JP2004129160A - 画像復号装置、画像復号方法および画像復号プログラム - Google Patents
画像復号装置、画像復号方法および画像復号プログラム Download PDFInfo
- Publication number
- JP2004129160A JP2004129160A JP2002294166A JP2002294166A JP2004129160A JP 2004129160 A JP2004129160 A JP 2004129160A JP 2002294166 A JP2002294166 A JP 2002294166A JP 2002294166 A JP2002294166 A JP 2002294166A JP 2004129160 A JP2004129160 A JP 2004129160A
- Authority
- JP
- Japan
- Prior art keywords
- image
- image data
- unit
- decoding
- prediction vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/004—Predictors, e.g. intraframe, interframe coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Circuits (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
【課題】外部より入力される符号化ストリームを復号しつつ縮小する場合において、復号処理を高速化すること。
【解決手段】画像復号装置は、符号化ストリームを復号する復号処理部と、動き補償をおこなう前に画像データを縮小処理する縮小処理部と、画像データの縮小率に基づいて予測ベクトルを補正する予測ベクトル補正部と、縮小処理された画像データおよび補正された予測ベクトルに基づいて動き補償をおこなう動き補償部とを備える。
【選択図】 図1
【解決手段】画像復号装置は、符号化ストリームを復号する復号処理部と、動き補償をおこなう前に画像データを縮小処理する縮小処理部と、画像データの縮小率に基づいて予測ベクトルを補正する予測ベクトル補正部と、縮小処理された画像データおよび補正された予測ベクトルに基づいて動き補償をおこなう動き補償部とを備える。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
この発明は、画像復号装置、画像復号方法および画像復号プログラムに関し、特に、外部より入力される符号化ストリームを復号しつつ縮小する場合において、復号処理を高速化することができる画像復号装置、画像復号方法および画像復号プログラムに関する。
【0002】
【従来の技術】
従来より、MPEG(エムペグ:moving picture experts group)と呼ばれる圧縮符号化方式により動画像を符号化して得られた符号化ストリームを復号する画像復号装置が知られている。このような画像復号装置で符号化ストリームを復号しつつ縮小する場合、該符号化ストリームを復号した後に縮小処理をおこなっている。
【0003】
具体的には、この従来技術に係る画像復号装置は、デコーダ(可変長復号部と、逆量子化部と、逆スキャン部と、逆DCT部と、動き補償部とを備える復号処理部)において復号処理をおこなうことによって符号化ストリームを画像データに復号し、該画像データに対して縮小処理をおこなう(図1(a)参照)。
【0004】
ここで、かかる「縮小処理」とは、縮小フィルタを用いて画像データの画素を間引く縮小処理であり、従来は、画像復号装置において符号化ストリームの復号処理をおこなった後に縮小処理をおこなっていた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の従来技術は、符号化ストリームを復号した後に縮小処理することにより、復号後に省略されるデータがデコーダ(可変長復号部と、逆量子化部と、逆スキャン部と、逆DCT部と、動き補償部とを備える復号処理部)に流れ、復号処理の高速化を妨げるという問題点があった。
【0006】
すなわち、符号化ストリームには復号後の縮小処理の際に間引かれるデータが含まれており、デコーダ(可変長復号部と、逆量子化部と、逆スキャン部と、逆DCT部と、動き補償部とを備える復号処理部)に縮小処理の際に間引かれるデータが流れるので、復号処理の処理速度が遅くなる。また、画像メモリにおいても、縮小処理の際に間引かれるデータが記憶されるので、容量を浪費している。
【0007】
本発明は、上述した従来技術による問題点を解消するためになされたものであり、外部より入力される符号化ストリームを復号しつつ縮小する場合において、復号処理を高速化することができる画像復号装置、画像復号方法および画像復号プログラムを提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するため、本発明は、動き補償をおこなう前に画像データを縮小処理し、画像データの縮小率に基づいて予測ベクトルを補正する。
【0009】
この発明によれば、縮小された画像データがメモリに記憶されることにより、動き補償処理で扱うデータ量が少なくなるので、動き補償処理を高速化することができる。
【0010】
また、本発明は、画像データから画素を間引く縮小処理によって画像データを縮小する。
【0011】
この発明によれば、画素を間引かれた画像データがメモリに記憶されることにより、動き補償処理で扱うデータ量が少なくなるので、動き補償処理を高速化することができる。
【0012】
また、本発明は、可変長符号化された画像データに対して離散コサイン変換をおこなって画像データが周波数成分から実画像成分に変換される前に縮小処理をおこなう。
【0013】
この発明によれば、画像データが周波数成分である処理段階に縮小処理をおこなうことにより、復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0014】
また、本発明は、可変長復号化をおこなう際に符号化ストリームから所定の周波数以上の高周波成分を除外することによって画像データを縮小処理する。
【0015】
この発明によれば、可変長復号化処理に際して縮小処理をおこなうことにより、復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0016】
また、本発明は、可変長復号化をおこなう際に符号化ストリームから画像データの直流成分のみを取り出すことによって画像データを縮小処理する。
【0017】
この発明によれば、可変長復号化処理に際して縮小処理をおこなうことにより、復号処理をおこなう回路量および復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0018】
また、本発明は、複数の縮小率の中から所定の縮小率を選択して画像データの縮小処理がおこなわれた際に、選択された縮小率に対応する補正処理を予測ベクトルに対しておこなう。
【0019】
この発明によれば、選択された縮小率に基づいて補正処理をおこなうことにより、縮小処理および予測ベクトル補正処理が効率よく動作するので、復号処理を高速化することができる。
【0020】
また、本発明は、外部より入力される符号化ストリームを蓄積せずに、可変長復号化をおこなう処理部に入力する。
【0021】
この発明によれば、メモリには、縮小処理された参照画像データおよび表示画像データのみを記憶するので、メモリを効率的に使用することができる。
【0022】
【発明の実施の形態】
以下に添付図面を参照して、この発明に係る画像復号装置、画像復号方法および画像復号プログラムの好適な実施の形態を詳細に説明する。なお、以下に本発明に係る画像復号装置の概要および主たる特徴を説明した後に、実施の形態1〜4に係る画像復号装置を説明する。
【0023】
また、本実施の形態では、本発明をMPEG2方式により符号化されたMPEG2ビットストリームという符号化ストリームを復号する画像復号装置に適用した場合を説明するが、MPEG1やMPEG4など、あらゆる画像符号化方式により符号化された符号化ストリームを復号する場合にも同様に適用することができる。
【0024】
[概要および主たる特徴]
まず最初に、本発明に係る画像復号装置の概要および主たる特徴を説明する。図1(b)に示す本発明に係る画像復号装置は、概略的には、デコーダ(可変長復号部と、逆量子化部と、逆スキャン部と、逆DCT部と、動き補償部とを備える復号処理部)において符号化ストリームを復号しつつ縮小するものである。
【0025】
ここで、この画像復号装置は、動き補償をおこなう前に符号化ストリームを復号しつつ縮小することに主たる特徴があり、縮小処理されたデータを復号処理において扱うことによって、復号処理を高速化できるようにしている。
【0026】
この主たる特徴を具体的に説明すると、画像復号装置において、縮小処理部は、動き補償をおこなう前に画像データに対して、画素を間引く縮小処理、所定の周波数以上の高周波成分を除外する縮小処理(図8参照)、または画像データの直流成分のみを取り出す縮小処理(図11参照)をおこなう。そして、予測ベクトル補正部は、縮小処理部による画像データの縮小率に基づいて予測ベクトルを補正する。
【0027】
したがって、本発明に係る画像復号装置は、上記した従来技術の例で言えば、図1または図5に示すように、動き補償をおこなう前に符号化ストリームを復号しつつ縮小することができる。これによって、上記した主たる特徴のように、外部より入力される符号化ストリームを復号しつつ縮小する場合において、復号処理を高速化することが可能になる。
【0028】
さらに、この画像復号装置は、外部より入力される符号化ストリームを蓄積せずに、可変長復号化部に逐次入力することに特徴があり、メモリには、縮小処理された参照画像データおよび表示画像データのみを記憶することによって、メモリを効率的に使用できるようにしている。
【0029】
なお、本発明に係る画像復号装置は、携帯電話やPDA(携帯情報端末)などの小さな表示装置を備える電子機器に適用されるものであり、地上波デジタル放送などのネットワークを介して入力された符号化ストリームを復号しつつ縮小し、該復号しつつ縮小された画像を表示装置に表示する場合に好適に実施される。
【0030】
(実施の形態1)
実施の形態1では、外部より入力される符号化ストリームを復号しつつ縮小する場合において、動き補償をおこなう前に縮小処理をおこなう本発明に係る画像復号装置について説明する。なお、ここでは、実施の形態1に係る画像復号装置の構成を説明した後に、この画像復号装置による各種処理の手順を説明する。
【0031】
<実施の形態1に係る画像復号装置の構成>
本実施の形態1に係る画像復号装置における各部の構成を説明する。図2は、本実施の形態1に係る画像復号装置の構成を示すブロック図である。この画像復号装置は、同図に示すように、ストリームバッファ制御部11と、デコーダ制御部12と、デコーダ20と、メモリ30とを備える。
【0032】
また、デコーダ20は、同図に示すように、可変長復号化部21と、逆量子化部22と、逆スキャン部23と、逆DCT部24と、縮小処理部25と、動き補償部26とを備える。
【0033】
ストリームバッファ制御部11は、デコーダ制御部12の指示に基づいて、符号化ストリームの入力時刻のばらつきを均一化して、デコーダ20に符号化ストリームを入力する処理部である。具体的には、圧縮符号化方式により動画像を符号化して得られた符号化ストリームを、一時的にメモリ30に蓄積して、符号化ストリームの入力時刻のばらつきを均一化してデコーダ20に入力する。
【0034】
デコーダ制御部12は、ストリームバッファ制御部11を介して、メモリ30から符号化ストリームをデコーダ20に出力する処理部である。
【0035】
デコーダ20は、概略的に、ストリームバッファ制御部11から入力された符号化ストリームをデコーダ制御部12の指示に基づいて復号してメモリ30に出力する処理部である。この復号処理は、可変長復号化部21、逆量子化部22、逆スキャン部23、逆DCT部24、縮小処理部25および動き補償部26の各処理部による処理を経ておこなわれる。
【0036】
メモリ30は、符号化ストリームおよび各処理段階を経て復号された画像データをともに記憶する記憶手段である。具体的には、符号化ストリームを記憶する領域と、デコーダ20の各処理段階を経て復号された画像データを記憶する領域とを備える。
【0037】
以下に、デコーダ20の各処理部の処理を説明する。可変長復号化部21は、符号化ストリームに含まれる可変長復号化データを復号して量子化DCT係数を復元する処理部である。具体的には、ストリームバッファ制御部11から入力された符号化ストリームをデコーダ制御部12の指示に従い、マクロブロックを分離し、各マクロブロックの量子化DCT係数を復号し、復号した量子化DCT係数を逆量子化部22に出力する。
【0038】
なお、可変長復号化部21は、予測モードや予測ベクトルなどのパラメータの復号もおこない、復号した予測モードおよび予測ベクトルを動き補償部26に出力する。
【0039】
逆量子化部22は、可変長復号化部21から入力された量子化DCT係数を逆量子化してDCT係数を復号し、復号したDCT係数を逆スキャン部23に出力する処理部である。
【0040】
逆スキャン部23は、逆量子化部22から入力されたDCT係数を逆スキャンし、逆スキャンしたDCT係数を逆DCT部24に出力する処理部である。なお、図2においては、逆量子化処理をおこなった後に逆スキャン処理をおこなう場合の構成を示しているが、必ずしもこの順序にしたがう必要はなく、逆スキャン処理をおこなった後に逆量子化処理をおこなう構成でもよい。
【0041】
逆DCT部24は、逆スキャン部23から入力されたDCT係数を逆DCT変換して符号化前の実画像成分である画像データ(画素値を持つデータ)を復号し、復号した画像データを縮小処理部25に出力する処理部である。
【0042】
縮小処理部25は、縮小フィルタを用いて逆DCT部24から入力された画像データの画素を間引いて縮小処理し、縮小処理した画像データを動き補償部26に出力する処理部である。
【0043】
動き補償部26は、縮小処理部25から入力された画像データ(縮小データ)と、可変長復号化部21から入力された予測モードおよび予測ベクトルとに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む処理部であり、機能概念的に、予測ベクトル補正部26aと補償処理部26bとから構成される。
【0044】
このうち、動き補償部26の予測ベクトル補正部26aは、縮小処理部25による画像データの縮小率に基づいて予測ベクトルを補正する処理部である。具体的には、動き補償処理の際に用いられる予測ベクトルは、縮小率に基づいていない参照データ(メモリ30に記憶された参照データとして用いられる画像データ)に基づいたものであるので、縮小処理部25による縮小率に基づいた参照データに予測ベクトルを補正する。
【0045】
動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルおよび可変長復号部21から入力された予測モードに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む処理部である。
【0046】
このメモリ30に書き込まれた画像データは、表示出力に利用されるとともに、他の画像の参照データとして利用される。すなわち、縮小処理部25から入力されるマクロブロックが動き補償を使用している場合には、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルにしたがって、その画像データが輝度データであれば、メモリ30の画像バッファから参照画素の輝度データを読み込み、その画像データが色差データであれば、メモリ30の画像バッファから参照画素の色差データを読み込む。そして、読み込んだ参照画像データを縮小処理部25から入力された画像データに加算することにより動き補償をおこない、かかる動き補償をおこなった画像データをメモリ30に書き込む。なお、補償処理部26bは、メモリ30に記憶された参照データ(縮小データ)で動き補償をおこなうことになり、所定の座標の参照データを得ることができないので、近隣の画像データ間で補完(3次補完法または面積平均法など)して動き補償をおこなう。
【0047】
ここで、縮小処理部および予測ベクトル補正部の構成は、実施の形態1に限定されない。変形例として、図4に示すように、縮小処理部による画像データの縮小率に基づいて、予測ベクトル補正部の補正処理をおこなうように整合することもできる。
【0048】
<実施の形態1に係る各種処理の手順>
次に、本実施の形態1に係る画像復号装置による各種処理の手順を説明する。図3は、実施の形態1に係る復号処理の手順を示すフローチャートである。同図に示すように、デコーダ制御部12は、ストリームバッファ制御部11を介して、メモリ30から符号化ストリームを可変長復号化部21に出力する(ステップS301)。
【0049】
続いて、可変長復号化部21は、符号化ストリームに含まれる予測モードおよび予測ベクトルを復元(ステップS302)し、また符号化ストリームに含まれる可変長符号化データを復号して量子化DCT係数を復元する(ステップS303)。
【0050】
そして、逆量子化部22は、可変長復号化部21によって復元された量子化DCT係数を逆量子化してDCT係数を復号する(ステップS304)。逆スキャン部23は、逆量子化部22によって復号されたDCT係数を逆スキャンして逆スキャンしたDCT係数を復号する(ステップS305)。
【0051】
続いて、逆DCT部24は、逆スキャン部23によって復号された逆スキャンしたDCT係数を逆DCT変換して符号化前の実画像成分である画像データ(画素値を持つデータ)を復号する(ステップS306)。
【0052】
ここで、縮小処理部25は、縮小フィルタを用いて逆DCT部24から入力された画像データの画素を間引いて縮小する(ステップS307)。そして、動き補償部26の予測ベクトル補正部26aは、縮小処理部25による画像データの縮小率に基づいて予測ベクトルを補正する(ステップS308)。具体的には、動き補償処理の際に用いられる予測ベクトルは、縮小率に基づいていない参照データ(メモリ30に記憶された参照データとして用いられる画像データ)に基づいたものであるので、縮小処理部25による縮小率に基づいた参照データに予測ベクトルを補正する。
【0053】
続いて、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルおよび可変長復号部21から入力された予測モードに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む(ステップS309)。
【0054】
すなわち、縮小処理部25から入力されるマクロブロックが動き補償を使用している場合には、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルにしたがって、その画像データが輝度データであれば、メモリ30の画像バッファから参照画素の輝度データを読み込み、その画像データが色差データであれば、メモリ30の画像バッファから参照画素の色差データを読み込む。そして、読み込んだ参照画像データを縮小処理部25から入力された画像データに加算することにより動き補償をおこない、かかる動き補償をおこなった画像データをメモリ30に書き込む。なお、補償処理部26bは、メモリ30に記憶された参照データ(縮小データ)で動き補償をおこなうことになり、所定の座標の参照データを得ることができないので、近隣の画像データ間で補完(3次補完法または面積平均法など)して動き補償をおこなう。
【0055】
最後に、全符号化ストリームの復号が終了である場合(ステップS310肯定)は、処理を終了する。また、まだ符号化ストリームの復号が途中である場合(ステップS310否定)には、上記のステップS301〜S309の処理を実行する。
【0056】
上述してきたように、本実施の形態1に係る画像復号装置は、外部より入力される符号化ストリームを復号しつつ縮小する場合において、動き補償をおこなう前に縮小処理をおこなうことにより、縮小された画像データがメモリに記憶されることとなるので、動き補償処理を高速化することができる。
【0057】
(実施の形態2)
次に、実施の形態2では、可変長復号化をおこなう際に符号化ストリームから所定の周波数以上の高周波成分を除外することによって縮小処理をおこなう本発明に係る画像復号装置について説明する。なお、ここでは、実施の形態2に係る画像復号装置の構成を説明した後に、画像復号装置による各種処理の手順を説明する。
【0058】
<実施の形態2に係る画像復号装置の構成>
本実施の形態2に係る画像復号装置における各部の構成を説明する。またここでは、実施の形態1と機能概念的に差異のある処理部を説明し、同様の処理部については説明を省略する。この画像復号装置は、図6に示すように、ストリームバッファ制御部11と、デコーダ制御部12と、デコーダ40と、メモリ30とを備える(ストリームバッファ制御部11、デコーダ制御部12およびメモリ30については、実施の形態1と同様の処理をおこなう。)。
【0059】
また、デコーダ40は、同図に示すように、可変長復号化部41と、逆量子化部22と、逆スキャン部23と、逆DCT部24と、動き補償部26とを備える(逆量子化部22、逆スキャン部23、逆DCT部24および動き補償部26については、実施の形態1と同様の処理をおこなう。)。
【0060】
可変長復号化部41は、符号化ストリームに含まれる可変長復号化データを復号して量子化DCT係数を復元する処理部であり、機能概念的に縮小処理部41aを備える。具体的には、ストリームバッファ制御部11から入力された符号化ストリームをデコーダ制御部12の指示に従い、マクロブロックを分離し、各マクロブロックの量子化DCT係数を復号する。なお、予測モードや予測ベクトルなどのパラメータの復号もおこない、復号した予測モードおよび予測ベクトルを動き補償部26に出力する。
【0061】
可変長復号化部41の縮小処理部41aは、可変長復号化部41によって復号された量子化DCT係数から所定の周波数以上の高周波成分を除外することによって縮小処理する処理部である。具体的には、図8に示すように(この処理段階において量子化DCT係数は一次元のデータ列であるが概念を説明するために図示のように表す)、DCT係数の高周波成分を除外して、DC係数および所定の低周波AC成分を抽出して逆量子化部22に出力する(抽出対象である低周波AC成分は図示のものに限定されない)。
【0062】
<実施の形態2に係る各種の処理の手順>
次に、本実施の形態2に係る画像復号装置による各種処理の手順を説明する。図7は、実施の形態2に係る画像復号装置の手順を示すフローチャートである。同図に示すように、デコーダ制御部12は、ストリームバッファ制御部11を介して、メモリ30から符号化ストリームを可変長復号化部41に出力する(ステップS701)。
【0063】
続いて、可変長復号化部41は、符号化ストリームに含まれる予測モードおよび予測ベクトルを復元(ステップS702)し、また符号化ストリームに含まれる可変長符号化データを復号して量子化DCT係数を復元する(ステップS703)。
【0064】
可変長復号化部41の縮小処理部41aは、可変長復号化部41によって復号された量子化DCT係数から所定の周波数以上の高周波成分を除外することによって縮小処理し、所定の量子化DCT係数を逆量子化部に出力する(ステップS704)。具体的には、図8に示すように(この処理段階において量子化DCT係数は一次元のデータ列であるが概念を説明するために図示のように表す)、DCT係数の高周波成分を除外して、DC係数および所定の低周波AC成分を抽出して逆量子化部22に出力する。
【0065】
そして、逆量子化部22は、可変長復号化部41の縮小処理部41aによって出力された所定の量子化DCT係数を逆量子化してDCT係数を復号する(ステップS705)。逆スキャン部23は、逆量子化部22によって復号されたDCT係数を逆スキャンして逆スキャンしたDCT係数を復号する(ステップS706)。
【0066】
続いて、逆DCT部24は、逆スキャン部23によって復号された逆スキャンしたDCT係数を逆DCT変換して符号化前の実画像成分である画像データ(画素値を持つデータ)を復号する(ステップS707)。
【0067】
そして、動き補償部26の予測ベクトル補正部26aは、可変長復号化部41の縮小処理部41aによる画像データの縮小率に基づいて予測ベクトルを補正する(ステップS708)。具体的には、動き補償処理の際に用いられる予測ベクトルは、縮小率に基づいていない参照データ(メモリ30に記憶された参照データとして用いられる画像データ)に基づいたものであるので、可変長復号化部41の縮小処理部41aによる画像データの縮小率に基づいた参照データに予測ベクトルを補正する。
【0068】
続いて、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルおよび可変長復号部41から入力された予測モードに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む(ステップS709)。
【0069】
すなわち、逆DCT部24から入力されるマクロブロックが動き補償を使用している場合には、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルにしたがって、その画像データが輝度データであれば、メモリ30の画像バッファから参照画素の輝度データを読み込み、その画像データが色差データであれば、メモリ30の画像バッファから参照画素の色差データを読み込む。そして、読み込んだ参照画像データを逆DCT部24から入力された画像データに加算することにより動き補償をおこない、かかる動き補償をおこなった画像データをメモリ30に書き込む。なお、補償処理部26bは、メモリ30に記憶された参照データ(縮小データ)で動き補償をおこなうことになり、所定の座標の参照データを得ることができないので、近隣の画像データ間で補完(3次補完法または面積平均法など)して動き補償をおこなう。
【0070】
最後に、全符号化ストリームの復号が終了である場合(ステップS710肯定)は、処理を終了する。また、まだ符号化ストリームの復号が途中である場合(ステップS710否定)には、上記のステップS701〜S709の処理を実行する。
【0071】
上述してきたように、本実施の形態2に係る画像復号装置は、可変長復号化をおこなう際に符号化ストリームから所定の周波数以上の高周波成分を除外することによって縮小処理をおこなうので、復号処理をおこなう各処理部で扱うデータ量が少なくなり、復号処理を高速化することができる。
【0072】
(実施の形態3)
次に、実施の形態3では、可変長復号化をおこなう際に符号化ストリームから画像データの直流成分のみを取り出すことによって縮小処理をおこなう本発明に係る画像復号装置について説明する。なお、ここでは、実施の形態3に係る画像復号装置の構成を説明した後に、この画像復号装置による各種処理の手順を説明する。
【0073】
<実施の形態3に係る画像復号装置の構成>
本実施の形態3に係る画像復号装置における各部の構成を説明する。またここでは、実施の形態1または実施の形態2と機能概念的に差異のある処理部を説明し、同様の処理部については説明を省略する。この画像復号装置は、図9に示すように、ストリームバッファ制御部11と、デコーダ制御部12と、デコーダ50と、メモリ30とを備える(ストリームバッファ制御部11、デコーダ制御部12およびメモリ30については、実施の形態2と同様の処理をおこなう。)。
【0074】
また、デコーダ50は、同図に示すように、可変長復号化部51と、逆量子化部22と、動き補償部26とを備える(逆量子化部22および動き補償部26については、実施の形態2と同様の処理をおこなう。)。
【0075】
可変長復号化部51は、符号化ストリームに含まれる可変長復号化データを復号して量子化DCT係数を復元する処理部であり、機能概念的に縮小処理部51aを備える。具体的には、ストリームバッファ制御部11から入力された符号化ストリームをデコーダ制御部12の指示に従い、マクロブロックを分離し、各マクロブロックの量子化DCT係数を復号する。なお、予測モードや予測ベクトルなどのパラメータの復号もおこない、復号した予測モードおよび予測ベクトルを動き補償部26に出力する。
【0076】
可変長復号化部51の縮小処理部51aは、可変長復号化部51によって復号された量子化DCT係数から直流成分のみを取り出すことによって縮小処理する処理部である。具体的には、図11に示すように(この処理段階において量子化DCT係数は一次元のデータ列であるが概念を説明するために図示のように表す)、DCT係数の高周波成分を除外して、DC係数を抽出して逆量子化部22に出力する。
【0077】
<実施の形態3に係る各種の処理の手順>
次に、本実施の形態3に係る画像復号装置による各種処理の手順を説明する。図10は、実施の形態3に係る画像復号装置の手順を示すフローチャートである。同図に示すように、デコーダ制御部12は、ストリームバッファ制御部11を介して、メモリ30から符号化ストリームを可変長復号化部51に出力する(ステップS901)。
【0078】
続いて、可変長復号化部51は、符号化ストリームに含まれる予測モードおよび予測ベクトルを復元(ステップS902)し、また符号化ストリームに含まれる可変長符号化データを復号して量子化DCT係数を復元する(ステップS903)。
【0079】
可変長復号化部51の縮小処理部51aは、可変長復号化部51によって復号された量子化DCT係数から直流成分(量子化DC係数)のみを取り出すことによって縮小処理し、量子化DC係数を逆量子化部に出力する(ステップS904)。具体的には、図11に示すように(この処理段階において量子化DCT係数は一次元のデータ列であるが概念を説明するために図示のように表す)、DCT係数の高周波成分を除外して、DC係数を抽出して逆量子化部22に出力する。
【0080】
そして、逆量子化部22は、可変長復号化部51の縮小処理部51aによって出力された量子化DC係数を逆量子化して実画像成分であるDC係数(画像データと等価)を復号する(ステップS905)。
【0081】
そして、動き補償部26の予測ベクトル補正部26aは、可変長復号化部51の縮小処理部51aによる画像データの縮小率に基づいて、動き補償処理をおこなうように予測ベクトルを補正する(ステップS906)。具体的には、動き補償処理の際に用いられる予測ベクトルは、縮小率に基づいていない参照データ(メモリ30に記憶された参照データとして用いられる画像データ)に基づいたものであるので、可変長復号化部51の縮小処理部51aによる縮小率に基づいた参照データに予測ベクトルを補正する。
【0082】
続いて、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルおよび可変長復号部51から入力された予測モードに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む(ステップS907)。
【0083】
すなわち、逆量子化部22から入力されるマクロブロックが動き補償を使用している場合には、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルにしたがって、その画像データが輝度データであれば、メモリ30の画像バッファから参照画素の輝度データを読み込み、その画像データが色差データであれば、メモリ30の画像バッファから参照画素の色差データを読み込む。そして、読み込んだ参照画像データを逆量子化部22から入力された画像データに加算することにより動き補償をおこない、かかる動き補償をおこなった画像データをメモリ30に書き込む。なお、補償処理部26bは、メモリ30に記憶された参照データ(縮小データ)で動き補償をおこなうことになり、所定の座標の参照データを得ることができないので、近隣の画像データ間で補完(3次補完法または面積平均法など)して動き補償をおこなう。
【0084】
最後に、全符号化ストリームの復号が終了である場合(ステップS908肯定)は、処理を終了する。また、まだ符号化ストリームの復号が途中である場合(ステップS908否定)には、上記のステップS901〜S907の処理を実行する。
【0085】
上述してきたように、本実施の形態3に係る画像復号装置は、可変長復号化をおこなう際に符号化ストリームから画像データの直流成分のみを取り出すことによって縮小処理をおこなうので、復号処理をおこなう回路量および復号処理をおこなう各処理部で扱うデータ量が少なくなり、復号処理を高速化することができる。
【0086】
なお、本実施の形態1〜3では、符号化ストリームを記憶する記憶領域と、各処理段階を経て復号された画像データを記憶する記憶領域との2つに記憶領域を分けられたメモリを備える画像復号装置について説明したが、本発明はこれに限定されるものではなく、符号化ストリームを記憶するメモリ(ストリームバッファ)および各処理段階を経て復号された画像データを記憶するメモリ(画像メモリ)をそれぞれ独立したメモリとして備える画像復号装置についても同様に適用することができる。
【0087】
(実施の形態4)
実施の形態1〜3では、外部より入力される符号化ストリームをメモリに蓄積し、該符号化ストリームの入力時刻のばらつきを均一化した後に復号しつつ縮小する本発明に係る画像復号装置について説明してきた。本実施の形態4では、外部より入力される符号化ストリームを蓄積せずに、可変長復号化部に逐次入力する本発明に係る画像復号装置について説明する。
【0088】
本来、外部より入力される符号化ストリームのデータ量と比較して復号された画像データのデータ量が多いので、符号化ストリームの入力時刻と復号画像の表示時刻のずれを均一化するために符号化ストリームをストリームバッファに蓄積する必要がある。ところで、外部より入力される符号化ストリームを復号しつつ縮小する場合には、メモリには縮小された画像が記憶されることになる。この場合には、復号された画像データのデータ量は、符号化ストリームのデータ量と同等になるか、もしくは符号化ストリームのデータ量よりも少なくなる。
【0089】
このため、ストリームバッファに符号化ストリームを蓄積しなくても、画像バッファに縮小された画像を蓄積することにより、符号化ストリームの入力時刻と復号画像の表示時刻のずれを均一化できる。そこで、本実施の形態4では、外部より入力される符号化ストリームをストリームバッファに蓄積せずに、可変長復号化部に逐次入力するようにしている。
【0090】
図12は、本実施の形態4に係る画像復号装置の構成を示すブロック図である。この画像復号装置は、同図に示すように、実施の形態1に示す画像復号装置に比較して、ストリームバッファ制御部、デコーダ制御部12およびメモリ30に代えて、ストリーム入力部61を備える点が相違する。つまり、外部より入力される符号化ストリームを蓄積せずに、可変長復号化部に逐次入力するストリーム入力部61を備える。
【0091】
このように、本実施の形態4に係る画像復号装置は、外部より入力される符号化ストリームを復号しつつ縮小する場合に、外部より入力される符号化ストリームを蓄積せずに、可変長復号化部に逐次入力することにより、メモリには、縮小処理された参照画像データおよび表示画像データのみを記憶するので、メモリを効率的に使用することができる。
【0092】
なお、本実施の形態4では、実施の形態1において、ストリーム入力部を適用した場合について説明したが、本発明はこれに限定されない。同様にして、実施の形態2または3においても、ストリーム入力部を適用することができる。
【0093】
【発明の効果】
以上説明したように、本発明によれば、地上波デジタル放送などのネットワークを介して入力された符号化ストリームを復号しつつ縮小し、該復号しつつ縮小した画像データを小さい表示装置に表示する際に、動き補償をおこなう前に画像データを縮小処理し、画像データの縮小率に基づいて予測ベクトルを補正することとしたので、縮小された画像データがメモリに記憶される。これにより、動き補償処理で扱うデータ量が少なくなるので、動き補償処理を高速化することができる。
【0094】
また、本発明によれば、画像データから画素を間引く縮小処理によって画像データを縮小することとしたので、画素を間引く縮小処理をされた画像データがメモリに記憶される。これにより、動き補償処理で扱うデータ量が少なくなるので、動き補償処理を高速化することができる。
【0095】
また、本発明によれば、可変長符号化された画像データに対して離散コサイン変換をおこなって画像データが周波数成分から実画像成分に変換される前に縮小処理をおこなうこととしたので、画像データが周波数成分である処理段階に縮小処理をおこなうことができる。これにより、復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0096】
また、本発明によれば、可変長復号化をおこなう際に符号化ストリームから所定の周波数以上の高周波成分を除外することによって画像データを縮小処理することとしたので、可変長復号化処理に際して縮小処理をおこなうことができる。これにより、復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0097】
また、本発明によれば、可変長復号化をおこなう際に符号化ストリームから画像データの直流成分のみを取り出すことによって画像データを縮小処理することとしたので、逆スキャン処理および逆離散コサイン変換処理を省略することができる。これにより、復号処理をおこなう回路量および復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0098】
また、本発明によれば、複数の縮小率の中から所定の縮小率を選択して画像データの縮小処理がおこなわれた際に、選択された縮小率に対応する補正処理を予測ベクトルに対しておこなうこととしたので、選択された縮小率に基づいて補正処理をおこなうことができる。これにより、縮小処理および予測ベクトル補正処理が効率よく動作するので、復号処理を高速化することができる。
【0099】
また、本発明によれば、外部より入力される符号化ストリームを蓄積せずに、可変長復号化をおこなう処理部に入力することとしたので、可変長復号化部に外部より入力される符号化ストリームを逐次入力できる。これにより、メモリには、縮小処理された参照画像データおよび表示画像データのみを記憶するので、メモリを効率的に使用することができる。
【図面の簡単な説明】
【図1】本発明に係る画像復号装置の概要および特徴を説明するための図である。
【図2】実施の形態1に係る画像復号装置の構成を示すブロック図である。
【図3】実施の形態1に係る画像復号処理の手順を示すフローチャートである。
【図4】縮小処理および予測ベクトル補正処理の変形例を説明するための図である。
【図5】実施の形態2または3に係る画像復号装置の概念図である。
【図6】実施の形態2に係る画像復号装置の構成を示すブロック図である。
【図7】実施の形態2に係る画像復号処理の手順を示すフローチャートである。
【図8】実施の形態2に係る縮小処理を説明するための図である。
【図9】実施の形態3に係る画像復号装置の構成を示すブロック図である。
【図10】実施の形態3に係る画像復号処理の手順を示すフローチャートである。
【図11】実施の形態3に係る縮小処理を説明するための図である。
【図12】実施の形態4に係る画像復号装置の構成を示すブロック図である。
【符号の説明】
11 ストリームバッファ制御部
12 デコーダ制御部
20、40、50 デコーダ
21、41、51 可変長復号化部
22 逆量子化部
23 逆スキャン部
24 逆DCT部
25、41a、51a 縮小処理部
26 動き補償部
26a 予測ベクトル補正部
26b 補償処理部
30 メモリ
61 ストリーム入力部
【発明の属する技術分野】
この発明は、画像復号装置、画像復号方法および画像復号プログラムに関し、特に、外部より入力される符号化ストリームを復号しつつ縮小する場合において、復号処理を高速化することができる画像復号装置、画像復号方法および画像復号プログラムに関する。
【0002】
【従来の技術】
従来より、MPEG(エムペグ:moving picture experts group)と呼ばれる圧縮符号化方式により動画像を符号化して得られた符号化ストリームを復号する画像復号装置が知られている。このような画像復号装置で符号化ストリームを復号しつつ縮小する場合、該符号化ストリームを復号した後に縮小処理をおこなっている。
【0003】
具体的には、この従来技術に係る画像復号装置は、デコーダ(可変長復号部と、逆量子化部と、逆スキャン部と、逆DCT部と、動き補償部とを備える復号処理部)において復号処理をおこなうことによって符号化ストリームを画像データに復号し、該画像データに対して縮小処理をおこなう(図1(a)参照)。
【0004】
ここで、かかる「縮小処理」とは、縮小フィルタを用いて画像データの画素を間引く縮小処理であり、従来は、画像復号装置において符号化ストリームの復号処理をおこなった後に縮小処理をおこなっていた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の従来技術は、符号化ストリームを復号した後に縮小処理することにより、復号後に省略されるデータがデコーダ(可変長復号部と、逆量子化部と、逆スキャン部と、逆DCT部と、動き補償部とを備える復号処理部)に流れ、復号処理の高速化を妨げるという問題点があった。
【0006】
すなわち、符号化ストリームには復号後の縮小処理の際に間引かれるデータが含まれており、デコーダ(可変長復号部と、逆量子化部と、逆スキャン部と、逆DCT部と、動き補償部とを備える復号処理部)に縮小処理の際に間引かれるデータが流れるので、復号処理の処理速度が遅くなる。また、画像メモリにおいても、縮小処理の際に間引かれるデータが記憶されるので、容量を浪費している。
【0007】
本発明は、上述した従来技術による問題点を解消するためになされたものであり、外部より入力される符号化ストリームを復号しつつ縮小する場合において、復号処理を高速化することができる画像復号装置、画像復号方法および画像復号プログラムを提供することを目的とする。
【0008】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するため、本発明は、動き補償をおこなう前に画像データを縮小処理し、画像データの縮小率に基づいて予測ベクトルを補正する。
【0009】
この発明によれば、縮小された画像データがメモリに記憶されることにより、動き補償処理で扱うデータ量が少なくなるので、動き補償処理を高速化することができる。
【0010】
また、本発明は、画像データから画素を間引く縮小処理によって画像データを縮小する。
【0011】
この発明によれば、画素を間引かれた画像データがメモリに記憶されることにより、動き補償処理で扱うデータ量が少なくなるので、動き補償処理を高速化することができる。
【0012】
また、本発明は、可変長符号化された画像データに対して離散コサイン変換をおこなって画像データが周波数成分から実画像成分に変換される前に縮小処理をおこなう。
【0013】
この発明によれば、画像データが周波数成分である処理段階に縮小処理をおこなうことにより、復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0014】
また、本発明は、可変長復号化をおこなう際に符号化ストリームから所定の周波数以上の高周波成分を除外することによって画像データを縮小処理する。
【0015】
この発明によれば、可変長復号化処理に際して縮小処理をおこなうことにより、復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0016】
また、本発明は、可変長復号化をおこなう際に符号化ストリームから画像データの直流成分のみを取り出すことによって画像データを縮小処理する。
【0017】
この発明によれば、可変長復号化処理に際して縮小処理をおこなうことにより、復号処理をおこなう回路量および復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0018】
また、本発明は、複数の縮小率の中から所定の縮小率を選択して画像データの縮小処理がおこなわれた際に、選択された縮小率に対応する補正処理を予測ベクトルに対しておこなう。
【0019】
この発明によれば、選択された縮小率に基づいて補正処理をおこなうことにより、縮小処理および予測ベクトル補正処理が効率よく動作するので、復号処理を高速化することができる。
【0020】
また、本発明は、外部より入力される符号化ストリームを蓄積せずに、可変長復号化をおこなう処理部に入力する。
【0021】
この発明によれば、メモリには、縮小処理された参照画像データおよび表示画像データのみを記憶するので、メモリを効率的に使用することができる。
【0022】
【発明の実施の形態】
以下に添付図面を参照して、この発明に係る画像復号装置、画像復号方法および画像復号プログラムの好適な実施の形態を詳細に説明する。なお、以下に本発明に係る画像復号装置の概要および主たる特徴を説明した後に、実施の形態1〜4に係る画像復号装置を説明する。
【0023】
また、本実施の形態では、本発明をMPEG2方式により符号化されたMPEG2ビットストリームという符号化ストリームを復号する画像復号装置に適用した場合を説明するが、MPEG1やMPEG4など、あらゆる画像符号化方式により符号化された符号化ストリームを復号する場合にも同様に適用することができる。
【0024】
[概要および主たる特徴]
まず最初に、本発明に係る画像復号装置の概要および主たる特徴を説明する。図1(b)に示す本発明に係る画像復号装置は、概略的には、デコーダ(可変長復号部と、逆量子化部と、逆スキャン部と、逆DCT部と、動き補償部とを備える復号処理部)において符号化ストリームを復号しつつ縮小するものである。
【0025】
ここで、この画像復号装置は、動き補償をおこなう前に符号化ストリームを復号しつつ縮小することに主たる特徴があり、縮小処理されたデータを復号処理において扱うことによって、復号処理を高速化できるようにしている。
【0026】
この主たる特徴を具体的に説明すると、画像復号装置において、縮小処理部は、動き補償をおこなう前に画像データに対して、画素を間引く縮小処理、所定の周波数以上の高周波成分を除外する縮小処理(図8参照)、または画像データの直流成分のみを取り出す縮小処理(図11参照)をおこなう。そして、予測ベクトル補正部は、縮小処理部による画像データの縮小率に基づいて予測ベクトルを補正する。
【0027】
したがって、本発明に係る画像復号装置は、上記した従来技術の例で言えば、図1または図5に示すように、動き補償をおこなう前に符号化ストリームを復号しつつ縮小することができる。これによって、上記した主たる特徴のように、外部より入力される符号化ストリームを復号しつつ縮小する場合において、復号処理を高速化することが可能になる。
【0028】
さらに、この画像復号装置は、外部より入力される符号化ストリームを蓄積せずに、可変長復号化部に逐次入力することに特徴があり、メモリには、縮小処理された参照画像データおよび表示画像データのみを記憶することによって、メモリを効率的に使用できるようにしている。
【0029】
なお、本発明に係る画像復号装置は、携帯電話やPDA(携帯情報端末)などの小さな表示装置を備える電子機器に適用されるものであり、地上波デジタル放送などのネットワークを介して入力された符号化ストリームを復号しつつ縮小し、該復号しつつ縮小された画像を表示装置に表示する場合に好適に実施される。
【0030】
(実施の形態1)
実施の形態1では、外部より入力される符号化ストリームを復号しつつ縮小する場合において、動き補償をおこなう前に縮小処理をおこなう本発明に係る画像復号装置について説明する。なお、ここでは、実施の形態1に係る画像復号装置の構成を説明した後に、この画像復号装置による各種処理の手順を説明する。
【0031】
<実施の形態1に係る画像復号装置の構成>
本実施の形態1に係る画像復号装置における各部の構成を説明する。図2は、本実施の形態1に係る画像復号装置の構成を示すブロック図である。この画像復号装置は、同図に示すように、ストリームバッファ制御部11と、デコーダ制御部12と、デコーダ20と、メモリ30とを備える。
【0032】
また、デコーダ20は、同図に示すように、可変長復号化部21と、逆量子化部22と、逆スキャン部23と、逆DCT部24と、縮小処理部25と、動き補償部26とを備える。
【0033】
ストリームバッファ制御部11は、デコーダ制御部12の指示に基づいて、符号化ストリームの入力時刻のばらつきを均一化して、デコーダ20に符号化ストリームを入力する処理部である。具体的には、圧縮符号化方式により動画像を符号化して得られた符号化ストリームを、一時的にメモリ30に蓄積して、符号化ストリームの入力時刻のばらつきを均一化してデコーダ20に入力する。
【0034】
デコーダ制御部12は、ストリームバッファ制御部11を介して、メモリ30から符号化ストリームをデコーダ20に出力する処理部である。
【0035】
デコーダ20は、概略的に、ストリームバッファ制御部11から入力された符号化ストリームをデコーダ制御部12の指示に基づいて復号してメモリ30に出力する処理部である。この復号処理は、可変長復号化部21、逆量子化部22、逆スキャン部23、逆DCT部24、縮小処理部25および動き補償部26の各処理部による処理を経ておこなわれる。
【0036】
メモリ30は、符号化ストリームおよび各処理段階を経て復号された画像データをともに記憶する記憶手段である。具体的には、符号化ストリームを記憶する領域と、デコーダ20の各処理段階を経て復号された画像データを記憶する領域とを備える。
【0037】
以下に、デコーダ20の各処理部の処理を説明する。可変長復号化部21は、符号化ストリームに含まれる可変長復号化データを復号して量子化DCT係数を復元する処理部である。具体的には、ストリームバッファ制御部11から入力された符号化ストリームをデコーダ制御部12の指示に従い、マクロブロックを分離し、各マクロブロックの量子化DCT係数を復号し、復号した量子化DCT係数を逆量子化部22に出力する。
【0038】
なお、可変長復号化部21は、予測モードや予測ベクトルなどのパラメータの復号もおこない、復号した予測モードおよび予測ベクトルを動き補償部26に出力する。
【0039】
逆量子化部22は、可変長復号化部21から入力された量子化DCT係数を逆量子化してDCT係数を復号し、復号したDCT係数を逆スキャン部23に出力する処理部である。
【0040】
逆スキャン部23は、逆量子化部22から入力されたDCT係数を逆スキャンし、逆スキャンしたDCT係数を逆DCT部24に出力する処理部である。なお、図2においては、逆量子化処理をおこなった後に逆スキャン処理をおこなう場合の構成を示しているが、必ずしもこの順序にしたがう必要はなく、逆スキャン処理をおこなった後に逆量子化処理をおこなう構成でもよい。
【0041】
逆DCT部24は、逆スキャン部23から入力されたDCT係数を逆DCT変換して符号化前の実画像成分である画像データ(画素値を持つデータ)を復号し、復号した画像データを縮小処理部25に出力する処理部である。
【0042】
縮小処理部25は、縮小フィルタを用いて逆DCT部24から入力された画像データの画素を間引いて縮小処理し、縮小処理した画像データを動き補償部26に出力する処理部である。
【0043】
動き補償部26は、縮小処理部25から入力された画像データ(縮小データ)と、可変長復号化部21から入力された予測モードおよび予測ベクトルとに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む処理部であり、機能概念的に、予測ベクトル補正部26aと補償処理部26bとから構成される。
【0044】
このうち、動き補償部26の予測ベクトル補正部26aは、縮小処理部25による画像データの縮小率に基づいて予測ベクトルを補正する処理部である。具体的には、動き補償処理の際に用いられる予測ベクトルは、縮小率に基づいていない参照データ(メモリ30に記憶された参照データとして用いられる画像データ)に基づいたものであるので、縮小処理部25による縮小率に基づいた参照データに予測ベクトルを補正する。
【0045】
動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルおよび可変長復号部21から入力された予測モードに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む処理部である。
【0046】
このメモリ30に書き込まれた画像データは、表示出力に利用されるとともに、他の画像の参照データとして利用される。すなわち、縮小処理部25から入力されるマクロブロックが動き補償を使用している場合には、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルにしたがって、その画像データが輝度データであれば、メモリ30の画像バッファから参照画素の輝度データを読み込み、その画像データが色差データであれば、メモリ30の画像バッファから参照画素の色差データを読み込む。そして、読み込んだ参照画像データを縮小処理部25から入力された画像データに加算することにより動き補償をおこない、かかる動き補償をおこなった画像データをメモリ30に書き込む。なお、補償処理部26bは、メモリ30に記憶された参照データ(縮小データ)で動き補償をおこなうことになり、所定の座標の参照データを得ることができないので、近隣の画像データ間で補完(3次補完法または面積平均法など)して動き補償をおこなう。
【0047】
ここで、縮小処理部および予測ベクトル補正部の構成は、実施の形態1に限定されない。変形例として、図4に示すように、縮小処理部による画像データの縮小率に基づいて、予測ベクトル補正部の補正処理をおこなうように整合することもできる。
【0048】
<実施の形態1に係る各種処理の手順>
次に、本実施の形態1に係る画像復号装置による各種処理の手順を説明する。図3は、実施の形態1に係る復号処理の手順を示すフローチャートである。同図に示すように、デコーダ制御部12は、ストリームバッファ制御部11を介して、メモリ30から符号化ストリームを可変長復号化部21に出力する(ステップS301)。
【0049】
続いて、可変長復号化部21は、符号化ストリームに含まれる予測モードおよび予測ベクトルを復元(ステップS302)し、また符号化ストリームに含まれる可変長符号化データを復号して量子化DCT係数を復元する(ステップS303)。
【0050】
そして、逆量子化部22は、可変長復号化部21によって復元された量子化DCT係数を逆量子化してDCT係数を復号する(ステップS304)。逆スキャン部23は、逆量子化部22によって復号されたDCT係数を逆スキャンして逆スキャンしたDCT係数を復号する(ステップS305)。
【0051】
続いて、逆DCT部24は、逆スキャン部23によって復号された逆スキャンしたDCT係数を逆DCT変換して符号化前の実画像成分である画像データ(画素値を持つデータ)を復号する(ステップS306)。
【0052】
ここで、縮小処理部25は、縮小フィルタを用いて逆DCT部24から入力された画像データの画素を間引いて縮小する(ステップS307)。そして、動き補償部26の予測ベクトル補正部26aは、縮小処理部25による画像データの縮小率に基づいて予測ベクトルを補正する(ステップS308)。具体的には、動き補償処理の際に用いられる予測ベクトルは、縮小率に基づいていない参照データ(メモリ30に記憶された参照データとして用いられる画像データ)に基づいたものであるので、縮小処理部25による縮小率に基づいた参照データに予測ベクトルを補正する。
【0053】
続いて、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルおよび可変長復号部21から入力された予測モードに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む(ステップS309)。
【0054】
すなわち、縮小処理部25から入力されるマクロブロックが動き補償を使用している場合には、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルにしたがって、その画像データが輝度データであれば、メモリ30の画像バッファから参照画素の輝度データを読み込み、その画像データが色差データであれば、メモリ30の画像バッファから参照画素の色差データを読み込む。そして、読み込んだ参照画像データを縮小処理部25から入力された画像データに加算することにより動き補償をおこない、かかる動き補償をおこなった画像データをメモリ30に書き込む。なお、補償処理部26bは、メモリ30に記憶された参照データ(縮小データ)で動き補償をおこなうことになり、所定の座標の参照データを得ることができないので、近隣の画像データ間で補完(3次補完法または面積平均法など)して動き補償をおこなう。
【0055】
最後に、全符号化ストリームの復号が終了である場合(ステップS310肯定)は、処理を終了する。また、まだ符号化ストリームの復号が途中である場合(ステップS310否定)には、上記のステップS301〜S309の処理を実行する。
【0056】
上述してきたように、本実施の形態1に係る画像復号装置は、外部より入力される符号化ストリームを復号しつつ縮小する場合において、動き補償をおこなう前に縮小処理をおこなうことにより、縮小された画像データがメモリに記憶されることとなるので、動き補償処理を高速化することができる。
【0057】
(実施の形態2)
次に、実施の形態2では、可変長復号化をおこなう際に符号化ストリームから所定の周波数以上の高周波成分を除外することによって縮小処理をおこなう本発明に係る画像復号装置について説明する。なお、ここでは、実施の形態2に係る画像復号装置の構成を説明した後に、画像復号装置による各種処理の手順を説明する。
【0058】
<実施の形態2に係る画像復号装置の構成>
本実施の形態2に係る画像復号装置における各部の構成を説明する。またここでは、実施の形態1と機能概念的に差異のある処理部を説明し、同様の処理部については説明を省略する。この画像復号装置は、図6に示すように、ストリームバッファ制御部11と、デコーダ制御部12と、デコーダ40と、メモリ30とを備える(ストリームバッファ制御部11、デコーダ制御部12およびメモリ30については、実施の形態1と同様の処理をおこなう。)。
【0059】
また、デコーダ40は、同図に示すように、可変長復号化部41と、逆量子化部22と、逆スキャン部23と、逆DCT部24と、動き補償部26とを備える(逆量子化部22、逆スキャン部23、逆DCT部24および動き補償部26については、実施の形態1と同様の処理をおこなう。)。
【0060】
可変長復号化部41は、符号化ストリームに含まれる可変長復号化データを復号して量子化DCT係数を復元する処理部であり、機能概念的に縮小処理部41aを備える。具体的には、ストリームバッファ制御部11から入力された符号化ストリームをデコーダ制御部12の指示に従い、マクロブロックを分離し、各マクロブロックの量子化DCT係数を復号する。なお、予測モードや予測ベクトルなどのパラメータの復号もおこない、復号した予測モードおよび予測ベクトルを動き補償部26に出力する。
【0061】
可変長復号化部41の縮小処理部41aは、可変長復号化部41によって復号された量子化DCT係数から所定の周波数以上の高周波成分を除外することによって縮小処理する処理部である。具体的には、図8に示すように(この処理段階において量子化DCT係数は一次元のデータ列であるが概念を説明するために図示のように表す)、DCT係数の高周波成分を除外して、DC係数および所定の低周波AC成分を抽出して逆量子化部22に出力する(抽出対象である低周波AC成分は図示のものに限定されない)。
【0062】
<実施の形態2に係る各種の処理の手順>
次に、本実施の形態2に係る画像復号装置による各種処理の手順を説明する。図7は、実施の形態2に係る画像復号装置の手順を示すフローチャートである。同図に示すように、デコーダ制御部12は、ストリームバッファ制御部11を介して、メモリ30から符号化ストリームを可変長復号化部41に出力する(ステップS701)。
【0063】
続いて、可変長復号化部41は、符号化ストリームに含まれる予測モードおよび予測ベクトルを復元(ステップS702)し、また符号化ストリームに含まれる可変長符号化データを復号して量子化DCT係数を復元する(ステップS703)。
【0064】
可変長復号化部41の縮小処理部41aは、可変長復号化部41によって復号された量子化DCT係数から所定の周波数以上の高周波成分を除外することによって縮小処理し、所定の量子化DCT係数を逆量子化部に出力する(ステップS704)。具体的には、図8に示すように(この処理段階において量子化DCT係数は一次元のデータ列であるが概念を説明するために図示のように表す)、DCT係数の高周波成分を除外して、DC係数および所定の低周波AC成分を抽出して逆量子化部22に出力する。
【0065】
そして、逆量子化部22は、可変長復号化部41の縮小処理部41aによって出力された所定の量子化DCT係数を逆量子化してDCT係数を復号する(ステップS705)。逆スキャン部23は、逆量子化部22によって復号されたDCT係数を逆スキャンして逆スキャンしたDCT係数を復号する(ステップS706)。
【0066】
続いて、逆DCT部24は、逆スキャン部23によって復号された逆スキャンしたDCT係数を逆DCT変換して符号化前の実画像成分である画像データ(画素値を持つデータ)を復号する(ステップS707)。
【0067】
そして、動き補償部26の予測ベクトル補正部26aは、可変長復号化部41の縮小処理部41aによる画像データの縮小率に基づいて予測ベクトルを補正する(ステップS708)。具体的には、動き補償処理の際に用いられる予測ベクトルは、縮小率に基づいていない参照データ(メモリ30に記憶された参照データとして用いられる画像データ)に基づいたものであるので、可変長復号化部41の縮小処理部41aによる画像データの縮小率に基づいた参照データに予測ベクトルを補正する。
【0068】
続いて、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルおよび可変長復号部41から入力された予測モードに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む(ステップS709)。
【0069】
すなわち、逆DCT部24から入力されるマクロブロックが動き補償を使用している場合には、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルにしたがって、その画像データが輝度データであれば、メモリ30の画像バッファから参照画素の輝度データを読み込み、その画像データが色差データであれば、メモリ30の画像バッファから参照画素の色差データを読み込む。そして、読み込んだ参照画像データを逆DCT部24から入力された画像データに加算することにより動き補償をおこない、かかる動き補償をおこなった画像データをメモリ30に書き込む。なお、補償処理部26bは、メモリ30に記憶された参照データ(縮小データ)で動き補償をおこなうことになり、所定の座標の参照データを得ることができないので、近隣の画像データ間で補完(3次補完法または面積平均法など)して動き補償をおこなう。
【0070】
最後に、全符号化ストリームの復号が終了である場合(ステップS710肯定)は、処理を終了する。また、まだ符号化ストリームの復号が途中である場合(ステップS710否定)には、上記のステップS701〜S709の処理を実行する。
【0071】
上述してきたように、本実施の形態2に係る画像復号装置は、可変長復号化をおこなう際に符号化ストリームから所定の周波数以上の高周波成分を除外することによって縮小処理をおこなうので、復号処理をおこなう各処理部で扱うデータ量が少なくなり、復号処理を高速化することができる。
【0072】
(実施の形態3)
次に、実施の形態3では、可変長復号化をおこなう際に符号化ストリームから画像データの直流成分のみを取り出すことによって縮小処理をおこなう本発明に係る画像復号装置について説明する。なお、ここでは、実施の形態3に係る画像復号装置の構成を説明した後に、この画像復号装置による各種処理の手順を説明する。
【0073】
<実施の形態3に係る画像復号装置の構成>
本実施の形態3に係る画像復号装置における各部の構成を説明する。またここでは、実施の形態1または実施の形態2と機能概念的に差異のある処理部を説明し、同様の処理部については説明を省略する。この画像復号装置は、図9に示すように、ストリームバッファ制御部11と、デコーダ制御部12と、デコーダ50と、メモリ30とを備える(ストリームバッファ制御部11、デコーダ制御部12およびメモリ30については、実施の形態2と同様の処理をおこなう。)。
【0074】
また、デコーダ50は、同図に示すように、可変長復号化部51と、逆量子化部22と、動き補償部26とを備える(逆量子化部22および動き補償部26については、実施の形態2と同様の処理をおこなう。)。
【0075】
可変長復号化部51は、符号化ストリームに含まれる可変長復号化データを復号して量子化DCT係数を復元する処理部であり、機能概念的に縮小処理部51aを備える。具体的には、ストリームバッファ制御部11から入力された符号化ストリームをデコーダ制御部12の指示に従い、マクロブロックを分離し、各マクロブロックの量子化DCT係数を復号する。なお、予測モードや予測ベクトルなどのパラメータの復号もおこない、復号した予測モードおよび予測ベクトルを動き補償部26に出力する。
【0076】
可変長復号化部51の縮小処理部51aは、可変長復号化部51によって復号された量子化DCT係数から直流成分のみを取り出すことによって縮小処理する処理部である。具体的には、図11に示すように(この処理段階において量子化DCT係数は一次元のデータ列であるが概念を説明するために図示のように表す)、DCT係数の高周波成分を除外して、DC係数を抽出して逆量子化部22に出力する。
【0077】
<実施の形態3に係る各種の処理の手順>
次に、本実施の形態3に係る画像復号装置による各種処理の手順を説明する。図10は、実施の形態3に係る画像復号装置の手順を示すフローチャートである。同図に示すように、デコーダ制御部12は、ストリームバッファ制御部11を介して、メモリ30から符号化ストリームを可変長復号化部51に出力する(ステップS901)。
【0078】
続いて、可変長復号化部51は、符号化ストリームに含まれる予測モードおよび予測ベクトルを復元(ステップS902)し、また符号化ストリームに含まれる可変長符号化データを復号して量子化DCT係数を復元する(ステップS903)。
【0079】
可変長復号化部51の縮小処理部51aは、可変長復号化部51によって復号された量子化DCT係数から直流成分(量子化DC係数)のみを取り出すことによって縮小処理し、量子化DC係数を逆量子化部に出力する(ステップS904)。具体的には、図11に示すように(この処理段階において量子化DCT係数は一次元のデータ列であるが概念を説明するために図示のように表す)、DCT係数の高周波成分を除外して、DC係数を抽出して逆量子化部22に出力する。
【0080】
そして、逆量子化部22は、可変長復号化部51の縮小処理部51aによって出力された量子化DC係数を逆量子化して実画像成分であるDC係数(画像データと等価)を復号する(ステップS905)。
【0081】
そして、動き補償部26の予測ベクトル補正部26aは、可変長復号化部51の縮小処理部51aによる画像データの縮小率に基づいて、動き補償処理をおこなうように予測ベクトルを補正する(ステップS906)。具体的には、動き補償処理の際に用いられる予測ベクトルは、縮小率に基づいていない参照データ(メモリ30に記憶された参照データとして用いられる画像データ)に基づいたものであるので、可変長復号化部51の縮小処理部51aによる縮小率に基づいた参照データに予測ベクトルを補正する。
【0082】
続いて、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルおよび可変長復号部51から入力された予測モードに基づいて、動き補償をおこない、動き補償をおこなった画像データをメモリ30に書き込む(ステップS907)。
【0083】
すなわち、逆量子化部22から入力されるマクロブロックが動き補償を使用している場合には、動き補償部26の補償処理部26bは、予測ベクトル補正部26aによって補正された予測ベクトルにしたがって、その画像データが輝度データであれば、メモリ30の画像バッファから参照画素の輝度データを読み込み、その画像データが色差データであれば、メモリ30の画像バッファから参照画素の色差データを読み込む。そして、読み込んだ参照画像データを逆量子化部22から入力された画像データに加算することにより動き補償をおこない、かかる動き補償をおこなった画像データをメモリ30に書き込む。なお、補償処理部26bは、メモリ30に記憶された参照データ(縮小データ)で動き補償をおこなうことになり、所定の座標の参照データを得ることができないので、近隣の画像データ間で補完(3次補完法または面積平均法など)して動き補償をおこなう。
【0084】
最後に、全符号化ストリームの復号が終了である場合(ステップS908肯定)は、処理を終了する。また、まだ符号化ストリームの復号が途中である場合(ステップS908否定)には、上記のステップS901〜S907の処理を実行する。
【0085】
上述してきたように、本実施の形態3に係る画像復号装置は、可変長復号化をおこなう際に符号化ストリームから画像データの直流成分のみを取り出すことによって縮小処理をおこなうので、復号処理をおこなう回路量および復号処理をおこなう各処理部で扱うデータ量が少なくなり、復号処理を高速化することができる。
【0086】
なお、本実施の形態1〜3では、符号化ストリームを記憶する記憶領域と、各処理段階を経て復号された画像データを記憶する記憶領域との2つに記憶領域を分けられたメモリを備える画像復号装置について説明したが、本発明はこれに限定されるものではなく、符号化ストリームを記憶するメモリ(ストリームバッファ)および各処理段階を経て復号された画像データを記憶するメモリ(画像メモリ)をそれぞれ独立したメモリとして備える画像復号装置についても同様に適用することができる。
【0087】
(実施の形態4)
実施の形態1〜3では、外部より入力される符号化ストリームをメモリに蓄積し、該符号化ストリームの入力時刻のばらつきを均一化した後に復号しつつ縮小する本発明に係る画像復号装置について説明してきた。本実施の形態4では、外部より入力される符号化ストリームを蓄積せずに、可変長復号化部に逐次入力する本発明に係る画像復号装置について説明する。
【0088】
本来、外部より入力される符号化ストリームのデータ量と比較して復号された画像データのデータ量が多いので、符号化ストリームの入力時刻と復号画像の表示時刻のずれを均一化するために符号化ストリームをストリームバッファに蓄積する必要がある。ところで、外部より入力される符号化ストリームを復号しつつ縮小する場合には、メモリには縮小された画像が記憶されることになる。この場合には、復号された画像データのデータ量は、符号化ストリームのデータ量と同等になるか、もしくは符号化ストリームのデータ量よりも少なくなる。
【0089】
このため、ストリームバッファに符号化ストリームを蓄積しなくても、画像バッファに縮小された画像を蓄積することにより、符号化ストリームの入力時刻と復号画像の表示時刻のずれを均一化できる。そこで、本実施の形態4では、外部より入力される符号化ストリームをストリームバッファに蓄積せずに、可変長復号化部に逐次入力するようにしている。
【0090】
図12は、本実施の形態4に係る画像復号装置の構成を示すブロック図である。この画像復号装置は、同図に示すように、実施の形態1に示す画像復号装置に比較して、ストリームバッファ制御部、デコーダ制御部12およびメモリ30に代えて、ストリーム入力部61を備える点が相違する。つまり、外部より入力される符号化ストリームを蓄積せずに、可変長復号化部に逐次入力するストリーム入力部61を備える。
【0091】
このように、本実施の形態4に係る画像復号装置は、外部より入力される符号化ストリームを復号しつつ縮小する場合に、外部より入力される符号化ストリームを蓄積せずに、可変長復号化部に逐次入力することにより、メモリには、縮小処理された参照画像データおよび表示画像データのみを記憶するので、メモリを効率的に使用することができる。
【0092】
なお、本実施の形態4では、実施の形態1において、ストリーム入力部を適用した場合について説明したが、本発明はこれに限定されない。同様にして、実施の形態2または3においても、ストリーム入力部を適用することができる。
【0093】
【発明の効果】
以上説明したように、本発明によれば、地上波デジタル放送などのネットワークを介して入力された符号化ストリームを復号しつつ縮小し、該復号しつつ縮小した画像データを小さい表示装置に表示する際に、動き補償をおこなう前に画像データを縮小処理し、画像データの縮小率に基づいて予測ベクトルを補正することとしたので、縮小された画像データがメモリに記憶される。これにより、動き補償処理で扱うデータ量が少なくなるので、動き補償処理を高速化することができる。
【0094】
また、本発明によれば、画像データから画素を間引く縮小処理によって画像データを縮小することとしたので、画素を間引く縮小処理をされた画像データがメモリに記憶される。これにより、動き補償処理で扱うデータ量が少なくなるので、動き補償処理を高速化することができる。
【0095】
また、本発明によれば、可変長符号化された画像データに対して離散コサイン変換をおこなって画像データが周波数成分から実画像成分に変換される前に縮小処理をおこなうこととしたので、画像データが周波数成分である処理段階に縮小処理をおこなうことができる。これにより、復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0096】
また、本発明によれば、可変長復号化をおこなう際に符号化ストリームから所定の周波数以上の高周波成分を除外することによって画像データを縮小処理することとしたので、可変長復号化処理に際して縮小処理をおこなうことができる。これにより、復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0097】
また、本発明によれば、可変長復号化をおこなう際に符号化ストリームから画像データの直流成分のみを取り出すことによって画像データを縮小処理することとしたので、逆スキャン処理および逆離散コサイン変換処理を省略することができる。これにより、復号処理をおこなう回路量および復号処理をおこなう各処理部で扱うデータ量が少なくなるので、復号処理を高速化することができる。
【0098】
また、本発明によれば、複数の縮小率の中から所定の縮小率を選択して画像データの縮小処理がおこなわれた際に、選択された縮小率に対応する補正処理を予測ベクトルに対しておこなうこととしたので、選択された縮小率に基づいて補正処理をおこなうことができる。これにより、縮小処理および予測ベクトル補正処理が効率よく動作するので、復号処理を高速化することができる。
【0099】
また、本発明によれば、外部より入力される符号化ストリームを蓄積せずに、可変長復号化をおこなう処理部に入力することとしたので、可変長復号化部に外部より入力される符号化ストリームを逐次入力できる。これにより、メモリには、縮小処理された参照画像データおよび表示画像データのみを記憶するので、メモリを効率的に使用することができる。
【図面の簡単な説明】
【図1】本発明に係る画像復号装置の概要および特徴を説明するための図である。
【図2】実施の形態1に係る画像復号装置の構成を示すブロック図である。
【図3】実施の形態1に係る画像復号処理の手順を示すフローチャートである。
【図4】縮小処理および予測ベクトル補正処理の変形例を説明するための図である。
【図5】実施の形態2または3に係る画像復号装置の概念図である。
【図6】実施の形態2に係る画像復号装置の構成を示すブロック図である。
【図7】実施の形態2に係る画像復号処理の手順を示すフローチャートである。
【図8】実施の形態2に係る縮小処理を説明するための図である。
【図9】実施の形態3に係る画像復号装置の構成を示すブロック図である。
【図10】実施の形態3に係る画像復号処理の手順を示すフローチャートである。
【図11】実施の形態3に係る縮小処理を説明するための図である。
【図12】実施の形態4に係る画像復号装置の構成を示すブロック図である。
【符号の説明】
11 ストリームバッファ制御部
12 デコーダ制御部
20、40、50 デコーダ
21、41、51 可変長復号化部
22 逆量子化部
23 逆スキャン部
24 逆DCT部
25、41a、51a 縮小処理部
26 動き補償部
26a 予測ベクトル補正部
26b 補償処理部
30 メモリ
61 ストリーム入力部
Claims (9)
- 可変長符号化データおよび予測ベクトルを含む符号化ストリームを可変長復号化するとともに、該可変長復号化したデータから得られる画像データを前記予測ベクトルにしたがって動き補償する画像復号装置であって、
前記動き補償をおこなう前に前記画像データを縮小処理する縮小処理手段と、
前記縮小処理手段による画像データの縮小率に基づいて前記予測ベクトルを補正する予測ベクトル補正手段と、
を備えたことを特徴とする画像復号装置。 - 前記縮小処理手段は、前記画像データから画素を間引く縮小処理によって当該画像データを縮小することを特徴とする請求項1に記載の画像復号装置。
- 前記縮小処理手段は、前記可変長符号化された画像データに対して離散コサイン変換をおこなって該画像データが周波数成分から実画像成分に変換される前に前記縮小処理をおこなうことを特徴とする請求項1または2に記載の画像復号装置。
- 前記縮小処理手段は、前記可変長復号化をおこなう際に前記符号化ストリームから所定の周波数以上の高周波成分を除外することによって前記画像データを縮小処理することを特徴とする請求項1、2または3に記載の画像復号装置。
- 前記縮小処理手段は、前記可変長復号化をおこなう際に前記符号化ストリームから該画像データの直流成分のみを取り出すことによって前記画像データを縮小処理することを特徴とする請求項1、2または3に記載の画像復号装置。
- 前記予測ベクトル補正手段は、前記縮小処理手段によって複数の縮小率の中から所定の縮小率を選択して前記画像データの縮小処理がおこなわれた際に、該選択された縮小率に対応する補正処理を前記予測ベクトルに対しておこなうことを特徴とする請求項1〜5のいずれか一つに記載の画像復号装置。
- 外部より入力される前記符号化ストリームを蓄積せずに、前記可変長復号化をおこなう処理部に入力するストリーム入力手段を備えることを特徴とする請求項1〜6のいずれか一つに記載の画像復号装置。
- 可変長符号化データおよび予測ベクトルを含む符号化ストリームを可変長復号化するとともに、該可変長復号化したデータから得られる画像データを前記予測ベクトルにしたがって動き補償する画像復号装置における画像復号方法であって、
前記動き補償をおこなう前に前記画像データを縮小処理する縮小処理工程と、
前記縮小処理手段による画像データの縮小率に基づいて前記予測ベクトルを補正する予測ベクトル補正工程と、
を含んだことを特徴とする画像復号方法。 - 可変長符号化データおよび予測ベクトルを含む符号化ストリームを可変長復号化するとともに、該可変長復号化したデータから得られる画像データを前記予測ベクトルにしたがって動き補償する画像復号装置における画像復号方法をコンピュータに実行させるプログラムであって、
前記動き補償をおこなう前に前記画像データを縮小処理する縮小処理手順と、
前記縮小処理手段による画像データの縮小率に基づいて前記予測ベクトルを補正する予測ベクトル補正手順と、
をコンピュータに実行させることを特徴とする画像復号プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002294166A JP2004129160A (ja) | 2002-10-07 | 2002-10-07 | 画像復号装置、画像復号方法および画像復号プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002294166A JP2004129160A (ja) | 2002-10-07 | 2002-10-07 | 画像復号装置、画像復号方法および画像復号プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004129160A true JP2004129160A (ja) | 2004-04-22 |
Family
ID=32284847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002294166A Pending JP2004129160A (ja) | 2002-10-07 | 2002-10-07 | 画像復号装置、画像復号方法および画像復号プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004129160A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007288446A (ja) * | 2006-04-14 | 2007-11-01 | Toshiba Corp | 動画像復号装置 |
-
2002
- 2002-10-07 JP JP2002294166A patent/JP2004129160A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007288446A (ja) * | 2006-04-14 | 2007-11-01 | Toshiba Corp | 動画像復号装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7792385B2 (en) | Scratch pad for storing intermediate loop filter data | |
US8576924B2 (en) | Piecewise processing of overlap smoothing and in-loop deblocking | |
US20060133504A1 (en) | Deblocking filters for performing horizontal and vertical filtering of video data simultaneously and methods of operating the same | |
WO2006033227A1 (ja) | 画像符号化装置 | |
JP2009267689A (ja) | 動画像符号化装置、及び動画像符号化方法 | |
US7373001B2 (en) | Compressed moving image decompression device and image display device using the same | |
JP3680846B2 (ja) | 動画像の圧縮装置及びそれを用いた撮像装置 | |
WO2003043342A1 (en) | Method, apparatus and computer for encoding successive images | |
JPH1098731A (ja) | ディジタル画像復号装置及びディジタル画像復号方法 | |
JPH10271516A (ja) | 圧縮符号化装置、符号化方法、復号化装置および復号化方法 | |
JPWO2008136164A1 (ja) | 復号化回路、復号化方法及び画像再生装置 | |
EP1947863A1 (en) | Image decoding apparatus and method, and image encoding apparatus | |
US8707149B2 (en) | Motion compensation with error, flag, reference, and decompressed reference data | |
KR100598093B1 (ko) | 낮은 메모리 대역폭을 갖는 동영상 압축 장치와 그 방법 | |
JP2005502285A (ja) | 連続する画像を符号化する方法および装置 | |
US20050008259A1 (en) | Method and device for changing image size | |
US8326060B2 (en) | Video decoding method and video decoder based on motion-vector data and transform coefficients data | |
JP2004129160A (ja) | 画像復号装置、画像復号方法および画像復号プログラム | |
US20070153909A1 (en) | Apparatus for image encoding and method thereof | |
JP2008289105A (ja) | 画像処理装置およびそれを搭載した撮像装置 | |
JPH0984011A (ja) | 動画符号化方式変換装置 | |
JP2021061547A (ja) | 画像符号化装置、画像符号化方法、及びプログラム | |
JP2005175885A (ja) | 映像信号符号化方法、映像信号符号化装置、映像信号復号装置及び映像信号記録媒体 | |
US20080137975A1 (en) | Decoder, decoding method and computer readable medium | |
JPH06141303A (ja) | デコーダ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050517 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051004 |