JP2004128439A - Heating element cooling device - Google Patents

Heating element cooling device Download PDF

Info

Publication number
JP2004128439A
JP2004128439A JP2003028120A JP2003028120A JP2004128439A JP 2004128439 A JP2004128439 A JP 2004128439A JP 2003028120 A JP2003028120 A JP 2003028120A JP 2003028120 A JP2003028120 A JP 2003028120A JP 2004128439 A JP2004128439 A JP 2004128439A
Authority
JP
Japan
Prior art keywords
heating element
cooling fluid
base
cooling
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028120A
Other languages
Japanese (ja)
Inventor
Taichi Tanigawa
谷川 太一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2003028120A priority Critical patent/JP2004128439A/en
Publication of JP2004128439A publication Critical patent/JP2004128439A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the mass and costs of a cooling device by obtaining the same cooling capability as that of a conventional device without increasing its radiation area. <P>SOLUTION: The heating element cooling device has heating elements 1a, 1b and 1c which are mounted on one surface of a base 2 and comb-shaped fins 3 which are formed on the other surface of the base 2 as shown in Fig.(b). A deflector 4 having at least one apex is provided between a bottom plate 5 parallel to the base 2 and tips of the fins 3. In this way, cooling fluid from a cooling fluid influx part or a suction part (left in Fig.(a))is deflected toward parts in contact with the fins 3 or its neighborhood and the cooling capability is improved by increasing the speed of the cooling fluid. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は放熱構造、特にパワートランジスタなどの高発熱量の電子部品を冷却するための発熱体冷却装置に関する。
【0002】
【従来の技術】
従来、一般的な櫛形ヒートシンクを含む発熱体冷却装置は、例えば図9,10に示すようにベース2の一方の面に発熱体1a,1b,1cを接触させるかまたは定着させ、他方の面には被冷却体として発熱体1a,1b,1cの発熱量に応じた放熱面積を有するプレートフィン3が立てられ、ロウ付けまたはカシメにより結合されている。ヒートシンク(ベースおよびフィン)の材質として、通常は冷却能力の高いアルミニウムまたはアルミニウム合金が用いられる。ベース2の側面には側面板7が、また、ベース2と面平行に底板6がそれぞれネジ止め等により取り付けられている。
【0003】
また、図11,12のようにベース2をベース奥行き方向と平行な直線によって領域1,領域2に分割し、発熱体1a,1b,1c,1d,1e,1fを、冷却流体の流れ方向8に沿って領域1および領域2にそれぞれ1列ずつに配置し、領域1にある発熱体1a,1b,1cの各発熱量の合計をP1、領域2にある発熱体1d,1e,1fの各発熱量の合計をP2とするとき、領域1と領域2の面積の比率(s1:s2)、およびベース横方向の比率(W1:W2)を発熱量の比率(P1:P2)に等しくなるようにする場合がある。なお、各領域の発熱体は、冷却流体の流れ方向8と平行な中心線に沿うように配置する。
【0004】
いずれの場合も、冷却は、フィン間に向けて冷却流体を吹き付けるか、またはフィン間から冷却流体を吸い出す位置にファン(ファンは図示を省略されている)が設けられているので、冷却流体は流れの方向を示す矢印8の方向に流れ、このフィン間を流れる冷却流体により、ベース2およびプレートフィン3から放熱が行なわれることになる。
なお、以上のような発熱体冷却装置ではその性能向上、特に熱抵抗値を減少させるべく、冷却流体流入部から送り込まれる冷却流体を、フィンと接し発熱体を搭載するベース部分、またはその近傍に向けて冷却流体の流れを偏向させるためのルーバーを、フィンに形成するものがある(例えば、特許文献1参照)。
しかし、これは構造が複雑になるという難点がある。また、特許文献1のものでは、ルーバーを通りすぎた冷却流体がうずを巻いて分散するという現象が発生する。
【0005】
【特許文献1】
特開2001−118972号公報(第2頁、図1,図2)
【0006】
【発明が解決しようとする課題】
また、上記いずれの発熱体冷却装置においても発熱体の発熱量が増加すると、対策の1つとしてフィンの放熱面積を大きくすることが行なわれるが、このようにすると質量,コストが増大すると言う問題がある。この点について、図9〜図12を参照して説明する。
例えば、入力電圧400V,容量75kWのインバータに用いる発熱体冷却装置の場合、図9のA2−A2断面図を示す図10(a)と図11のA3−A3,A4−A4断面図を示す図12(a),(b)のフィンの長さLを400mmとし、また、図9のB2−B2断面図を示す図10(b)と図11のB2−B2断面図を示す図12(c)のベース横幅Wおよびフィン高さh1をそれぞれ336mm,100mmとする。
【0007】
さらに、フィン先端から底板間の距離h4を5mm、フィンの厚さTを0.8mm、フィンピッチPを4mm、プレートフィン3の枚数を76枚として、冷却流体の流路断面積Sを算出すると約2.9×10−2となる。
また、発熱体冷却装置の質量は、ベースの厚さTbを11mm、底板6および側面板7の厚さを各1mmとして、ベース2,プレートフィン3,底板6および側面板7の合計質量は、アルミニウムの比重が2.7g/cmなので約11kgとなる。
したがって、この発明の課題は、質量,コストを増大させることなく冷却性能を向上させることにある。
【0008】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、ベースの一方の面に発熱体を搭載しベースの他方の面に被冷却体であるフィンを配置した強制空冷式ヒートシンクを含む発熱体冷却装置において、
冷却流体の流路の前記ベースに面平行な底板と前記フィン先端との間に、少なくとも1つの頂点を持つデフレクターを設け、冷却流体流入部または吸込部からの冷却流体をフィンと接する部分またはその近傍に向けて偏向し、冷却流体の速度を高めることを特徴とする。
この請求項1の発明においては、前記発熱体が複数あるときは、デフレクター頂点の冷却流体流入部または吸込部からの設置位置を、各発熱体の発熱量の大小に応じて決定することができる(請求項2の発明)。
【0009】
また、請求項3の発明では、ベースの一方の面にベース奥行き方向と平行な直線によって分割されたそれぞれの領域に少なくとも1つの発熱体を搭載し、ベースの他方の面に被冷却体であるフィンをベース奥行き方向と平行に配置した強制空冷式ヒートシンクを含む発熱体冷却装置において、
冷却流体の流路に、前記フィンに対して面平行な仕切り板と、この仕切り板によって分割された冷却流体の各流路の前記ベースに面平行な底板と前記フィン先端との間に少なくとも1つの頂点を持つデフレクターとを設け、冷却流体流入部または吸込部からの冷却流体をフィンと接する部分またはその近傍に向けて偏向し、冷却流体の速度を高めることを特徴とする。
この請求項3の発明においては、前記発熱体が、前記ベースのそれぞれの領域に複数ずつあるときは、デフレクター頂点の冷却流体流入部または吸込部からの設置位置を、冷却流体のそれぞれの流路で、各発熱体の発熱量の大小に応じて決定することができる(請求項4の発明)。
請求項3または4の発明においては、前記ベースのそれぞれの領域を、ベース面積の比率と発熱体の発熱量の比率が等しくなるように分割し、前記仕切り板を前記発熱体の発熱量の比率と冷却流体の流路断面積の比率を等しくするように設けることができる(請求項5の発明)。
【0010】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す斜視図であり、図2は同じくその断面図である。
図9,図10に示す従来装置との相違点は、フィンの高さh1を低くした点、およびフィンの高さh1を低くしたことによってできた、フィン先端とベース2に面平行な底板6との間の空間にデフレクター4を設置した点にある。
【0011】
デフレクター4は板状部材からなり、図2(a)に示すように少なくとも1つの頂点Aを有する。フィン先端とデフレクター頂点Aとの間に距離h2(図2(b)参照)のような隙間を設けるか、またはデフレクター頂点Aをフィン先端に接触させ、フィン先端とデフレクター頂点Aとの距離h2を0としても良い。また、デフレクター頂点Aの位置、つまり冷却流体流入部分または吸込部分からデフレクター頂点より底板へ降ろした垂線が交差する点までの距離L1(図2(a)参照)は、発熱体1a,1b,1cの発熱が最も高い(大きい)ところに合わせて調整するようにする。
【0012】
図3,図4は第1の発明と従来例とを比較して説明するための説明図である。
いま、発熱体1a,1b,1cの各発熱量を同じとした場合、冷却流体流入部または吸込部からの距離(Xmm)に対するベース温度は図3に示すように、風下に配置された発熱体1aのところで最も高くなる。その温度上昇量は太実線で示すこの発明によるものの方が、細実線で示す従来例の場合よりも小さくなっており、これはデフレクターを設けたことによる効果を示すものと言える。これは、図2(a)に示すように、デフレクター4の頂点Aを発熱体1aの直下に配置することにより、冷却流体の流速を図4に示すように、発熱体1aの直下で最も速くすることができるためと考えられる。このように、デフレクター4の配置を最適化することで、最も発熱が高い部分での冷却流体速度を速くすることができ、ベース温度を効率良く低減することができる。なお、図3,4の冷却流体流入部分または吸込部分からの距離Xは、図2(a),図10(a)に示すXと対応している。
【0013】
従来例における冷却流体の流路断面積Sは上述のように約2.9×10−2であったが、この発明の実施例の断面を示す図2(b)のように、フィンの高さh1を60mm、フィン先端とデフレクター頂点Aとの距離h2を5mm、デフレクターの高さh3を40mmとした場合、デフレクターの頂点Aを含む平面での流路断面積Sは約1.82×10−2となる。
【0014】
ここで、冷却流体の速度Vについて考える。
冷却流体の速度Vは、冷却流体の流量をQ[m/s]、流路断面積をS[m]として、
V[m/s]=Q[m/s]/S[m]           …(1)
のように表わされる。したがって、フィンの高さh1を100mmから60mmに40%低くすると、流路断面積も約40%低減するので、上記(1)式の関係から冷却流体の速度Vを約1.6倍にすることができる。
【0015】
また、既存のヒートシンクの特性から、フィンの高さh1を40%低くした場合は熱抵抗が約16%大きくなること、冷却流体の速度を約1.6倍とした場合は熱抵抗を約15%に小さくできることが確認されている。このことから、熱抵抗を従来とほぼ同じにできることが分かる。さらに、従来の発熱体冷却装置の質量が約11kgであるのに対し、フィンの高さh1を40%低くしたことで質量を約8kgに低減することができ、その分コストも削減できる。
【0016】
図5はこの発明の第2の実施の形態を示す斜視図であり、図6は同じくその断面図である。
図11,図12に示す従来装置との相違点は、仕切り板9を設置した点、フィンの高さh1を低くした点、およびフィンの高さh1を低くしたことによってできた、フィン先端とベース2に面平行な底板6との間の空間にデフレクター4,5を設置した点にある。
【0017】
デフレクター4,5は板状部材からなり、図6(a),(b)に示すように、少なくとも1つの頂点A1,A2を有する。フィン先端とデフレクター頂点A1,A2との間に距離h2(図6(c)参照)のような隙間を設けるか、またはデフレクター頂点A1,A2をフィン先端に接触させ、フィン先端とデフレクター頂点A1,A2との距離h2を0としても良い。また、デフレクター頂点A1,A2の位置、つまり冷却流体流入部分からデフレクター頂点より底部へ下ろした垂線が交差する点までの距離L1,L2(図6(a),(b)参照)は、図5に示す領域1,領域2のそれぞれの領域にある発熱体の発熱量が最も高い(大きい)ところに合わせて調整するようにする。仕切り板9は、ねじ止め等により底板6に取りつけられる。仕切り板9の代用として、プレートフィン3のうちの一枚を底板6に接するほどの長さにしても良い。
【0018】
図7,図8は第2の発明と従来例とを比較して説明するための説明図である。いま、図5に示す領域1の発熱体1a,1b,1cの各発熱量を同じとし、領域2に示す発熱体1d,1e,1fのうち1eの発熱量が1d,1fに対して大きいものとした場合、冷却流体流入部または吸込部からの距離(Xmm)に対するベース温度Tは、図7(a)に示す発熱体1a,1b,1cでは風下に配置された発熱体1a、図7(b)に示す発熱体1d,1e,1fでは1eのところでそれぞれ最も高くなる。その温度上昇量はいずれも、太実線で示すこの発明によるものの方が、細実線で示す従来例の場合よりも小さくなっており、これはデフレクターを設けたことによる効果を示すものと言える。これは、図6(a),(b)に示すように、デフレクター4,5の頂点A1,A2をそれぞれ発熱体1a,1eの直下に配置することにより、冷却流体の流速を図8に示すように、発熱体1a,1eの直下で最も速くすることができるためと考えられる。このように、デフレクター4,5の頂点A1,A2の配置を最適化することで、最も発熱が高い部分での冷却流体速度を速くすることができ、ベース温度を効率良く低減することができる。なお、図7,8の冷却流体流入部分または吸込部分からの距離Xは、図6(a),(b)、図12(a),(b)に示すXと対応している。
【0019】
図5,6のように仕切り板を設けた場合も、その仕切り板によって分割される各流路の断面積は変わるが、流路全断面積は同じであり、また、各流路での流速も上記(1)式のように、図1,2のように仕切り板を設けない場合と同じになる。したがって、フィンの高さh1を100mmから60mmに40%低くすると、流路断面積も約40%低減し、上記(1)式の関係から冷却流体の速度Vを約1.6倍にできるのも図1,2の場合と同様である。また、流速を約1.6倍とした場合に、熱抵抗を約15%小さくできることから、熱抵抗を従来と同様にできること、さらには重量を低減できるのも図1,2の場合と同様なのは言うまでもない。
【0020】
【発明の効果】
この発明によれば、放熱面積を大きくするためにフィンの高さを伸ばす空間であったフィン先端とベースに面平行な底板との間にできた空間に、冷却流体を偏向しフィンベース部分またはベース近傍での冷却流体の速度を速くするためのデフレクターを設けるようにしたので、フィンの放熱面積を変えることなく、発熱体冷却装置の熱抵抗を従来とほぼ同じに維持でき、装置質量およびコストを低減することができる。例えば、容量75kW,入力電圧400Vの電力変換装置においては、質量を従来のものより約3kg低減でき、コストが低減する。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す斜視図
【図2】この発明の第1の実施の形態を示す断面図
【図3】冷却流体流入部分からの距離に対するベース温度の関係について、第1の発明と従来例とを比較して説明するための説明図
【図4】冷却流体流入部分からの距離に対する冷却流体の速度の関係について、第1の発明と従来例とを比較して説明するための説明図
【図5】この発明の第2の実施の形態を示す斜視図
【図6】この発明の第2の実施の形態を示す断面図
【図7】冷却流体流入部分からの距離に対するベース温度の関係について、第2の発明と従来例とを比較して説明するための説明図
【図8】冷却流体流入部分からの距離に対する冷却流体の速度の関係について、第2の発明と従来例とを比較して説明するための説明図
【図9】第1の従来例を示す斜視図
【図10】第1の従来例を示す断面図
【図11】第2の従来例を示す斜視図
【図12】第2の従来例を示す断面図
【符号の説明】
1a,1b,1c,1d,1e,1f…発熱体、2…ベース、3…プレートフィン、4,5…デフレクター、6…底板、7…側面板、8…冷却流体の流れ方向、9…仕切り板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat radiating structure, and more particularly to a heating element cooling device for cooling electronic components having a high calorific value such as a power transistor.
[0002]
[Prior art]
Conventionally, a heating element cooling device including a general comb-shaped heat sink has a heating element 1a, 1b, 1c contacted or fixed to one surface of a base 2 as shown in FIGS. A plate fin 3 having a heat radiating area corresponding to the amount of heat generated by the heating elements 1a, 1b, 1c is set up as a member to be cooled, and is connected by brazing or caulking. As a material of the heat sink (base and fin), aluminum or an aluminum alloy having a high cooling capacity is usually used. A side plate 7 is attached to the side surface of the base 2, and a bottom plate 6 is attached to the base 2 by screws or the like in parallel with the base 2.
[0003]
11 and 12, the base 2 is divided into a region 1 and a region 2 by a straight line parallel to the depth direction of the base, and the heating elements 1a, 1b, 1c, 1d, 1e, 1f are set in the flow direction 8 of the cooling fluid. Are arranged in a line in the area 1 and the area 2 along the line, and the sum of the heat generation amounts of the heating elements 1a, 1b, and 1c in the area 1 is P1, and the heating elements 1d, 1e, and 1f in the area 2 are each Assuming that the total heat generation amount is P2, the ratio of the area of the region 1 to the region 2 (s1: s2) and the ratio in the base horizontal direction (W1: W2) are equal to the ratio of the heat generation amount (P1: P2). In some cases. Note that the heating elements in each region are arranged along a center line parallel to the flow direction 8 of the cooling fluid.
[0004]
In any case, the cooling fluid is blown toward the space between the fins or a fan (the fan is not shown) is provided at a position where the cooling fluid is sucked out from between the fins. The cooling fluid flows in the direction of the arrow 8 indicating the direction of the flow, and heat is radiated from the base 2 and the plate fins 3 by the cooling fluid flowing between the fins.
In the heating element cooling device as described above, in order to improve the performance, particularly to reduce the thermal resistance value, the cooling fluid sent from the cooling fluid inflow portion is brought into contact with the fins at the base portion where the heating element is mounted, or in the vicinity thereof. There is one in which a louver for deflecting the flow of the cooling fluid toward the fin is formed in the fin (for example, see Patent Document 1).
However, this has the disadvantage that the structure is complicated. Further, in the case of Patent Document 1, a phenomenon occurs in which the cooling fluid that has passed through the louver winds up and disperses.
[0005]
[Patent Document 1]
JP 2001-118972 A (page 2, FIG. 1 and FIG. 2)
[0006]
[Problems to be solved by the invention]
Also, in any of the above-described heating element cooling devices, when the heat generation amount of the heating element increases, one of the measures is to increase the heat radiation area of the fins. However, this increases the mass and cost. There is. This point will be described with reference to FIGS.
For example, in the case of a heating element cooling device used for an inverter having an input voltage of 400 V and a capacity of 75 kW, FIG. 10A is a cross-sectional view of A2-A2 in FIG. 9 and FIG. 10 is a cross-sectional view of A3-A3 and A4-A4 in FIG. The length L of the fins in FIGS. 12 (a) and 12 (b) is 400 mm, and FIG. 10 (b) showing the B2-B2 sectional view of FIG. 9 and FIG. 12 (c) showing the B2-B2 sectional view of FIG. ), The base width W and the fin height h1 are 336 mm and 100 mm, respectively.
[0007]
Further, when the distance h4 between the fin tip and the bottom plate is 5 mm, the fin thickness T is 0.8 mm, the fin pitch P is 4 mm, and the number of the plate fins 3 is 76, the flow path cross-sectional area S of the cooling fluid is calculated. It is about 2.9 × 10 −2 m 2 .
Further, the mass of the heating element cooling device is such that the thickness of the base is 11 mm, the thickness of the bottom plate 6 and the side plate 7 is 1 mm each, and the total mass of the base 2, the plate fins 3, the bottom plate 6 and the side plate 7 is Since the specific gravity of aluminum is 2.7 g / cm 3 , the weight is about 11 kg.
Therefore, an object of the present invention is to improve cooling performance without increasing mass and cost.
[0008]
[Means for Solving the Problems]
In order to solve such a problem, the invention according to claim 1 includes a heating element including a forced air cooling type heat sink in which a heating element is mounted on one surface of a base and fins to be cooled are arranged on the other surface of the base. In the cooling device,
A deflector having at least one apex is provided between a bottom plate parallel to the base of the flow path of the cooling fluid and the fin tip, and a portion or a portion of the fin that contacts cooling fluid from a cooling fluid inflow portion or a suction portion with the fin. It is characterized by being deflected toward the vicinity and increasing the speed of the cooling fluid.
According to the first aspect of the present invention, when there are a plurality of the heating elements, the installation position of the deflector apex from the cooling fluid inflow section or the suction section can be determined according to the magnitude of the heating value of each heating element. (Invention of claim 2).
[0009]
According to the third aspect of the present invention, at least one heating element is mounted on one surface of the base in each area divided by a straight line parallel to the depth direction of the base, and the other surface of the base is a cooled object. In a heating element cooling device including a forced air-cooled heat sink in which fins are arranged in parallel with the base depth direction,
A partition plate parallel to the fins in the flow path of the cooling fluid, and at least one partition plate between the bottom plate parallel to the base and the fin tip of each flow path of the cooling fluid divided by the partition plate. A deflector having two apexes, wherein the deflector deflects the cooling fluid from the cooling fluid inflow portion or the suction portion toward or near a portion in contact with the fin to increase the speed of the cooling fluid.
In the third aspect of the present invention, when a plurality of the heating elements are provided in the respective regions of the base, the installation positions of the apex of the deflector from the cooling fluid inflow portion or the suction portion are changed to the respective cooling fluid flow paths. Thus, it can be determined according to the magnitude of the calorific value of each heating element (the invention of claim 4).
In the invention according to claim 3 or 4, each of the regions of the base is divided such that a ratio of a base area and a ratio of a calorific value of a heating element are equal, and the partition plate is a ratio of a calorific value of the heating element. And the cooling fluid can be provided so as to make the ratio of the cross-sectional area of the cooling fluid equal (the invention of claim 5).
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a perspective view showing a first embodiment of the present invention, and FIG. 2 is a sectional view thereof.
The difference from the conventional device shown in FIGS. 9 and 10 is that the height h1 of the fin is reduced and the height h1 of the fin is reduced, and the bottom plate 6 is made plane-parallel to the fin tip and the base 2. Is that the deflector 4 is installed in the space between the two.
[0011]
The deflector 4 is made of a plate-like member and has at least one vertex A as shown in FIG. A gap such as a distance h2 (see FIG. 2B) is provided between the fin tip and the deflector vertex A, or the deflector apex A is brought into contact with the fin tip, and the distance h2 between the fin tip and the deflector vertex A is reduced. It may be set to 0. Further, the position of the deflector vertex A, that is, the distance L1 (see FIG. 2 (a)) from the cooling fluid inflow portion or the suction portion to the point where the perpendicular drawn from the deflector vertex to the bottom plate intersects is determined by the heating elements 1a, 1b, 1c. Adjust according to the place where the heat generation is highest (large).
[0012]
FIG. 3 and FIG. 4 are explanatory views for comparing and explaining the first invention and the conventional example.
Assuming that the heating values of the heating elements 1a, 1b, and 1c are the same, the base temperature with respect to the distance (X mm) from the cooling fluid inflow section or the suction section is, as shown in FIG. It is highest at 1a. The amount of temperature rise according to the present invention shown by the thick solid line is smaller than that of the conventional example shown by the thin solid line, which can be said to show the effect of the provision of the deflector. This is because, as shown in FIG. 2A, by arranging the vertex A of the deflector 4 immediately below the heating element 1a, the flow velocity of the cooling fluid is fastest immediately below the heating element 1a as shown in FIG. It is thought that it is possible. As described above, by optimizing the arrangement of the deflectors 4, the cooling fluid speed in the portion generating the highest heat can be increased, and the base temperature can be efficiently reduced. Note that the distance X from the cooling fluid inflow portion or the suction portion in FIGS. 3 and 4 corresponds to X shown in FIGS. 2 (a) and 10 (a).
[0013]
Although the flow channel cross-sectional area S of the cooling fluid in the conventional example was about 2.9 × 10 −2 m 2 as described above, as shown in FIG. When the height h1 is 60 mm, the distance h2 between the fin tip and the deflector vertex A is 5 mm, and the height h3 of the deflector is 40 mm, the flow path cross-sectional area S in a plane including the deflector vertex A is about 1.82. × 10 −2 m 2 .
[0014]
Here, the speed V of the cooling fluid will be considered.
The velocity V of the cooling fluid is represented by Q [m 3 / s] of the flow rate of the cooling fluid and S [m 2 ] of the cross-sectional area of the flow path.
V [m / s] = Q [m 3 / s] / S [m 2 ] (1)
It is represented as Therefore, if the height h1 of the fins is reduced by 40% from 100 mm to 60 mm, the cross-sectional area of the flow path is also reduced by about 40%, so that the velocity V of the cooling fluid is increased by about 1.6 times from the relationship of the above equation (1). be able to.
[0015]
Also, from the characteristics of the existing heat sink, when the height h1 of the fin is reduced by 40%, the thermal resistance increases by about 16%. When the speed of the cooling fluid is increased by about 1.6 times, the thermal resistance increases by about 15%. It has been confirmed that it can be reduced to%. From this, it can be seen that the thermal resistance can be made almost the same as the conventional one. Furthermore, while the mass of the conventional heating element cooling device is about 11 kg, the mass can be reduced to about 8 kg by reducing the height h1 of the fin by 40%, and the cost can be reduced accordingly.
[0016]
FIG. 5 is a perspective view showing a second embodiment of the present invention, and FIG. 6 is a sectional view thereof.
The difference from the conventional device shown in FIGS. 11 and 12 is that the partition plate 9 is installed, the fin height h1 is reduced, and the fin height h1 is reduced. The point is that the deflectors 4 and 5 are installed in a space between the base 2 and the bottom plate 6 that is plane-parallel to the base 2.
[0017]
The deflectors 4 and 5 are made of a plate-like member and have at least one vertex A1 and A2 as shown in FIGS. 6 (a) and 6 (b). A gap such as a distance h2 (see FIG. 6 (c)) is provided between the fin tip and the deflector vertices A1 and A2, or the deflector vertices A1 and A2 are brought into contact with the fin tip and the fin tip and the deflector vertices A1 and A2. The distance h2 to A2 may be set to 0. Further, the positions of the deflector vertices A1 and A2, that is, the distances L1 and L2 (see FIGS. 6A and 6B) from the cooling fluid inflow portion to the point where the perpendiculars drawn from the deflector vertices to the bottom cross each other are shown in FIG. Are adjusted according to the highest (larger) heating value of the heating element in each of the region 1 and the region 2 shown in FIG. The partition plate 9 is attached to the bottom plate 6 by screwing or the like. As a substitute for the partition plate 9, one of the plate fins 3 may be long enough to contact the bottom plate 6.
[0018]
FIGS. 7 and 8 are explanatory diagrams for comparing and explaining the second invention and the conventional example. Now, it is assumed that the heating values of the heating elements 1a, 1b, 1c in the area 1 shown in FIG. 5 are the same, and the heating value of the heating element 1e among the heating elements 1d, 1e, 1f shown in the area 2 is larger than 1d, 1f. 7A, the base temperature T with respect to the distance (X mm) from the cooling fluid inflow section or the suction section is the heating element 1a, 1b, 1c shown in FIG. In the heating elements 1d, 1e, and 1f shown in b), the temperature is highest at 1e. In each case, the amount of temperature rise is smaller in the case of the present invention shown by the thick solid line than in the case of the conventional example shown by the thin solid line, which can be said to show the effect of providing the deflector. This is because the flow velocities of the cooling fluid are shown in FIG. 8 by arranging the vertices A1 and A2 of the deflectors 4 and 5 directly below the heating elements 1a and 1e, respectively, as shown in FIGS. As described above, it is considered that the highest speed can be obtained immediately below the heating elements 1a and 1e. By optimizing the arrangement of the vertexes A1 and A2 of the deflectors 4 and 5, the speed of the cooling fluid in the portion where the heat generation is highest can be increased, and the base temperature can be efficiently reduced. The distance X from the cooling fluid inflow portion or the suction portion in FIGS. 7 and 8 corresponds to X shown in FIGS. 6 (a), 6 (b), 12 (a), 12 (b).
[0019]
When the partition plate is provided as shown in FIGS. 5 and 6, the cross-sectional area of each flow path divided by the partition plate changes, but the total cross-sectional area of the flow path is the same. The same applies to the case where the partition plate is not provided as shown in FIGS. Therefore, when the height h1 of the fins is reduced by 40% from 100 mm to 60 mm, the cross-sectional area of the flow path is also reduced by about 40%, and the velocity V of the cooling fluid can be increased by about 1.6 times from the relationship of the above equation (1). This is the same as in FIGS. Also, when the flow velocity is increased by about 1.6 times, the thermal resistance can be reduced by about 15%, so that the thermal resistance can be made the same as the conventional one, and the weight can be reduced as in the case of FIGS. Needless to say.
[0020]
【The invention's effect】
According to the present invention, the cooling fluid is deflected to a space formed between the fin tip and the bottom plate parallel to the base, which was a space for extending the height of the fin in order to increase the heat radiation area, and fin base portion or A deflector is provided to increase the speed of the cooling fluid near the base, so that the heat resistance of the heating element cooling device can be maintained almost the same as before, without changing the radiating area of the fins. Can be reduced. For example, in a power converter having a capacity of 75 kW and an input voltage of 400 V, the mass can be reduced by about 3 kg as compared with the conventional one, and the cost is reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of the present invention; FIG. 2 is a sectional view showing a first embodiment of the present invention; FIG. 3 is a relation of a base temperature with respect to a distance from a cooling fluid inflow portion; FIG. 4 is an explanatory diagram for explaining the first invention and the conventional example in comparison with each other. FIG. 4 compares the first invention and the conventional example with respect to the relationship between the distance from the cooling fluid inflow portion and the speed of the cooling fluid. FIG. 5 is a perspective view showing a second embodiment of the present invention. FIG. 6 is a sectional view showing a second embodiment of the present invention. FIG. 7 is a cooling fluid inflow portion. FIG. 8 is an explanatory diagram for explaining the relationship between the base temperature and the distance from the cooling fluid in comparison with the second invention and the conventional example. FIG. 8 shows the relationship between the distance from the cooling fluid inflow portion and the speed of the cooling fluid. Explanatory diagram for comparing and describing the invention of the present invention and the conventional example [ 9 is a perspective view showing a first conventional example. FIG. 10 is a cross-sectional view showing a first conventional example. FIG. 11 is a perspective view showing a second conventional example. FIG. 12 is a cross-sectional view showing a second conventional example. [Explanation of symbols]
1a, 1b, 1c, 1d, 1e, 1f: Heating element, 2: Base, 3: Plate fin, 4, 5: Deflector, 6: Bottom plate, 7: Side plate, 8: Flow direction of cooling fluid, 9: Partition Board.

Claims (5)

ベースの一方の面に発熱体を搭載しベースの他方の面に被冷却体であるフィンを配置した強制空冷式ヒートシンクを含む発熱体冷却装置において、
冷却流体の流路の前記ベースに面平行な底板と前記フィン先端との間に、少なくとも1つの頂点を持つデフレクターを設け、冷却流体流入部または吸込部からの冷却流体をフィンと接する部分またはその近傍に向けて偏向し、冷却流体の速度を高めることを特徴とする発熱体冷却装置。
In a heating element cooling apparatus including a forced air cooling type heat sink in which a heating element is mounted on one surface of a base and fins serving as a cooled object are arranged on the other surface of the base,
A deflector having at least one apex is provided between a bottom plate parallel to the base of the flow path of the cooling fluid and the fin tip, and a portion or a portion of the fin that contacts cooling fluid from a cooling fluid inflow portion or a suction portion with the fin. A heating element cooling device, wherein the heating element cooling device is deflected toward the vicinity to increase the speed of a cooling fluid.
前記発熱体が複数あるときは、デフレクター頂点の冷却流体流入部または吸込部からの設置位置を、各発熱体の発熱量の大小に応じて決定することを特徴とする請求項1に記載の発熱体冷却装置。The heat generation device according to claim 1, wherein when there are a plurality of the heating elements, an installation position of the deflector apex from a cooling fluid inflow section or a suction section is determined according to a magnitude of a heating value of each heating element. Body cooling device. ベースの一方の面に、ベース奥行き方向と平行な直線によって分割されたそれぞれの領域に少なくとも1つの発熱体を搭載し、ベースの他方の面に被冷却体であるフィンをベース奥行き方向と平行に配置した強制空冷式ヒートシンクを含む発熱体冷却装置において、
冷却流体の流路に、前記フィンに対して面平行な仕切り板と、この仕切り板によって分割された冷却流体の各流路の前記ベースに面平行な底板と前記フィン先端との間に少なくとも1つの頂点を持つデフレクターとを設け、冷却流体流入部または吸込部からの冷却流体をフィンと接する部分またはその近傍に向けて偏向し、冷却流体の速度を高めることを特徴とする発熱体冷却装置。
On one surface of the base, at least one heating element is mounted in each area divided by a straight line parallel to the base depth direction, and fins to be cooled are mounted on the other surface of the base in parallel with the base depth direction. In the heating element cooling device including the arranged forced air cooling type heat sink,
A partition plate parallel to the fins in the flow path of the cooling fluid, and at least one partition plate between the bottom plate parallel to the base and the fin tip of each flow path of the cooling fluid divided by the partition plate. A heating element cooling device comprising: a deflector having two vertexes; and deflects a cooling fluid from a cooling fluid inflow portion or a suction portion toward or near a portion in contact with a fin to increase the speed of the cooling fluid.
前記発熱体が、前記ベースのそれぞれの領域に複数ずつあるときは、デフレクター頂点の冷却流体流入部または吸込部からの設置位置を、冷却流体のそれぞれの流路で、各発熱体の発熱量の大小に応じて決定することを特徴とする請求項3に記載の発熱体冷却装置。When there are a plurality of heating elements in each area of the base, the installation position of the deflector apex from the cooling fluid inflow section or the suction section is determined by the flow path of the cooling fluid in the amount of heat generated by each heating element. The heating element cooling device according to claim 3, wherein the heating element cooling device is determined according to the magnitude. 前記ベースのそれぞれの領域を、ベース面積の比率と発熱体の発熱量の比率が等しくなるように分割し、前記仕切り板を前記発熱体の発熱量の比率と冷却流体の流路断面積の比率を等しくするように設けることを特徴とする請求項3または4に記載の発熱体冷却装置。Each region of the base is divided so that the ratio of the base area and the ratio of the calorific value of the heating element are equal, and the partition plate is divided by the ratio of the calorific value of the heating element and the ratio of the cross-sectional area of the flow path of the cooling fluid. The heating element cooling device according to claim 3, wherein the heating element cooling device is provided so that
JP2003028120A 2002-08-07 2003-02-05 Heating element cooling device Pending JP2004128439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028120A JP2004128439A (en) 2002-08-07 2003-02-05 Heating element cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002230170 2002-08-07
JP2003028120A JP2004128439A (en) 2002-08-07 2003-02-05 Heating element cooling device

Publications (1)

Publication Number Publication Date
JP2004128439A true JP2004128439A (en) 2004-04-22

Family

ID=32300894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028120A Pending JP2004128439A (en) 2002-08-07 2003-02-05 Heating element cooling device

Country Status (1)

Country Link
JP (1) JP2004128439A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084870A1 (en) * 2007-01-11 2008-07-17 Toyota Jidosha Kabushiki Kaisha Cooling structure for semiconductor device
JP2008263137A (en) * 2007-04-13 2008-10-30 Nippon Inter Electronics Corp Cooling device
JP2011134978A (en) * 2009-12-25 2011-07-07 Fuji Electric Co Ltd Fluid cooling type heat sink
KR101050326B1 (en) 2008-08-26 2011-07-19 쇼와 덴코 가부시키가이샤 Liquid-cooled chillers
JP2012060002A (en) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp Structure for cooling semiconductor element
JP2012199596A (en) * 2012-07-25 2012-10-18 Mitsubishi Electric Corp Semiconductor module
JP2014179382A (en) * 2013-03-13 2014-09-25 Sumitomo Precision Prod Co Ltd Heat sink
CN104145333A (en) * 2012-04-16 2014-11-12 富士电机株式会社 Semiconductor device and cooler for semiconductor device
JP2017017073A (en) * 2015-06-26 2017-01-19 アイシン・エィ・ダブリュ株式会社 Cooling structure of heat generation body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084870A1 (en) * 2007-01-11 2008-07-17 Toyota Jidosha Kabushiki Kaisha Cooling structure for semiconductor device
JP2008172014A (en) * 2007-01-11 2008-07-24 Toyota Motor Corp Semiconductor device cooling structure
US8125078B2 (en) 2007-01-11 2012-02-28 Toyota Jidosha Kabushiki Kaisha Semiconductor element cooling structure
JP2008263137A (en) * 2007-04-13 2008-10-30 Nippon Inter Electronics Corp Cooling device
KR101050326B1 (en) 2008-08-26 2011-07-19 쇼와 덴코 가부시키가이샤 Liquid-cooled chillers
JP2011134978A (en) * 2009-12-25 2011-07-07 Fuji Electric Co Ltd Fluid cooling type heat sink
JP2012060002A (en) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp Structure for cooling semiconductor element
CN104145333A (en) * 2012-04-16 2014-11-12 富士电机株式会社 Semiconductor device and cooler for semiconductor device
EP2840604A4 (en) * 2012-04-16 2015-12-23 Fuji Electric Co Ltd Semiconductor device and cooler for semiconductor device
US9472488B2 (en) 2012-04-16 2016-10-18 Fuji Electric Co., Ltd. Semiconductor device and cooler thereof
JP2012199596A (en) * 2012-07-25 2012-10-18 Mitsubishi Electric Corp Semiconductor module
JP2014179382A (en) * 2013-03-13 2014-09-25 Sumitomo Precision Prod Co Ltd Heat sink
JP2017017073A (en) * 2015-06-26 2017-01-19 アイシン・エィ・ダブリュ株式会社 Cooling structure of heat generation body

Similar Documents

Publication Publication Date Title
US6590770B1 (en) Serpentine, slit fin heat sink device
CN100464279C (en) Heat sink
JP4046703B2 (en) heatsink
JP5083322B2 (en) Cooling system
JP2008140802A (en) Heat sink
JPH10200278A (en) Cooler
WO2013080341A1 (en) Electronic board unit and electronic device
TW201921617A (en) heat sink
JP5129942B2 (en) Semiconductor device
JP2004128439A (en) Heating element cooling device
JP2008288330A (en) Semiconductor device
JP3604310B2 (en) Forced air-cooled comb heat sink
WO2020009157A1 (en) Heat sink
JP2003142637A (en) Cooling structure of heat sink and heating element
JP2019021825A (en) Radiator and liquid-cooling type cooling device employing the same
JP7157591B2 (en) heatsink
JP2003338595A (en) Cooling device for electronic component
CN114396662A (en) Electric control box and air conditioner outdoor unit with same
JPH10190265A (en) Pin fin type heat radiator
JP2010093034A (en) Cooling device for electronic component
JP3156375B2 (en) Forced air-cooled inverter
JPH10163389A (en) Heat sink
JP2005079349A (en) Heatsink having louver
JPH08125366A (en) Device for cooling electronic part
JP3992953B2 (en) heatsink

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Effective date: 20051114

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070514

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071025