JP2004128327A - Soft magnetic powder for core - Google Patents

Soft magnetic powder for core Download PDF

Info

Publication number
JP2004128327A
JP2004128327A JP2002292439A JP2002292439A JP2004128327A JP 2004128327 A JP2004128327 A JP 2004128327A JP 2002292439 A JP2002292439 A JP 2002292439A JP 2002292439 A JP2002292439 A JP 2002292439A JP 2004128327 A JP2004128327 A JP 2004128327A
Authority
JP
Japan
Prior art keywords
core
mass
powder
soft magnetic
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002292439A
Other languages
Japanese (ja)
Inventor
Yoshikazu Aikawa
相川 芳和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2002292439A priority Critical patent/JP2004128327A/en
Publication of JP2004128327A publication Critical patent/JP2004128327A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide soft magnetic powder for a core that is superior in superposition and can appropriately keep insulation in the core. <P>SOLUTION: The soft magnetic powder for a core is a gas-atomized powder that is made mainly of Si of ≥2 mass%, Al of ≥2 mass%, and Al+Si of ≥2 mass%, and where the remaining part is made of Fe, and it is heated at 773-1073K for 0.5 hours or longer. The gas-atomized powder having such a composition is oxidized and heated, so that the soft magnetic powder with high insulation and superposition can be produced with high productivity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、トランス、インダクター、モーター等に用いるコア用軟磁性粉末に関するものである。
【0002】
【従来の技術】
電子部品等に用いられる圧粉コア材は、近年の高周波化、大電流化に伴い、より高い飽和磁束密度、透磁率が求められている。このような動向に伴い、金属粉末を用いた圧粉コア材の開発が各社でも進められている。一方、圧粉コア用粉末として用いられる軟磁性材料には、Fe−Ni系、センダスト、Fe−Si系等が中心に軟磁気特性の優れている材料が選ばれるている。これら圧粉コアは、フェライト系と比較して絶縁がとりにくく、回路に突発的な電流が流れた際に防ぐことができないと言う問題がある。これらの問題の対応として特許文献1に示すような、Fe−Si−Al系合金に酸化熱処理を施すものが提案されている。また、引用文献2には、Fe−Si−Al系圧粉磁心用粉末についての粒度とアスペクト比を規制したものが開示されている。
【0003】
【引用文献】
(1)特許文献1(特開平10−189323号公報)
(2)特許文献2(特開2001−207203号公報)
【0004】
【発明が解決しようとする課題】
上述した従来のFe−Ni系やFe−Si系の軟磁性材料は、酸化熱処理をすると酸素が粉末内部まで入り、磁気特性が劣化し直流重畳特性が悪くなる。一方、センダスト(Fe−9Si−6Al)系の場合は、表面にAl2 3 膜が均一に張るため絶縁性が良くなるが、しかし、センダストは他の金属粉末と比較して飽和磁束密度が低いため大電流化に対応しにくく、直流重畳特性が低いため、十分な絶縁性を有し、大電流化にも対応できるコア用粉末の製造は困難であると言う問題がある。
【0005】
また、特許文献1や特許文献2は、いずれもFe−Si−Al系合金粉末を対象としている。しかし、特許文献1の場合は、実施例に9.6重量%Si−5.3重量%Al−残部Fe合金のみが記載されているのみであって、一次熱処理後、水ガラスを混合し、成形後、二次熱処理するもので、Si,Al両者の含有量規制によるコア特性との関係を究明したものでない。また、特許文献2は、粒度とアスペクト比を規制することにより、コア特性の優れたコア用粉末を製造方法するものである。
【0006】
【課題を解決するための手段】
上述したような問題を解消するために、発明者らは鋭意研究を重ねた結果、重畳特性に優れ、かつ、コアの絶縁も良好に保てる組成領域および工程条件を見出したコア用軟磁性粉末を提供するものである。その発明の要旨とするところは、
Si≧2mass%、Al≧2mass%、Al+Si≦12mass%、残部Feからなるガスアトマイズ粉末を773〜1073Kで0.5hr以上熱処理することを特徴とするコア用軟磁性粉末にある。
【0007】
【発明の実施の形態】
以下、本発明についての成分組成の限定理由を説明する。
Si≧2mass%、Al≧2mass%
Si≧2mass%およびAl≧2mass%の両者を満たすことにより、粉末表面にAl2 3 膜が均一に生成されコアの絶縁性が向上する。すなわち、Al単独ではAl2 3 の被膜が表面に均一に生成しないために絶縁精が充分でない。また、Si単独でもAlと同様に、SiO2 が均一に生成しない。AlとSiが両者規定量存在する場合に、表面に均一なAl2 3 膜が生成し絶縁性がされるものである。従って、いずれかが2mass%未満である場合には、酸化被膜が表面に正常に形成されないので、その下限を2mass%とした。より好ましくは、Si≧4mass%およびAl≧4mass%とする。
【0008】
Al+Si≦12mass%
重畳特性を得るためには、Al,Siが低い方が好ましい。Al+Siが、12mass%を超えると飽和磁化が低くなるため直流重畳特性が不十分となり大電流化に対応することが出来ない。従って、上限を12mass%とした。
これらの成分組成のものをガスアトマイズにて製造する。従って、ガスアトマイズで製造されることから、球状となり充填性が良好となり、重畳特性が向上し、酸化熱処理により表面のみに絶縁層を付けることが可能となる。
【0009】
次に、熱処理については、酸化被膜形成のための処理であって、773K未満では絶縁に必要十分な酸化被膜が形成されない。また、1073Kを超えると焼結が進行するためハンドリングが出来ない。従って、その範囲を773〜1073Kとした。より好ましくは、873〜973Kとする。
また、熱処理時間は、0.5hr以上を必要とする。0.5hr未満では表面の酸化被膜が不十分なため絶縁は十分得られない。従って、0.5hr以上とした。より好ましくは、2〜5hrとする。5hrを超えると表面の酸化被膜の形態にあまり変化が見られなくなることから2〜5hrとする。
【0010】
熱処理時の酸素濃度は、好ましくは10〜30mass%であり、10mass%未満では酸化被膜が形成されないし、30mass%を超えると酸化が進行して磁気特性が劣化する。従って、大気中で行うのが最も簡便な方法である。
このように規制することにより、従来のフェライト焼結材と比較して飽和磁束密度が大きいため、部品の大電流化が可能となり、圧粉コア用粉末として選ばれる材料は、良好な軟磁気特性としての低保磁力と高飽和磁束密度を持つ材料が得られる。
【0011】
図1は、酸化被膜と絶縁精との関係を示す図である。この図に示すように、図1(a)は本発明によって製造された酸化被膜状態を示すもので、軟磁性粉末1の表面に薄く均一な酸化被膜2が生成されている状態を示している。一方、図1(b)は比較例である後述する表1のNo.12、13およびNo.18〜21に該当する粉末の表面状態であって、粉末表面に酸化物3が形成されていることが判る。
【0012】
【実施例】
(実施例1)
以下、本発明について実施例によって具体的に説明する。
表1に示す成分組成のFe−Si−Al系合金のガスアトマイズ粉末を粒度−45μmに分級して得た粉末を、各温度で大気中で保持時間0.5〜6hrの熱処理した後、Si系樹脂(東レシリコン社製:SR2414)を金属粉末に対して1.5mass%を混合し、外径15mm、内径10mm、高さ5mmなるリング状に、1MPaで加圧成形した。加圧成形後973K−1hrの熱処理して製品を得た。その結果を表1に示す。
【0013】
その時の粉末特性として、粉末の飽和磁束密度(Bs)は、VSM(印可磁場800kA/mにて測定)を測定、酸化被膜の厚さは、AES分析により酸素の浸透厚みを測定、また、酸化被膜の種類は、XPS分析により表面の酸化物形態を同定した。さらに、コア特性としては、成形後の直流重畳特性(μ)は、LCRメーター、周波数100kHz、印可磁場144kA/mで測定し、成形後の絶縁性は、テスターにてリング材の抵抗値を測定し、その固有抵抗を算出した。
【0014】
【表1】

Figure 2004128327
【0015】
表1に示すように、No.1〜11は本発明例であり、No.12〜21は比較例である。これから判るように、本発明例はいずれも比較例に比べて絶縁性と重畳特性の優れたコアが作製出来た。一方、比較例No.12は、Si量が少ないために、鉄酸化被膜が形成され、その酸化被膜厚さが厚く形成され、その結果、飽和磁束密度が小さく、コア特性である成形後の直流重畳特性が小さく、かつ固有抵抗が小さい。比較例No.13は、Al量が少ないために、比較例No.12と同様に、鉄酸化被膜が形成され、しかも、その酸化被膜厚さが厚く形成され、その結果、飽和磁束密度が小さく、コア特性である成形後の直流重畳特性が小さく、かつ固有抵抗が小さい。
【0016】
また、比較例No.14は、Si、Al量が共に多いために、飽和磁束密度が小さく、かつ、コア特性である成形後の直流重畳特性が小さい。比較例No.15は、酸化熱処理がないために、鉄酸化被膜の厚さが薄く、固有抵抗が小さい。比較例No.16は、酸化熱処理温度が低いために、鉄酸化被膜の厚さが薄く、固有抵抗が小さい。さらに、比較例No.17は、酸化熱処理温度が高いために、焼結のためのハンドリングが不能となった。比較例No.18〜21は、Al、Siのどちらかが低いためAl2 3 が表面に均一に生成されないため特性が悪くなる。
【0017】
(実施例2)
表1に示すNo.3について、大気中にN2 もしくはO2 を混合してO2 濃度15mass%と30mass%にて熱処理を行った。その結果を表2に示す。
【0018】
【表2】
Figure 2004128327
【0019】
【発明の効果】
以上述べたように、本発明による成分組成のガスアトマイズ粉末を酸化熱処理を施すことにより、絶縁性と重畳特性の優れたコア用軟磁性粉末を高い生産性のもとに製造することが可能となり、工業的に極めて有利である。
【図面の簡単な説明】
【図1】酸化被膜と絶縁精との関係を示す図である。
【符号の説明】
1 軟磁性粉末
2 酸化被膜
3 酸化物[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a soft magnetic powder for a core used for a transformer, an inductor, a motor, and the like.
[0002]
[Prior art]
With the recent trend toward higher frequencies and higher currents, higher saturation magnetic flux densities and magnetic permeability are required for dust core materials used for electronic components and the like. Along with such a trend, development of a dust core material using a metal powder is also being promoted by each company. On the other hand, as the soft magnetic material used as the powder for the dust core, a material having excellent soft magnetic properties is selected mainly from Fe-Ni, Sendust, Fe-Si and the like. These dust cores have a problem that insulation is harder to obtain than ferrite-based ones, and cannot be prevented when a sudden current flows in a circuit. As a countermeasure to these problems, there has been proposed an Fe-Si-Al-based alloy which is subjected to an oxidizing heat treatment as disclosed in Patent Document 1. In addition, Patent Document 2 discloses a Fe-Si-Al-based powder for a dust core in which the particle size and the aspect ratio are regulated.
[0003]
[References]
(1) Patent Document 1 (JP-A-10-189323)
(2) Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-207203)
[0004]
[Problems to be solved by the invention]
In the above-mentioned conventional Fe-Ni-based or Fe-Si-based soft magnetic materials, oxygen enters the inside of the powder when subjected to an oxidizing heat treatment, so that the magnetic characteristics are deteriorated and the DC superposition characteristics are deteriorated. On the other hand, in the case of Sendust (Fe-9Si-6Al), the insulating property is improved because the Al 2 O 3 film is uniformly formed on the surface, but Sendust has a saturation magnetic flux density higher than that of other metal powders. It is difficult to cope with an increase in current because of the low temperature, and it is difficult to produce a core powder that has sufficient insulation properties and can cope with an increase in current because of low DC superimposition characteristics.
[0005]
Patent Documents 1 and 2 both deal with Fe-Si-Al alloy powders. However, in the case of Patent Literature 1, only 9.6 wt% Si-5.3 wt% Al-balance Fe alloy is described in Examples, and after primary heat treatment, water glass is mixed. It is subjected to secondary heat treatment after molding, and does not investigate the relationship with the core properties due to the regulation of both Si and Al contents. Patent Document 2 discloses a method for producing a core powder having excellent core characteristics by regulating the particle size and the aspect ratio.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and as a result, have found a soft magnetic powder for a core that has excellent composition characteristics and a composition region and process conditions that can maintain good insulation of the core. To provide. The gist of the invention is that
A soft magnetic powder for a core, characterized in that a gas atomized powder consisting of Si ≧ 2 mass%, Al ≧ 2 mass%, Al + Si ≦ 12 mass% and the balance Fe is heat-treated at 773 to 1073 K for 0.5 hr or more.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reasons for limiting the component composition of the present invention will be described.
Si ≧ 2 mass%, Al ≧ 2 mass%
By satisfying both Si ≧ 2 mass% and Al ≧ 2 mass%, an Al 2 O 3 film is uniformly formed on the powder surface, and the insulating property of the core is improved. That is, since Al alone does not form a film of Al 2 O 3 uniformly on the surface, the insulating quality is not sufficient. Further, similarly to Al, Si alone does not uniformly generate SiO 2 . When both specified amounts of Al and Si are present, a uniform Al 2 O 3 film is formed on the surface to provide insulation. Therefore, if any of them is less than 2 mass%, the oxide film is not normally formed on the surface, so the lower limit is set to 2 mass%. More preferably, Si ≧ 4 mass% and Al ≧ 4 mass%.
[0008]
Al + Si ≦ 12 mass%
In order to obtain superposition characteristics, it is preferable that Al and Si are low. If Al + Si exceeds 12 mass%, the saturation magnetization becomes low, so that the DC superimposition characteristics become insufficient, and it is impossible to cope with an increase in current. Therefore, the upper limit is set to 12 mass%.
Those having these component compositions are produced by gas atomization. Therefore, since it is manufactured by gas atomization, it becomes spherical and the filling property is good, the superimposition characteristics are improved, and the insulating layer can be provided only on the surface by the oxidizing heat treatment.
[0009]
Next, the heat treatment is a process for forming an oxide film, and if it is less than 773K, an oxide film necessary and sufficient for insulation is not formed. On the other hand, if the temperature exceeds 1073K, sintering proceeds and handling cannot be performed. Therefore, the range was 773 to 1073K. More preferably, it is 873-973K.
Further, the heat treatment time requires 0.5 hr or more. If it is less than 0.5 hr, the insulation cannot be sufficiently obtained because the oxide film on the surface is insufficient. Therefore, it was set to 0.5 hr or more. More preferably, it is set to 2 to 5 hours. If it exceeds 5 hours, the form of the oxide film on the surface does not change much, so that it is set to 2 to 5 hours.
[0010]
The oxygen concentration at the time of the heat treatment is preferably 10 to 30% by mass. When the oxygen concentration is less than 10% by mass, no oxide film is formed, and when it exceeds 30% by mass, the oxidation proceeds to deteriorate the magnetic properties. Therefore, it is the simplest method to carry out in the atmosphere.
By restricting in this way, the saturation magnetic flux density is larger than that of the conventional ferrite sintered material, so that it is possible to increase the current of the component, and the material selected as the powder for the dust core has good soft magnetic properties. As a result, a material having a low coercive force and a high saturation magnetic flux density can be obtained.
[0011]
FIG. 1 is a diagram showing a relationship between an oxide film and insulating fineness. As shown in FIG. 1, FIG. 1A shows a state of an oxide film produced according to the present invention, in which a thin and uniform oxide film 2 is formed on the surface of a soft magnetic powder 1. . On the other hand, FIG. 12, 13 and No. In the surface state of the powder corresponding to Nos. 18 to 21, it can be seen that oxide 3 is formed on the powder surface.
[0012]
【Example】
(Example 1)
Hereinafter, the present invention will be described specifically with reference to Examples.
The powder obtained by classifying the gas atomized powder of the Fe-Si-Al alloy having the component composition shown in Table 1 into a particle size of -45 µm was heat-treated in the air at each temperature for a holding time of 0.5 to 6 hr. A resin (SR2414, manufactured by Toray Silicone Co., Ltd.) was mixed with 1.5 mass% with respect to the metal powder, and pressed into a ring having an outer diameter of 15 mm, an inner diameter of 10 mm and a height of 5 mm at 1 MPa. After pressure molding, heat treatment was performed at 973K-1hr to obtain a product. Table 1 shows the results.
[0013]
As the powder characteristics at that time, the saturation magnetic flux density (Bs) of the powder was measured by VSM (measured at an applied magnetic field of 800 kA / m), and the thickness of the oxide film was measured by measuring the permeation thickness of oxygen by AES analysis. Regarding the type of the coating, the oxide morphology on the surface was identified by XPS analysis. Further, as the core characteristics, the DC superimposition characteristics (μ) after molding are measured with an LCR meter, a frequency of 100 kHz and an applied magnetic field of 144 kA / m, and the insulation properties after molding are measured with a tester by measuring the resistance of the ring material. Then, the specific resistance was calculated.
[0014]
[Table 1]
Figure 2004128327
[0015]
As shown in Table 1, Nos. 1 to 11 are examples of the present invention. 12 to 21 are comparative examples. As can be seen, all of the examples of the present invention produced cores having better insulating properties and superimposition characteristics than the comparative examples. On the other hand, in Comparative Example No. In No. 12, since the amount of Si is small, an iron oxide film is formed, and the oxide film thickness is formed thick. As a result, the saturation magnetic flux density is small, and the DC superimposition characteristic after molding, which is the core characteristic, is small, and Low specific resistance. Comparative Example No. Comparative Example No. 13 has a small amount of Al. Similarly to 12, an iron oxide film is formed, and its oxide film thickness is formed thick. As a result, the saturation magnetic flux density is small, the DC superposition characteristic after molding which is the core characteristic is small, and the specific resistance is low. small.
[0016]
In Comparative Example No. In No. 14, since both the amounts of Si and Al are large, the saturation magnetic flux density is small, and the DC superimposition characteristic after molding which is the core characteristic is small. Comparative Example No. In No. 15, since there is no oxidation heat treatment, the thickness of the iron oxide film is small and the specific resistance is small. Comparative Example No. No. 16 has a low iron oxide film thickness and a low specific resistance because the oxidation heat treatment temperature is low. Further, in Comparative Example No. In No. 17, handling for sintering became impossible due to high oxidation heat treatment temperature. Comparative Example No. In Nos. 18 to 21, either Al or Si is low, so that Al 2 O 3 is not uniformly generated on the surface, so that the characteristics are deteriorated.
[0017]
(Example 2)
No. shown in Table 1. For 3, a mixture of N 2 or O 2 was heat-treated at the O 2 concentration 15 mass% and 30 mass% in the atmosphere. Table 2 shows the results.
[0018]
[Table 2]
Figure 2004128327
[0019]
【The invention's effect】
As described above, by subjecting the gas atomized powder having the component composition according to the present invention to oxidative heat treatment, it becomes possible to produce a core soft magnetic powder having excellent insulating properties and superimposition characteristics with high productivity, It is very advantageous industrially.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between an oxide film and insulating fineness.
[Explanation of symbols]
1 soft magnetic powder 2 oxide film 3 oxide

Claims (1)

Si≧2mass%、Al≧2mass%、Al+Si≦12mass%、残部Feからなるガスアトマイズ粉末を773〜1073Kで0.5hr以上熱処理することを特徴とするコア用軟磁性粉末。A soft magnetic powder for a core, wherein a gas atomized powder comprising Si ≧ 2 mass%, Al ≧ 2 mass%, Al + Si ≦ 12 mass% and the balance Fe is heat-treated at 773 to 1073 K for 0.5 hr or more.
JP2002292439A 2002-10-04 2002-10-04 Soft magnetic powder for core Withdrawn JP2004128327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292439A JP2004128327A (en) 2002-10-04 2002-10-04 Soft magnetic powder for core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292439A JP2004128327A (en) 2002-10-04 2002-10-04 Soft magnetic powder for core

Publications (1)

Publication Number Publication Date
JP2004128327A true JP2004128327A (en) 2004-04-22

Family

ID=32283686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292439A Withdrawn JP2004128327A (en) 2002-10-04 2002-10-04 Soft magnetic powder for core

Country Status (1)

Country Link
JP (1) JP2004128327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004813A (en) * 2014-06-13 2016-01-12 株式会社豊田中央研究所 Soft magnetic member, reactor, powder for dust core, and method for manufacturing dust core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004813A (en) * 2014-06-13 2016-01-12 株式会社豊田中央研究所 Soft magnetic member, reactor, powder for dust core, and method for manufacturing dust core

Similar Documents

Publication Publication Date Title
EP1912225B1 (en) Soft magnetic material, process for production of the material, powder compressed magnetic core, and process for production of the magnetic core
EP1840907B1 (en) Soft magnetic material and dust core
EP1710815A1 (en) Dust core and method for producing same
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2001011563A (en) Manufacture of composite magnetic material
JP6756000B2 (en) Manufacturing method of dust core
CN107658090B (en) Soft magnetic metal powder magnetic core and reactor provided with same
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
EP1716946A1 (en) Soft magnetic material and dust core
JP2009302420A (en) Dust core and manufacturing method thereof
JP2006237153A (en) Composite dust core and manufacturing method thereof
JP2019178402A (en) Soft magnetic powder
JPH0682577B2 (en) Fe-Si alloy dust core and method of manufacturing the same
EP2963659A1 (en) Soft magnetic member, reactor, powder for dust core, and method of producing dust core
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
JP2000232014A (en) Manufacture of composite magnetic material
JP6578266B2 (en) Soft magnetic material, dust core using soft magnetic material, and method for manufacturing dust core
JP2004128327A (en) Soft magnetic powder for core
JP2013222789A (en) Alloyed composite soft magnetic material and manufacturing method thereof
JP2002141213A (en) Dust core
JP2003347113A (en) Composite magnetic material and its manufacturing method
JP2005243895A (en) Powder for pressed powder core and pressed powder core employing it
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
EP4322185A1 (en) Soft magnetic alloy powder and production method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110