is off and the switching element 22 is on.
When the switching element 21 is turned off, as shown by i1T32 in FIG. 4, the electromagnetic energy stored in the inductive load 40 causes the inductive load 40-second main capacitor 52-first main capacitor 51-auxiliary capacitor 70-flywheel diode. A current flows through the path 32, and the auxiliary capacitor 70 is charged. When the current i1T32 due to the inductive load 40 disappears, a current flows as shown by i1T22 in FIG. The electric charge stored in the capacitor 70 is discharged through the first main capacitor 51, the inductive load 40, and the switching element 22. During this time, when the voltage of the auxiliary capacitor 70 becomes lower than the voltage of the rectified power supply 10, the current flowing through the first main capacitor 51, the inductive load 40, and the switching element 22 is supplied from the rectified power supply 10 as shown in i2T22 of FIG. Electric current flows. Subsequently, due to the electric charge of the second main capacitor 52, a current i3T22 shown in FIG. 7 flows through the path of the inductive load 40, the switching element 22, and the auxiliary inductor 60.
The current indicated by i3T22 in FIG. 7 starts to flow at the moment when the switching element 22 is turned on and the current due to the electromagnetic energy of the inductive load 40 is extinguished. However, the rise of the current is slow due to the auxiliary inductor 60. Immediately after turning on, the current i3T22 due to the discharge of the second main capacitor 62 via the auxiliary inductor 60 is small, and the current of the inductive load 40 after the switching element 22 is turned on is the current I1T22 due to the discharge of the auxiliary capacitor 70 → the rectified power supply. The current i2T22 flows from the power supply 10 to the current I3T22 due to the discharge of the second main capacitor 62 via the auxiliary inductor 60.
(4) When the switching element 21 is on and the switching element 22 is off.
When the switching element 22 is turned off, the auxiliary capacitor 70 is charged by the electromagnetic energy of the auxiliary inductor 60 via the second main capacitor 52, the inductive load 40, and the flywheel diode 31, as shown by i1T31 in FIG.
Thereafter, the operations (2), (3) and (4) are repeated.
The operation of the inverter device will be supplemented.
When the current i2T22 shown in FIG. 6 flows, power is supplied from the rectified power supply 10 by the high-frequency operation of the inverter device. Therefore, the conduction angle of the inverter device at the time of power supply becomes large, and the operation becomes a high power factor operation.
[0008]
【The invention's effect】
According to the present invention, the input power factor can be increased.
FIG. 1 is a circuit diagram of an inverter device according to the present invention.
FIG. 2 is a circuit diagram illustrating a circuit operation of the inverter device of the present invention.
FIG. 3 is a circuit diagram illustrating a circuit operation of the inverter device of the present invention.
FIG. 4 is a circuit diagram illustrating a circuit operation of the inverter device of the present invention.
FIG. 5 is a circuit diagram illustrating a circuit operation of the inverter device of the present invention.
FIG. 6 is a circuit diagram illustrating a circuit operation of the inverter device of the present invention.
FIG. 7 is a circuit diagram illustrating a circuit operation of the inverter device of the present invention.
FIG. 8 is a circuit diagram illustrating a circuit operation of the inverter device of the present invention.
FIG. 9 is a circuit diagram illustrating a conventional technique.
[Explanation of symbols]
10: Rectifying power supply 11: AC power supply 21: First switching element 22: Second switching element 31: First flywheel diode 32: Second flywheel diode 40: Inductive load 51: First main capacitor 52: Second main Capacitor 60: auxiliary inductor 70: auxiliary capacitor 70