JP2004128312A - Method for manufacturing aluminum electrolytic capacitor - Google Patents

Method for manufacturing aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2004128312A
JP2004128312A JP2002292183A JP2002292183A JP2004128312A JP 2004128312 A JP2004128312 A JP 2004128312A JP 2002292183 A JP2002292183 A JP 2002292183A JP 2002292183 A JP2002292183 A JP 2002292183A JP 2004128312 A JP2004128312 A JP 2004128312A
Authority
JP
Japan
Prior art keywords
aluminum electrolytic
electrolytic capacitor
capacitor
fixing resin
metal case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002292183A
Other languages
Japanese (ja)
Other versions
JP4178897B2 (en
Inventor
Takeyasu Yamagishi
山岸 武泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002292183A priority Critical patent/JP4178897B2/en
Publication of JP2004128312A publication Critical patent/JP2004128312A/en
Application granted granted Critical
Publication of JP4178897B2 publication Critical patent/JP4178897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an aluminum electrolytic capacitor capable of increasing the air-tightness of a capacitor element and element fixing resin, and stably generating the aluminum electrolytic capacitor whose vibration resistance is excellent. <P>SOLUTION: This method for manufacturing an aluminum electrolytic capacitor is provided to re-harden element fixing resin hardened once in a metallic case 3 in at least a temperature where the element fixing resin starts to melt in a status the opening side of the aluminum electrolytic capacitor is covered with a thermal insulating cap 8. Thus, air bubble generated in the hardened element fixing resin can be prevented from being generated, the fixing of the capacitor element can be sufficiently executed by improving the adhesiveness of the capacitor element and the element fixing resin, and vibration resistivity can be sharply improved by preventing any crack from being generated due to the thermal deterioration of a rubber ring. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器に使用されるアルミ電解コンデンサの中で、特に耐振動性が要求されるアルミ電解コンデンサを製造する際に最適な、アルミ電解コンデンサの製造方法に関するものである。
【0002】
【従来の技術】
図5はこの種の従来のアルミ電解コンデンサの一例として、音響用のアルミ電解コンデンサの構成を示した断面図であり、図5において10はコンデンサ素子を示し、このコンデンサ素子10は図示しない陽極箔と陰極箔をその間にセパレータを介在させて巻回し、巻き終わり部分に巻き止めテープ11を貼り付けることによって構成され、さらにこのコンデンサ素子10には図示しない駆動用電解液が含浸されているものである。
【0003】
12は上記コンデンサ素子10を収納する有底円筒状の金属ケース、13はこの金属ケース12内にコンデンサ素子10を固定するための素子固定用樹脂であり、この素子固定用樹脂13としてはアタックチック構造、アイソタクチック構造、またはステレオ構造のポリプロピレンの少なくとも1種からなるポリプロピレン系の樹脂が一般的に用いられており、上記金属ケース12内に素子固定用樹脂13を溶融状態にして充填すると共にコンデンサ素子10を収納して後述する端子板を用いて封止した後、素子固定用樹脂13を硬化させることによって金属ケース12内にコンデンサ素子10を固定するようにしているものである。
【0004】
14は上記コンデンサ素子10から引き出された外部引き出し用のリード15が接続される一対の端子16を備えて金属ケース12の開口部に配設され、金属ケース12の開放端を絞り加工することにより封止を行う端子板、17はこの端子板14の上面周縁に配設されて金属ケース12の開放端を絞り加工する際に同時に締め付け加工されるゴムリングであり、これによりアルミ電解コンデンサの気密性を確保するように構成されたものであった。
【0005】
なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
【0006】
【特許文献1】
特開平11−045834号公報
【0007】
【発明が解決しようとする課題】
しかしながら上記従来のアルミ電解コンデンサでは、金属ケース12内にコンデンサ素子10を固定するための素子固定用樹脂13に気泡が入って硬化後の量に偏りが発生したり、コンデンサ素子10との密着性が低下してコンデンサ素子10の固定が十分にできないという課題を有していた。
【0008】
従って、このような金属ケース12内のコンデンサ素子10の固定状態が悪いアルミ電解コンデンサは耐振動性が劣るために種々の問題が発生し、特に、金属ケース12内でコンデンサ素子10が振動するために外部引き出し用のリード15に大きな負荷が加わって電圧の時間降下率が大きくなり、最悪の場合には外部引き出し用のリード15が切断してしまうという課題を有していた。
【0009】
なお、このような課題を解決する手段として、素子固定用樹脂13が硬化したアルミ電解コンデンサを素子固定用樹脂13が溶解を開始する温度以上に加熱することにより素子固定用樹脂13を再溶解させて気泡を除去するということも試みたが、このような方法を採用すると気密性を確保するために用いられたゴムリング17が熱劣化を起こして亀裂が発生し、気密性が低下するために採用できないという課題を有したものであった。
【0010】
本発明はこのような従来の課題を解決し、コンデンサ素子と素子固定用樹脂との気密性を高め、耐振動性に優れたアルミ電解コンデンサを安定して生産することができるアルミ電解コンデンサの製造方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1に記載の発明は、特に、素子固定用樹脂を硬化させて金属ケース内にコンデンサ素子が固定されたアルミ電解コンデンサを素子固定用樹脂が溶解を開始する温度以上に加熱することにより素子固定用樹脂を再溶解し、その後、素子固定用樹脂を硬化させるようにしたアルミ電解コンデンサの製造方法というものであり、この方法により、素子固定用樹脂に発生した気泡を除去して硬化後の量を均一にすると共に、コンデンサ素子との密着性を向上させてコンデンサ素子の固定を十分に行って耐振動性に優れたアルミ電解コンデンサを安定して生産することができるようになるという作用効果を有する。
【0012】
本発明の請求項2に記載の発明は、アルミ電解コンデンサを素子固定用樹脂が溶解を開始する温度以上に加熱する際に、断熱性を有した材料からなる断熱キャップでアルミ電解コンデンサの開口部近傍を覆うようにしたアルミ電解コンデンサの製造方法というものであり、この方法により、素子固定用樹脂が高温になって再溶解を開始しても、ゴムリングは断熱キャップで覆われているために温度上昇が緩和されて素子固定用樹脂よりも低い温度までしか上昇せず、このためにゴムリングが熱劣化を起こして亀裂が発生して気密性が低下することもなく、気密性に優れたアルミ電解コンデンサを安定して生産することができるようになるという作用効果を有する。
【0013】
【発明の実施の形態】
以下、一実施の形態を用いて、本発明の特に請求項1,2に記載の発明について説明する。
【0014】
図1は本発明の一実施の形態によるアルミ電解コンデンサの構成を示した斜視図であり、図1において1はコンデンサ素子を示し、このコンデンサ素子1は図示しない陽極箔と陰極箔をその間にセパレータを介在させて巻回し、巻き終わり部分に巻き止めテープ2を貼り付けることによって構成され、さらにこのコンデンサ素子1には図示しない駆動用電解液が含浸されているものである。
【0015】
3は上記コンデンサ素子1を収納する有底円筒状の金属ケース、4はこの金属ケース3内にコンデンサ素子1を固定するための素子固定用樹脂であり、本実施の形態では素子固定用樹脂4としてAPP(アタックチックポリプロピレン)を用い、上記金属ケース3内にこの素子固定用樹脂4を溶融状態にして充填すると共にコンデンサ素子1を収納して後述する端子板を用いて封止した後、素子固定用樹脂4を硬化させることによって金属ケース3内にコンデンサ素子1を固定するようにしたものである。
【0016】
5は上記コンデンサ素子1から引き出された図示しない外部引き出し用のリードが接続される一対の端子6を備えて上記金属ケース3の開口部に配設され、金属ケース3の開放端を絞り加工することにより封止を行う端子板、7はこの端子板5の上面周縁に配設されて金属ケース3の開放端を絞り加工する際に同時に締め付け加工されるゴムリングであり、これによりアルミ電解コンデンサの気密性を確保するように構成されたものである。
【0017】
次に、このように構成された本実施の形態によるアルミ電解コンデンサの製造方法について説明すると、まず、陽極箔と陰極箔に外部引き出し用のリードを夫々接続した後、陽極箔と陰極箔の間にセパレータを介在させて巻回し、巻き終わり部分に巻き止めテープ2を貼り付けることによりコンデンサ素子1を作製する。
【0018】
次に、このコンデンサ素子1から引き出されたリードを端子板5に設けられた一対の端子6に夫々接続した後、このコンデンサ素子1に駆動用電解液を含浸させる。
【0019】
次に、150℃に加熱することにより溶融状態にした素子固定用樹脂4を金属ケース3の内部に充填した後、上記駆動用電解液が含浸されたコンデンサ素子1を金属ケース3内に収納し、続いて金属ケース3の開口部に端子板5を配設すると共に、この端子板5の上面周縁にゴムリング7を配置した状態で金属ケース3の開放端を絞り加工することにより金属ケース3の封止を行った後、所定の時間放置することによって上記素子固定用樹脂4を自然冷却により硬化させてアルミ電解コンデンサを作製する。
【0020】
次に、図2に示すように、上記素子固定用樹脂4が硬化したアルミ電解コンデンサの開口部(端子板5)側にノンアスベスト系断熱材からなる断熱キャップ8を被せた状態で図3に示す恒温槽9内にアルミ電解コンデンサを投入し、素子固定用樹脂4が溶解を開始する温度以上である170±5℃、45±5分の条件でアルミ電解コンデンサを加熱することにより金属ケース3内で硬化した素子固定用樹脂4を再溶解させた後、上記恒温槽9内からアルミ電解コンデンサを取り出して所定の時間放置することによって上記再溶解した素子固定用樹脂4を再硬化させて本実施の形態のアルミ電解コンデンサを作製した。
【0021】
なお、図4は上記アルミ電解コンデンサの開口部(端子板5)側に被せた断熱キャップ8の構成を示した断面図であり、この断熱キャップ8はガラスクロスが含有された特殊合成樹脂からなるノンアスベスト系の断熱材によって構成されており、その内部にはアルミ電解コンデンサの金属ケース3ならびに一対の端子6が嵌まり込む凹部が設けられており、本実施の形態ではφ64×L108mmのサイズのアルミ電解コンデンサにφ85×L39のサイズの断熱キャップ8を被せた構成としたものである。
【0022】
また、この断熱キャップ8をアルミ電解コンデンサの開口部(端子板5)側に被せた状態で恒温槽9内に投入し、所定の条件(170℃、45分)で加熱した際のアルミ電解コンデンサの要部の温度上昇を測定した結果を断熱キャップ8を被せないものと比較して(表1)に示す。
【0023】
【表1】

Figure 2004128312
【0024】
この(表1)から明らかなように、素子固定用樹脂4が再溶解を開始する温度以上(125℃以上)に上昇しているかどうかを最も近似値で確認できる部分であるコンデンサ素子1の外周面の温度は、断熱キャップ8の有無に拘らず略同様の温度に上昇し、また必要以上(150℃)に温度上昇すると熱劣化により亀裂が発生して気密性が低下してしまうゴムリング7は、断熱キャップ8が無い場合と比較して10℃近く温度上昇が抑えられており、断熱キャップ8による断熱効果が十分に現れていることが分かるものであり、この断熱キャップ8の有無によるゴムリング7の亀裂発生状況を確認した結果を(表2)に示す。
【0025】
【表2】
Figure 2004128312
【0026】
この(表2)から明らかなように、ゴムリング7の温度上昇による亀裂発生状況は、断熱キャップ8が無い場合は半数以上亀裂が発生するのに対し、断熱キャップ8を被せた場合は皆無となり、このことからも断熱キャップ8による断熱効果が十分に現れていることが分かるものである。
【0027】
このように、金属ケース3内で一度硬化した素子固定用樹脂4をアルミ電解コンデンサの開口部(端子板5)側に断熱キャップ8を被せた状態で素子固定用樹脂4が溶解を開始する温度以上で再溶解・再硬化させるようにした本実施の形態によるアルミ電解コンデンサは、従来、硬化後の素子固定用樹脂内に発生していた気泡が無くなるばかりでなく、コンデンサ素子1と素子固定用樹脂4の密着性が向上してコンデンサ素子1の固定を十分に行うことができ、しかもゴムリング7が熱劣化を起こして亀裂が発生することもないため、従来の大きな問題であった耐振動性を大幅に向上させることが可能になるものであり、この耐振動性を確認した結果を従来品(再溶解・再硬化なし)と比較して(表3)に示す。
【0028】
なお、試験条件はDC10Vの電圧を印加した状態で、X・Y・Z方向に50Grmsの振動レベルを240秒間加振するランダム振動試験を行った。
【0029】
【表3】
Figure 2004128312
【0030】
この(表3)から明らかなように、再加熱を行っていない従来品はコンデンサ素子1の固定が十分でないことから外部引き出し用のリードにストレスがかかり、振動試験中にX・Y・Z方向の全てにおいて電圧の時間降下率が大きくなっているのに対し、断熱キャップ8を被せて再加熱を行った本発明品は振動を加えない場合の電圧の時間降下率とX・Y・Z方向の振動試験中の電圧の時間降下率に差がないことからコンデンサ素子1の固定が十分に行われており、外部引き出し用のリードにストレスがかからないために不良品の発生は皆無となるものである。
【0031】
【発明の効果】
以上のように本発明によるアルミ電解コンデンサの製造方法は、金属ケース内で一度硬化した素子固定用樹脂をアルミ電解コンデンサの開口部(端子板)側に、断熱キャップ8を被せた状態で素子固定用樹脂が溶解を開始する温度以上で再溶解・再硬化させるようにしたことにより、従来、硬化後の素子固定用樹脂内に発生していた気泡が無くなるばかりでなく、コンデンサ素子と素子固定用樹脂の密着性が向上してコンデンサ素子の固定を十分に行うことができ、しかもゴムリングが熱劣化を起こして亀裂が発生することもないため、従来の大きな問題であった耐振動性を大幅に向上させることが可能になるという格別の作用効果が得られるものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態によるアルミ電解コンデンサの構成を示した斜視図
【図2】同アルミ電解コンデンサに断熱キャップを被せた状態を示した正面図
【図3】同断熱キャップを被せたアルミ電解コンデンサを恒温槽内で加熱する状態を示した斜視図
【図4】同断熱キャップの構成を示した断面図
【図5】従来のアルミ電解コンデンサの構成を示した断面図
【符号の説明】
1 コンデンサ素子
2 巻き止めテープ
3 金属ケース
4 素子固定用樹脂
5 端子板
6 端子
7 ゴムリング
8 断熱キャップ
9 恒温槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an aluminum electrolytic capacitor which is most suitable for manufacturing an aluminum electrolytic capacitor requiring vibration resistance among aluminum electrolytic capacitors used for various electronic devices.
[0002]
[Prior art]
FIG. 5 is a sectional view showing a structure of an aluminum electrolytic capacitor for acoustic use as an example of this type of conventional aluminum electrolytic capacitor. In FIG. 5, reference numeral 10 denotes a capacitor element, and the capacitor element 10 is an anode foil (not shown). And a cathode foil wound with a separator interposed therebetween, and a wrap-stop tape 11 is attached to the end of the winding, and the capacitor element 10 is further impregnated with a driving electrolyte (not shown). is there.
[0003]
Reference numeral 12 denotes a bottomed cylindrical metal case for housing the capacitor element 10, reference numeral 13 denotes an element fixing resin for fixing the capacitor element 10 in the metal case 12. A polypropylene-based resin comprising at least one of a polypropylene having a structure, an isotactic structure, or a stereo structure is generally used, and the element fixing resin 13 is filled in the metal case 12 in a molten state. After housing the capacitor element 10 and sealing it using a terminal plate described later, the element fixing resin 13 is cured to fix the capacitor element 10 in the metal case 12.
[0004]
Reference numeral 14 is provided in the opening of the metal case 12 with a pair of terminals 16 to which leads 15 for external drawing out from the capacitor element 10 are connected, and the open end of the metal case 12 is drawn. A terminal plate 17 for sealing is a rubber ring which is disposed on the peripheral edge of the upper surface of the terminal plate 14 and is simultaneously tightened when the open end of the metal case 12 is drawn. It was designed to ensure the quality.
[0005]
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H11-045834
[Problems to be solved by the invention]
However, in the above-mentioned conventional aluminum electrolytic capacitor, air bubbles enter the element fixing resin 13 for fixing the capacitor element 10 in the metal case 12 to cause unevenness in the amount after curing, and the adhesion to the capacitor element 10 And the capacitor element 10 cannot be fixed sufficiently.
[0008]
Therefore, the aluminum electrolytic capacitor in which the fixed state of the capacitor element 10 in the metal case 12 is poor has various problems due to poor vibration resistance. In particular, the capacitor element 10 vibrates in the metal case 12. However, a large load is applied to the external lead 15, and the time drop rate of the voltage becomes large. In the worst case, the external lead 15 is cut off.
[0009]
As a means for solving such a problem, the element fixing resin 13 is re-dissolved by heating the aluminum electrolytic capacitor in which the element fixing resin 13 is hardened to a temperature at which the element fixing resin 13 starts melting. Attempts have been made to remove air bubbles by using such a method. However, if such a method is adopted, the rubber ring 17 used to secure airtightness is thermally degraded, cracks are generated, and airtightness is reduced. There was a problem that it could not be adopted.
[0010]
The present invention solves the above-mentioned conventional problems, improves the airtightness between the capacitor element and the resin for fixing the element, and manufactures an aluminum electrolytic capacitor capable of stably producing an aluminum electrolytic capacitor having excellent vibration resistance. It is intended to provide a method.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention provides an aluminum electrolytic capacitor having a capacitor element fixed in a metal case by hardening the element fixing resin. This is a method of manufacturing an aluminum electrolytic capacitor in which the element-fixing resin is redissolved by heating to a temperature higher than the starting temperature, and thereafter, the element-fixing resin is cured. Eliminating the generated air bubbles to equalize the amount after curing, and improving the adhesion with the capacitor element to secure the capacitor element sufficiently to stably produce an aluminum electrolytic capacitor with excellent vibration resistance. This has the effect of being able to perform
[0012]
The invention according to claim 2 of the present invention is characterized in that when the aluminum electrolytic capacitor is heated to a temperature higher than the temperature at which the element fixing resin starts melting, the opening of the aluminum electrolytic capacitor is formed by a heat insulating cap made of a material having heat insulating properties. This is a method of manufacturing an aluminum electrolytic capacitor that covers the vicinity.With this method, even if the element fixing resin becomes hot and starts re-melting, the rubber ring is covered with the heat insulating cap. The temperature rise is moderated and rises only to a temperature lower than that of the element fixing resin.Therefore, the rubber ring does not deteriorate due to thermal deterioration and the airtightness does not decrease, resulting in excellent airtightness. This has the effect of stably producing an aluminum electrolytic capacitor.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention, particularly, the inventions described in claims 1 and 2 will be described.
[0014]
FIG. 1 is a perspective view showing the structure of an aluminum electrolytic capacitor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a capacitor element, and the capacitor element 1 has an anode foil and a cathode foil (not shown) interposed therebetween. , And a winding-stop tape 2 is attached to the end of the winding. The capacitor element 1 is further impregnated with a driving electrolyte (not shown).
[0015]
Reference numeral 3 denotes a bottomed cylindrical metal case for housing the capacitor element 1, and reference numeral 4 denotes an element fixing resin for fixing the capacitor element 1 in the metal case 3. In the present embodiment, the element fixing resin 4 is used. After using APP (Attack Polypropylene) as a material, the element fixing resin 4 is filled into the metal case 3 in a molten state, and the capacitor element 1 is stored and sealed using a terminal plate described later. The capacitor element 1 is fixed in the metal case 3 by curing the fixing resin 4.
[0016]
Reference numeral 5 denotes a pair of terminals 6 to which external leads (not shown) drawn from the capacitor element 1 are connected. The terminals 6 are disposed in the opening of the metal case 3 and the open end of the metal case 3 is drawn. The terminal plate 7 for sealing is a rubber ring which is disposed on the peripheral edge of the upper surface of the terminal plate 5 and is simultaneously tightened when the open end of the metal case 3 is drawn. It is configured to ensure airtightness.
[0017]
Next, a description will be given of a method of manufacturing the aluminum electrolytic capacitor according to the present embodiment configured as described above. First, after externally leading leads are connected to the anode foil and the cathode foil, respectively, the gap between the anode foil and the cathode foil is changed. Is wound with a separator interposed therebetween, and a winding stop tape 2 is attached to the end portion of the winding to produce the capacitor element 1.
[0018]
Next, after the leads drawn from the capacitor element 1 are connected to a pair of terminals 6 provided on the terminal plate 5, respectively, the capacitor element 1 is impregnated with a driving electrolyte.
[0019]
Next, after filling the inside of the metal case 3 with the element fixing resin 4 which has been melted by heating to 150 ° C., the capacitor element 1 impregnated with the above-mentioned driving electrolyte is accommodated in the metal case 3. Subsequently, the terminal plate 5 is arranged in the opening of the metal case 3 and the open end of the metal case 3 is drawn while the rubber ring 7 is arranged on the peripheral edge of the upper surface of the terminal plate 5, thereby forming the metal case 3. After sealing, the above-mentioned element fixing resin 4 is hardened by natural cooling by leaving it to stand for a predetermined time to produce an aluminum electrolytic capacitor.
[0020]
Next, as shown in FIG. 2, FIG. 3 shows a state in which a heat insulating cap 8 made of a non-asbestos-based heat insulating material is put on the opening (terminal plate 5) side of the aluminum electrolytic capacitor in which the element fixing resin 4 is cured. An aluminum electrolytic capacitor is put into a constant temperature bath 9 shown in the drawing, and the aluminum electrolytic capacitor is heated at 170 ± 5 ° C. for 45 ± 5 minutes which is higher than the temperature at which the element-fixing resin 4 starts dissolving, whereby the metal case 3 is heated. After the element fixing resin 4 hardened in the inside is redissolved, the aluminum electrolytic capacitor is taken out from the thermostat 9 and left for a predetermined time to re-harden the redissolved element fixing resin 4 to remove the resin. An aluminum electrolytic capacitor according to the embodiment was manufactured.
[0021]
FIG. 4 is a cross-sectional view showing the configuration of the heat insulating cap 8 covering the opening (terminal plate 5) side of the aluminum electrolytic capacitor. The heat insulating cap 8 is made of a special synthetic resin containing glass cloth. It is made of a non-asbestos-based heat insulating material, in which a metal case 3 of an aluminum electrolytic capacitor and a concave portion into which a pair of terminals 6 are fitted are provided. In the present embodiment, a size of φ64 × L108 mm is provided. In this configuration, an aluminum electrolytic capacitor is covered with a heat insulating cap 8 of φ85 × L39.
[0022]
Further, the heat insulating cap 8 is put into the thermostat 9 in a state of being covered with the opening (terminal plate 5) side of the aluminum electrolytic capacitor, and the aluminum electrolytic capacitor when heated under predetermined conditions (170 ° C., 45 minutes). (Table 1) shows the result of measuring the temperature rise of the main part of Table 1 in comparison with the case where the heat insulating cap 8 is not covered.
[0023]
[Table 1]
Figure 2004128312
[0024]
As is clear from Table 1, the outermost portion of the capacitor element 1, which is the portion where it can be confirmed by the most approximate value whether or not the element fixing resin 4 has risen to a temperature higher than the temperature at which re-dissolution starts (125 ° C. or higher). The temperature of the surface rises to substantially the same temperature irrespective of the presence or absence of the heat insulating cap 8, and if the temperature rises more than necessary (150 ° C.), cracks are generated due to thermal deterioration and the airtightness is reduced. Indicates that the temperature rise is suppressed by about 10 ° C. as compared with the case where the heat insulating cap 8 is not provided, and that the heat insulating effect of the heat insulating cap 8 is sufficiently exhibited. The results of confirming the state of occurrence of cracks in the ring 7 are shown in (Table 2).
[0025]
[Table 2]
Figure 2004128312
[0026]
As is evident from Table 2, the crack generation due to the temperature rise of the rubber ring 7 is more than half when the heat insulating cap 8 is not provided, whereas there is no crack when the heat insulating cap 8 is covered. This also indicates that the heat insulating effect of the heat insulating cap 8 is sufficiently exhibited.
[0027]
As described above, the temperature at which the element-fixing resin 4 starts melting when the element-fixing resin 4 once cured in the metal case 3 is covered with the heat-insulating cap 8 on the opening (terminal plate 5) side of the aluminum electrolytic capacitor. The aluminum electrolytic capacitor according to the present embodiment, which is re-dissolved and re-cured as described above, not only eliminates the bubbles generated in the cured resin for fixing the element, but also removes the capacitor element 1 and the element for fixing the element. Since the adhesiveness of the resin 4 is improved and the capacitor element 1 can be sufficiently fixed, and the rubber ring 7 does not undergo thermal degradation and cracks do not occur, which has been a major problem in the past. (Table 3) shows the results of confirming the vibration resistance in comparison with a conventional product (without re-melting / re-hardening).
[0028]
As a test condition, a random vibration test was performed in which a vibration level of 50 Grms was applied in the X, Y, and Z directions for 240 seconds in a state where a voltage of DC 10 V was applied.
[0029]
[Table 3]
Figure 2004128312
[0030]
As is clear from Table 3, in the conventional product which has not been reheated, since the capacitor element 1 is not sufficiently fixed, stress is applied to the lead for external drawing, and the X, Y, and Z directions during the vibration test are performed. In all of the above, the time drop rate of the voltage is large, whereas the product of the present invention in which the heat insulation cap 8 is placed and reheated is performed, and the time drop rate of the voltage and the X, Y, and Z directions when no vibration is applied. Since there is no difference in the time drop rate of the voltage during the vibration test, the capacitor element 1 is sufficiently fixed. Since no stress is applied to the lead for external drawing, no defective product is generated. is there.
[0031]
【The invention's effect】
As described above, in the method for manufacturing an aluminum electrolytic capacitor according to the present invention, the element-fixing resin once cured in the metal case is fixed to the opening (terminal plate) side of the aluminum electrolytic capacitor with the heat-insulating cap 8 covered. By re-dissolving and re-curing at a temperature higher than the temperature at which the resin for dissolution starts, not only the bubbles previously generated in the resin for fixing the element after curing are eliminated, but also the capacitor element and the element for fixing the element The adhesion of the resin is improved and the capacitor element can be fixed sufficiently, and the rubber ring does not crack due to thermal deterioration. It is possible to obtain a special operation and effect that can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of an aluminum electrolytic capacitor according to an embodiment of the present invention. FIG. 2 is a front view showing a state in which the aluminum electrolytic capacitor is covered with a heat insulating cap. FIG. 4 is a perspective view showing a state in which a covered aluminum electrolytic capacitor is heated in a thermostat. FIG. 4 is a cross-sectional view showing a configuration of the heat insulating cap. FIG. 5 is a cross-sectional view showing a configuration of a conventional aluminum electrolytic capacitor. Description]
REFERENCE SIGNS LIST 1 capacitor element 2 anti-winding tape 3 metal case 4 element fixing resin 5 terminal plate 6 terminal 7 rubber ring 8 heat insulating cap 9 constant temperature bath

Claims (2)

コンデンサ素子を溶融状態にした素子固定用樹脂と共に有底筒状の金属ケース内に収納し、この金属ケースの開口部を封止した後に上記素子固定用樹脂を硬化させることによって金属ケース内にコンデンサ素子を固定するようにしたアルミ電解コンデンサの製造方法において、上記素子固定用樹脂を硬化させて金属ケース内にコンデンサ素子が固定されたアルミ電解コンデンサを素子固定用樹脂が溶解を開始する温度以上に加熱することにより素子固定用樹脂を再溶触し、その後、素子固定用樹脂を硬化させるようにしたアルミ電解コンデンサの製造方法。The capacitor element is housed in a bottomed cylindrical metal case together with the element fixing resin in a molten state, and after sealing the opening of the metal case, the above-mentioned element fixing resin is cured to form a capacitor in the metal case. In the method of manufacturing an aluminum electrolytic capacitor in which an element is fixed, the aluminum electrolytic capacitor in which the capacitor element is fixed in a metal case by curing the element fixing resin is heated to a temperature equal to or higher than a temperature at which the element fixing resin starts melting. A method of manufacturing an aluminum electrolytic capacitor in which a resin for fixing an element is re-welded by heating, and then the resin for fixing an element is cured. アルミ電解コンデンサを素子固定用樹脂が溶解を開始する温度以上に加熱する際に、断熱性を有した材料からなる断熱キャップでアルミ電解コンデンサの開口部近傍を覆うようにした請求項1に記載のアルミ電解コンデンサの製造方法。2. The aluminum electrolytic capacitor according to claim 1, wherein, when the aluminum electrolytic capacitor is heated to a temperature higher than the temperature at which the element fixing resin starts melting, the vicinity of the opening of the aluminum electrolytic capacitor is covered with a heat insulating cap made of a material having heat insulating properties. Manufacturing method of aluminum electrolytic capacitor.
JP2002292183A 2002-10-04 2002-10-04 Manufacturing method of aluminum electrolytic capacitor Expired - Fee Related JP4178897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292183A JP4178897B2 (en) 2002-10-04 2002-10-04 Manufacturing method of aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292183A JP4178897B2 (en) 2002-10-04 2002-10-04 Manufacturing method of aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004128312A true JP2004128312A (en) 2004-04-22
JP4178897B2 JP4178897B2 (en) 2008-11-12

Family

ID=32283520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292183A Expired - Fee Related JP4178897B2 (en) 2002-10-04 2002-10-04 Manufacturing method of aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4178897B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295856A (en) * 2008-06-06 2009-12-17 Hioki Ee Corp Electrolytic capacitor examination method and electrolytic capacitor examination apparatus
JP2009302276A (en) * 2008-06-13 2009-12-24 Hioki Ee Corp Inspection method for electrolytic capacitor and inspection device for electrolytic capacitor
JP2014204551A (en) * 2013-04-04 2014-10-27 株式会社日本自動車部品総合研究所 Power conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295856A (en) * 2008-06-06 2009-12-17 Hioki Ee Corp Electrolytic capacitor examination method and electrolytic capacitor examination apparatus
JP2009302276A (en) * 2008-06-13 2009-12-24 Hioki Ee Corp Inspection method for electrolytic capacitor and inspection device for electrolytic capacitor
JP2014204551A (en) * 2013-04-04 2014-10-27 株式会社日本自動車部品総合研究所 Power conversion device

Also Published As

Publication number Publication date
JP4178897B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP5571816B2 (en) Electrochemical device and its mounting structure
US6963133B2 (en) Semiconductor device and method for manufacturing semiconductor device
CN1097830C (en) PTC device and battery pack using the same
US8107224B2 (en) Thin solid electrolytic capacitor having high resistance to thermal stress
JPS646538B2 (en)
TWI595604B (en) Electronic device and glass sealing method used therefor
JP2015072880A5 (en)
JPH0878287A (en) Manufacture of electrolytic capacitor
JP2004128312A (en) Method for manufacturing aluminum electrolytic capacitor
JP2009038135A (en) Capacitor device and method of manufacturing the same
KR100783736B1 (en) Winding type electrolytic condenser using conductive polymer and method for manufacturing the same
US9413158B2 (en) PTC device
CN104247081A (en) Housing for a battery cell having a thermoformed outer shell made of plastic, battery cell, battery module, and motor vehicle
US20150069601A1 (en) Semiconductor device and method of manufacturing the same
JPH1097852A (en) Closure and manufacture thereof
JPH1154007A (en) Current interrupting device and battery using it
JP2010274603A (en) Mold resin molding
JP2009200224A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2906457B2 (en) Chip type solid electrolytic capacitor and method of manufacturing the same
JP2001135502A (en) Electronic component
JPH04277609A (en) Method for manufacture of solid electrolytic capacitor
JPH06151248A (en) Electric dual layer capacitor
JP3253216B2 (en) Solid electrolytic capacitors
JPH0436105Y2 (en)
JPH06120081A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees