JP2004128220A - Substrate with electromagnetic wave shield film - Google Patents

Substrate with electromagnetic wave shield film Download PDF

Info

Publication number
JP2004128220A
JP2004128220A JP2002290283A JP2002290283A JP2004128220A JP 2004128220 A JP2004128220 A JP 2004128220A JP 2002290283 A JP2002290283 A JP 2002290283A JP 2002290283 A JP2002290283 A JP 2002290283A JP 2004128220 A JP2004128220 A JP 2004128220A
Authority
JP
Japan
Prior art keywords
layer
thickness
substrate
dielectric layer
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002290283A
Other languages
Japanese (ja)
Inventor
Yasutaka Tsuda
津田 康孝
Katsuto Tanaka
田中 勝人
Masaji Onishi
大西 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002290283A priority Critical patent/JP2004128220A/en
Priority to PCT/JP2002/010983 priority patent/WO2003037056A1/en
Priority to TW91132012A priority patent/TW200300109A/en
Publication of JP2004128220A publication Critical patent/JP2004128220A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate with an electromagnetic wave shield film having a (sheet) resistance value of a transparent conducting film of 2.5Ω/square or less, a visible light transmittance of 70% or more, and a low degree of reflection at a low cost. <P>SOLUTION: The substrate with the electromagnetic wave shield film is formed by laminating on a transparent substrate a transparent conducting film comprising a first dielectric layer composed of a transparent metal oxide layer, a first Ag layer, a first non-Ag alloy layer composed of ZnAl, a second dielectric layer composed of a transparent metal oxide layer, a second Ag layer, a second non-Ag alloy layer composed of ZnAl, a third dielectric layer composed of a transparent metal oxide layer, a third Ag layer, a third non-Ag alloy layer composed of ZnAl, and a fourth dielectric layer composed of a transparent metal oxide layer. Additionally, a film thickness of each Ag layer is 9-15 nm, a film thickness of each non-Ag alloy layer is 1.0-3.0 nm, film thicknesses of the first and fourth dielectric layers are 40-50 nm, and film thicknesses of the second and third dielectric layers are 75-85 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【従来の技術】
【0002】
【特許文献1】
WO98/13850号公報
【0003】
【特許文献2】
特開平11−307987号公報
【0004】
PDPでは、人体に有害な電磁波(周波数:30〜1000MHz)或いは周辺の家電機器のリモコンの誤動作を招く恐れがある近赤外線(波長:850〜1000nm)が放出されるので、これらを効率的に遮蔽する必要がある。このための対策としては従来、ガラス基板上に電磁波と近赤外線を遮蔽する目的で透明導電膜が被覆されたPDP用フィルタ基板を該PDPの前面に装着することが知られている。
【0005】
例えば、WO98/13850号公報においては、基体側から1種以上の金属を含有するZnOを主成分とする酸化物層とAgを主成分とする金属層とが交互に(2n+1)層積層された多層の導電膜が被覆されたPDP用保護板について記載されており、また、特開平11−307987号公報においては、基板側から屈折率が1.6〜2.8の誘電体層と銀主成分層とを交互に積層した7層の積層体とし、銀主成分層を銀に対して0.1〜0.5原子%のPdを含有させた電磁遮蔽膜を有するPDP用の電磁波フィルターについて記載されている。
【0006】
【発明が解決しようとする課題】
しかしながら、WO98/13850号公報の発明は、Ag層としてPd等を添加したAg層が用いられており、コスト的に不利であるとともに該Ag層にPd等を添加しているために膜厚の同じ他の金属層と比較して抵抗値が高くなる等の問題がある。また、特開平11−307987号公報記載の電磁遮蔽膜は、耐湿性を確保する目的で前記と同様に金属膜として高価なPdを添加したAg膜を使用しているが、該Pdを多く添加すると電磁波シールド性に寄与する透明導電膜の抵抗値が増加し、電磁波シールド性が低下する等の問題が生じるとともにコスト的に不利である。
【0007】
【課題を解決するための手段】
本発明は、従来のかかる課題に鑑みてなしたものであって、光学干渉を利用した誘電体層とAg層と非Ag合金層を含む10層の多層膜を採用した透明導電膜とすることにより、該膜の抵抗値(シート抵抗 Ω/□)が2.5Ω/□以下と低くして電磁遮蔽性能を高めるとともに、可視光線透過率を70%以上と高くして充分に明るい画像表示を得ることが可能であり、さらに低可視光線反射率を有するバランスのとれた電磁波シールド膜付き基板を安価に提供するものである。
【0008】
すなわち、本発明の電磁波シールド膜付き基板は、基板側から透明基板表面に、誘電体層、Ag層、非Ag合金層がこの順に繰り返し9層積層され、さらにその上層に誘電体層が積層されてなる透明導電膜が被覆され、該膜表面の抵抗値(シート抵抗)として2.5Ω/□以下であり、可視光線透過率が70%以上であることを特徴とする。
【0009】
また、本発明の電磁波シールド膜付き基板は、各Ag層の厚さが9〜15nmであることを特徴とし、さらに、いずれのAg層もAgの純度が5N以上であることを特徴とする。Ag層は、ポリコールド等の使用により成膜時のベース圧を高真空にすることで高密度の構造が形成され、これにより低比抵抗の薄膜とすることができる。
【0010】
またさらに、本発明の電磁波シールド膜付き基板は透明基板上に、透明金属酸化物層よりなる第1誘電体層/第1Ag層/ZnAlよりなる第1非Ag合金層/透明金属酸化物層よりなる第2誘電体層/第2Ag層/ZnAlよりなる第2非Ag合金層/透明金属酸化物層よりなる第3誘電体層/第3Ag層/ZnAlよりなる第3非Ag合金層/透明金属酸化物層よりなる第4誘電体層からなる透明導電膜が積層された基板であって、各Ag層の膜厚がそれぞれ9〜15nm、ZnAlよりなる非Ag合金層の膜厚がそれぞれ1.0〜3.0nm、第1誘電体層および第4誘電体層の膜厚が40〜50nm、第2誘電体層および第3誘電体層の膜厚が75〜85nmからなることを特徴とする。
【0011】
さらに、本発明の電磁波シールド膜付き基板は、該基板の前面及び/又は裏面に樹脂フィルムよりなる保護板を設けてなることを特徴とする。
また、本発明の電磁波シールド膜付き基板は、プラズマデイスプレイの前面に装着されてなることを特徴とする。
【0012】
【発明の実施の形態】
本発明の電磁波シールド膜付き基板は、透明基板表面に、誘電体層、Ag層、非Ag合金層がこの順に繰り返し9層積層され、さらにその上層に誘電体層が積層されてなる透明導電膜が被覆され、該膜表面の抵抗値がシート抵抗値として2.5Ω/□以下であり、可視光線透過率が70%以上であることを特徴とする。さらに、前記透明導電膜は、基板側から、透明金属酸化物層よりなる第1誘電体層/第1Ag層/ZnAlよりなる第1非Ag合金層/透明金属酸化物層よりなる第2誘電体層/第2Ag層/ZnAlよりなる第2非Ag合金層/透明金属酸化物層よりなる第3誘電体層/第3Ag層/ZnAlよりなる第3非Ag合金層/透明金属酸化物層よりなる第4誘電体層から構成され、各Ag層の膜厚がそれぞれ9〜15nm、ZnAlよりなる非Ag合金層の膜厚がそれぞれ1.0〜3.0nm、第1誘電体層および第4誘電体層の膜厚が40〜50nm、第2誘電体層および第3誘電体層の膜厚が75〜85nmからなることを特徴とする。
【0013】
電磁遮蔽性能を左右するAg層は、該Ag層の膜厚が電磁遮蔽性、可視光線透過率および可視光線反射率に影響を及ぼし、30dB以上の高電磁遮蔽性を得るためには各Ag層ともに10nm以上の膜厚が必要であり、一方画像を明るくして視認性をよくするために、可視光線透過率を70%以上確保し、かつ画像コントラストを高めるために可視光線反射率を4%以下と低くするためには各Ag層ともに15nm以下とすることが好ましく、特に、第1Ag層の膜厚は9〜10nm、第2Ag層の膜厚は13〜14nm、第3銀層の膜厚は11〜12nmとすることがより好ましい。Ag層を2層設けただけでは、本発明のような膜表面の表面抵抗値が2.5Ω/□以下で、可視光線透過率が70%以上で、可視光線反射率が4%以下であるものを得ることは容易ではない。
さらに、本発明で用いるAg層は、いずれのAg層もPdなどの添加物を含有していないもの、特に5N以上の純度のAg、を用いることが好ましく、Agを成膜する時のベース圧をポリコールド(真空チャンバーに存在する水蒸気をクライオコイルと呼ばれる低温冷却表面に凝縮させる事によりトラップし真空チャンバーに高真空を得られる様にする装置である。ポリコールドは米国POLYCOLD SYSTEMSの商品名)等の使用により高真空にする事により高密度の構造とすることで低比抵抗のAg膜とすることが可能となる。
次に透明酸化物層よりなる各誘電体層は、少なくとも酸化亜鉛層または酸化錫層より形成され、各誘電体層におけるこれらの膜厚は第1誘電体層における酸化錫層は3〜50nm、酸化亜鉛層は5〜50nm、第2誘電体層における酸化錫層は0〜85nm、酸化亜鉛層は5〜85nm、第3誘電体層における酸化錫層は5〜85nm、酸化亜鉛層は5〜85nm、第4誘電体層における酸化錫層は0〜50nm、酸化亜鉛層は0〜50nmとすることが好ましく、上記範囲以外の膜厚では可視光線透過率を70%以上とすることができなくなる。
【0014】
そのうち、酸化物層としての酸化錫層よりなる非晶質の被膜は、化学的にも機械的にも強く、且つ非晶質のルーズな構造のためガラスとの密着力も強く、内部応力も発生しにくい。従ってガラスの直上に被覆することが望ましい。この酸化錫層はガラスとの密着力を高めるだけでなく、アルカリイオンの影響を断つための役割も担う。なお、誘電体層は、前記の酸化亜鉛層、酸化錫層に限定されるものではなく、酸化チタン、SnZnO、ZnAlO、ITO等を用いることも出来る。
【0015】
しかし、前記酸化錫層は、特に銀との密着力が劣り酸化錫層/銀層界面での剥離が起こりやすい。又、酸化錫はそのイオン化傾向から分かるように酸素との結合が弱く、被膜内の酸素の化学的ポテンシャルが高いため、銀層に酸素が拡散しやすく電気抵抗が上り、高電磁波遮蔽を達成し難い。
これらの理由より、酸化錫層は銀層と接触させないことが好ましい。なお、酸化錫層には化学的、機械的特性を向上し、またガラスとの密着力も強くする非晶質の被膜成分としての元素が含まれても良い。
【0016】
一方、酸化亜鉛層は、銀層との密着力が高く、又酸素との高い結合力によって層内の酸素のポテンシャルが低いため、銀層内に酸素が拡散しにくい。従って銀層直下の層は酸化亜鉛層が望ましい。なお、酸化亜鉛層には銀層との密着力を低下せず、銀層内に酸素が拡散しにくくするような被膜の成分としての公知の元素(Al、Sn等)が含まれても良い。
【0017】
なお、銀層に接触する酸化物層中の酸素の化学ポテンシャルはできる限り低く保つことが肝要で、酸化亜鉛成膜時の雰囲気は酸素と共にできるだけ多くのアルゴンを添加するのが望ましい。望ましいアルゴンの添加率は設備によって異なるが概ね10〜30%である。この値は酸素雰囲気から徐々にアルゴンを添加していき、ターゲットに掛かる電圧が急に上がるか、電流が急に下がる現象を観測し、そこからアルゴンを若干減らすことで決められる。
また、酸化亜鉛層は緻密で大気中の腐食性ガスの拡散を防ぐ効果があり、また太陽光線に含まれる紫外線を吸収する働きがあるが化学的耐久性が低いため、第3銀層の上層に酸化亜鉛層を用いる場合には、さらにその上層に非晶質酸化物である酸化錫層を設けることが望ましい。
【0018】
また、誘電体層としての金属酸化物層としては、前記ZnO層のほかにZnAl(x=1〜2、y=1〜4)層を用いることが好ましい。このZnAl層は、特に、曲げ及び/又は強化(半強化も含む)のために導電膜を形成後にガラスの軟化点以上の高温で熱処理する場合、Ag層の酸化を防止するのに特に有効であり、後述するZnAlよりなる非Ag合金層の直上に設けることが好ましい。
【0019】
次に、Ag層の直上部には、Ag層と酸化物誘電体層の界面の凹凸に起因する光散乱を防止するための非Ag合金層が設けられる。Ag層の直接上に酸化物誘電体層を形成すると、Ag/誘電体界面に凹凸が形成され、この凹凸が光散乱の原因となり光線透過率が大幅に低下してしまう。しかしながらこの非Ag合金層は光吸収層であるため、厚すぎても光線透過率を低下させてしまう。適切な透過率を得るためには非Ag合金層の厚みを1.0〜3.0nmとする必要がある。さらに非Ag合金層はAlを含むZnAl合金層からなり、ZnにAlをドープすることにより表面に凹凸の少ない平滑な層を形成させることができる。またAlの含有量が多すぎるとZnAl合金層の消衰係数が大きくなり、光線透過率が大幅に低下してしまう。適切な透過率を得るためにはAlの含有量を1〜10重量%とする必要がある。なお、ここでいう非Ag合金層とは、Ag層の直上に非Ag合金層を成膜した直後は全厚が合金層であるが、ついで、例えば、該合金層の上層に誘電体の金属酸化物を成膜する時、酸化性雰囲気(例えば酸素80%、アルゴン20%)で成膜するため、該合金層の上層部の一部が酸化物に変換される。この上層部が酸化された一部の酸化物層と大部分の合金層を含めて非Ag合金層と呼ぶ。すなわち非Ag合金層の膜厚とは、最初にZnAl合金層を成膜したときの膜厚を示す。
【0020】
本発明の電磁波シールド膜付き基板表面に被覆される透明導電膜は、膜表面の抵抗値がシート抵抗として2.5Ω/□以下であり、可視光線透過率が70%以上であることを特徴とするが、抵抗値が低くなればなるほど高い電磁波遮蔽性能が得られ、例えば、該抵抗値であるシート抵抗が2.5Ω/□以下の場合には、周波数1GHzにおける電磁波遮蔽性能が30dB以上が得られ、PDP等の機器から放射される電磁波をある程度までシールドすることが可能となる。また、可視光線透過率が70%以上と高いので充分に明るい画像表示を得ることが可能となる。また、ガラス面側の可視光線反射率が約4%以下であるので周囲の景色の像の映り込みが少なく、コントラストの優れた画像表示が可能となる等の利点を有する。
【0021】
本発明の透明基板としては、透明のガラス、プラスチック等を用いることが出来、例えばガラス基板としては、汎用の普通板ガラス、所謂フロート板ガラスなどであり、クリアをはじめグリ−ン、ブロンズ等各種着色ガラスや各種機能性ガラス、強化ガラスやそれに類するガラス、合せガラスのほか複層ガラス等、さらに平板あるいは曲げ板等各種板ガラス製品として使用できることは言うまでもない。また、ガラスは透明プラスチック板等との積層体であってもよい。なお、ガラスの組成は、ソーダ石灰ガラス、アルミノシリケートガラス等であるが、これらに限定されないことは、言うまでもない。
なお、強化された強化ガラス(例えば、表面圧縮応力が100MN/m2程度)、或いは半強化ガラス(例えば、表面圧縮応力が40〜80MN/m2程度)を用いるとガラスが割れにくいのでより好ましい。
また、本発明の導電膜の成膜方法は、生産性の点よりスパッタリング法が好ましいが、その他の成膜法である真空蒸着法、イオンプレーティング法、PCVD(プラズマCVD)法等で成膜することも可能である。
【0022】
なお、本発明の電磁波シールド膜付き基板は、PDP、CRTなどのディスプレイ前面から発生する電磁波、或いはリモコンの誤動作を生じる近赤外線の遮蔽機能を有する電磁波シールド膜付き基板に用いることが可能であり、例えば、PDP用に用いる場合には、本発明の電磁波シールド膜付き基板の表面及び裏面に粘着剤等により反射防止、銀系透明導電膜の防湿、ガラス割れ時の飛散防止、粘着層の色素添加によるフィルタ全体の色度調整などの機能を有する透明フィルムを貼り付け、PDPの前面(電磁遮蔽膜はPDP側)に装着して用いることが出来る。
【0023】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、成膜はDCマグネトロンスパッタリング法により行った。ただし本発明はかかる実施例に限定されるものではない。
【0024】
なお、下記に示す実施例、比較例で得られた電磁波シールド膜付き基板のサンプルの性能評価は以下の方法で評価した。
(1)可視光線透過率、可視光線反射率:
JIS R 3106に準拠し、分光光度計(4000型、日立製作所製スペクトロフォトメーター)により波長380〜780nm間の可視光線透過率Tv、可視光線反射率(膜面側)を測定した。
(2)抵抗値:
4探針プローブ抵抗計(エプソン社製)
(3)膜厚:
段差測定器dektak3(Sloan社製)により測定した。
(4)電磁遮蔽性:
米国軍用規格MIL−std285に準じる
実施例1
大きさが1000mm×580mm×約3mm(厚さ)のフロートガラス基板(可視光線透過率:90.4%、ガラスの周縁部の黒枠プリントおよびブスバー付き、半強化加工品)の表面上に、スパッタ装置を用いて下記順序で被膜を形成した。
【0025】
先ず、スパッタ装置に、カソードに予めSn、Zn(3台)、Ag、ZnAl(Al含有率4wt%)の各金属ターゲットを取り付けたのち、成膜前の圧力が1.5×10−4Pa以下となるまで真空チャンバー内の排気を充分に行った。なお、本方法は、真空チャンバー内のターゲットの下方に搬送ロールが設置され、そのロール上をガラス基板が往復動する時に電力が印加されたターゲットより所定の金属層あるいは金属酸化物層がガラス板上に成膜されるようになっている。
【0026】
1パス目として、成膜室の雰囲気を酸化性雰囲気(O2:Ar=9:1)に保持し、Snターゲットにより第1誘電体層の1層目としてのSnO2層を3nm成膜した後、1層目と同条件でZnターゲットにより2層目のZnO層を38nm成膜した。
【0027】
2パス目として雰囲気をAr100%の不活性雰囲気に保持し、Agターゲットにより第1Ag層としてのAg層を10nm、ZnAlターゲットにより第1非Ag合金層としてのZnAl合金層を1.6nm成膜した。
【0028】
3パス目として成膜室の雰囲気を再び酸化性雰囲気(O:Ar=9:1)に保持し、第2誘電体層の金属酸化物層を形成した。第2誘電体層の1層目としてのZnAl層を3.3nm、2層目としてのSnO層を1.8nm、3層目としてのZnO層を45nm、4層目としてのSnO層を3.5nm、5層目としてのZnO層を22.4nm順次成膜した。
【0029】
4パス目として雰囲気をAr100%の不活性雰囲気に保持し、Agターゲットにより第2Ag層としてのAg層を14nm、ZnAlターゲットにより第2非Ag合金層としてのZnAl合金層を1.6nm成膜した。
5パス目として成膜室の雰囲気を再び酸化性雰囲気(O:Ar=9:1)に保持し、第3誘電体層の1層目としてのZnAl層を3.4nm、2層目としてのSnO層を1.8nm、3層目としてのZnO層を46nm、4層目としてのSnO層を3.6nm、5層目としてのZnO層を23.2nm順次成膜した。
【0030】
6パス目として雰囲気をAr100%の不活性雰囲気に保持し、Agターゲットにより第3Ag層としてのAg層を12nm、ZnAlターゲットにより第3の非Ag合金層としてのZnAl合金層を2.2nm成膜した。
【0031】
7パス目として成膜室の雰囲気を再び酸化性雰囲気(O:Ar=9:1)に保持し、第4誘電体層の1層目としてのZnAlxOy層を1.3nm、2層目としてのSnO層を0.7nm、3層目としてのZnO層を18.4nm、4層目としてのSnO層を1.4nm、5層目としてのZnO層を18.5nm、6層目としてのSnO層を0.7nm順次成膜し、透明導電膜が被覆された電磁波シールド膜付き基板を成膜室より取り出した。得られた透明導電膜の層構成を図1に示した。
【0032】
以上のようにして本発明の電磁波シールド膜付き基板サンプルを作製した。
【0033】
得られた電磁波シールド膜付き用基板の特性を評価した結果、表面抵抗:2.5Ω/□、電磁波シールド性(30〜1000MHz):30dB以上、可視光線透過率70%、可視光反射率4%と優れた特性を有するものであった。次に、上記で得られた透明導電膜が被覆された電磁波シールド膜付き用基板の表面と裏面に、粘着剤を有したAR(反射防止)処理付きのARフィルム(日本油脂製Realook、基材はTAC樹脂製、粘着剤はアクリル系樹脂)を貼り付け電磁波シールドフィルターを作製した。このARフィルムは、反射防止を行うとともに透明導電膜の保護とガラス基板の割れ飛散防止等の機能を有するものである。なお、該透明導電膜は、ガラス基板表面の周縁部にプリント印刷された黒枠の上面に設けられたブスバーに接続された。
【0034】
この作製した電磁波シールドフィルターの特性を評価した結果、表面抵抗:2.5Ω/□、電磁波シールド性(30〜1000MHz):30dB以上、可視光線透過率71%、可視光線反射率:近赤外線透過率(950nm):2.8%を示すとともに、耐湿性(60℃、90%RH、1000h)も評価した結果、0.2mm以上の大きさをもつ顕著な膜欠陥や色度変化は無くPDP用の電磁波シ−ルドフィルターとして優れた性能を有していた。
【0035】
実施例2
実施例1と同じ成膜基板を用い、実施例1と同じ成膜条件によって第1誘電体層の膜厚が41nm、第1Ag層膜厚が9.5nm、第1非Ag合金層膜厚が1.6nm、第2誘電体層膜厚が80nm、第2Ag層膜厚が13.5nm、第2非Ag合金層膜厚が1.6nm、第3誘電体層膜厚が82nm、第3Ag層膜厚が11.5nm、第3非Ag合金層膜厚が2.2nm、第4誘電体層膜厚が42nmとなるように成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板を作製した。
【0036】
実施例3
実施例1と同じ成膜基板を用い、実施例1と同じ成膜条件によって第1誘電体層の膜厚が41nm、第1Ag層膜厚が10nm、第1非Ag合金層膜厚が2.0nm、第2誘電体層膜厚が76nm、第2Ag層膜厚が14nm、第2非Ag合金層膜厚が2.0nm、第3誘電体層膜厚が78nm、第3Ag層膜厚が12nm、第3非Ag合金層膜厚が2.6nm、第4誘電体層膜厚が41nmとなるように成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板を作製した。
【0037】
実施例4
実施例1と同じ成膜基板を用い、実施例1と同じ成膜条件によって第1誘電体層の膜厚が41nm、第1Ag層膜厚が9nm、第1非Ag合金層膜厚が1.6nm、第2誘電体層膜厚が76nm、第2Ag層膜厚が13nm、第2非Ag合金層膜厚が1.6nm、第3誘電体層膜厚が78nm、第3Ag層膜厚が11nm、第3非Ag合金層膜厚が2.2nm、第4誘電体層膜厚が41nmとなるように成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板を作製した。
【0038】
表1に実施例1〜4の透明導電膜の各層膜厚および可視光線透過率、可視光線反射率、表面抵抗値を示した。
【0039】
【表1】

Figure 2004128220
【0040】
比較例1
実施例1と同じ成膜基板を用い、実施例1と同じ成膜条件によって第1誘電体層の膜厚が35nm、第1Ag層膜厚が10nm、第1非Ag合金層膜厚が1.6nm、第2誘電体層膜厚が70nm、第2Ag層膜厚が14nm、第2非Ag合金層膜厚が1.6nm、第3誘電体層膜厚が70nm、第3Ag層膜厚が12nm、第3非Ag合金層膜厚が2.2nm、第4誘電体層膜厚が35nmとなるように成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板を作製した。
【0041】
比較例2
実施例1と同じ成膜基板を用い、実施例1と同じ成膜条件によって第1誘電体層の膜厚が41nm、第1Ag層膜厚が10nm、第1非Ag合金層膜厚が0nm、第2誘電体層膜厚が76nm、第2Ag層膜厚が14nm、第2非Ag合金層膜厚が0nm、第3誘電体層膜厚が78nm、第3Ag層膜厚が12nm、第3非Ag合金層膜厚が0nm、第4誘電体層膜厚が41nmとなるように成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板を作製した。
【0042】
比較例3
実施例1と同じ成膜基板を用い、実施例1と同じ成膜条件によって第1誘電体層の膜厚が41nm、第1Ag層膜厚が10nm、第1非Ag合金層膜厚が3.2nm、第2誘電体層膜厚が76nm、第2Ag層膜厚が14nm、第2非Ag合金層膜厚が3.2nm、第3誘電体層膜厚が78nm、第3Ag層膜厚が12nm、第3非Ag合金層膜厚が3.2nm、第4誘電体層膜厚が41nmとなるように成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板を作製した。
【0043】
比較例4
実施例1と同じ成膜基板を用い、スパッタ装置のカソードに予め取り付けるZnAlターゲットのAl含有率を15wt%とする以外はすべて実施例1と同じ成膜条件および膜厚で成膜し、透明導電膜が被覆された電磁波シールド膜付き基板を作製した。
【0044】
表2に比較例1〜4の透明導電膜の各層膜厚および可視光線透過率、可視光線反射率、表面抵抗値を示した。
【0045】
【表2】
Figure 2004128220
【0046】
【発明の効果】
本発明の電磁波シールド膜付き基板は、透明導電膜の抵抗値が2.5Ω/□以下で電磁遮蔽性能に優れるとともに、可視光透過率が70%以上で反射率も低いために画像表示が見易いバランスのとれた電磁波シールド膜付き基板を安価に提供できるものである。
【図面の簡単な説明】
【図1】本発明の実施形態である透明導電膜の層構成の断面図である。[0001]
[Prior art]
[0002]
[Patent Document 1]
WO98 / 13850 [0003]
[Patent Document 2]
JP-A-11-307987
PDPs emit electromagnetic waves harmful to the human body (frequency: 30 to 1000 MHz) or near-infrared rays (wavelength: 850 to 1000 nm) that may cause malfunctions of remote controllers of peripheral home appliances. There is a need to. As a countermeasure for this, it is conventionally known that a PDP filter substrate in which a transparent conductive film is coated on a glass substrate for the purpose of shielding electromagnetic waves and near infrared rays is mounted on the front surface of the PDP.
[0005]
For example, in WO98 / 13850, an oxide layer containing ZnO as a main component containing one or more metals and a metal layer containing Ag as a main component are alternately laminated (2n + 1) layers from the substrate side. A PDP protective plate covered with a multilayer conductive film is described. In Japanese Patent Application Laid-Open No. H11-307987, a dielectric layer having a refractive index of 1.6 to 2.8 and a silver main layer are referred to from the substrate side. An electromagnetic wave filter for a PDP having a seven-layer laminate in which component layers are alternately laminated, and an electromagnetic shielding film in which a silver main component layer contains 0.1 to 0.5 atomic% of Pd with respect to silver. Has been described.
[0006]
[Problems to be solved by the invention]
However, the invention disclosed in WO98 / 13850 uses an Ag layer to which Pd or the like is added as an Ag layer, which is disadvantageous in cost, and the addition of Pd or the like to the Ag layer causes a reduction in film thickness. There is a problem that the resistance value becomes higher than that of the other metal layers. The electromagnetic shielding film described in Japanese Patent Application Laid-Open No. H11-307987 uses an Ag film to which expensive Pd is added as a metal film in the same manner as described above for the purpose of securing moisture resistance. Then, the resistance value of the transparent conductive film that contributes to the electromagnetic wave shielding property increases, causing problems such as a decrease in the electromagnetic wave shielding property, and is disadvantageous in cost.
[0007]
[Means for Solving the Problems]
The present invention has been made in view of the above-described conventional problems, and has a transparent conductive film that employs a multilayer film of 10 layers including a dielectric layer using optical interference, an Ag layer, and a non-Ag alloy layer. As a result, the resistance value (sheet resistance Ω / □) of the film is reduced to 2.5 Ω / □ or less to enhance the electromagnetic shielding performance, and the visible light transmittance is increased to 70% or more to provide a sufficiently bright image display. The present invention provides a well-balanced substrate having an electromagnetic wave shielding film having a low visible light reflectance and a low visible light reflectance.
[0008]
That is, in the substrate with an electromagnetic wave shielding film of the present invention, a dielectric layer, an Ag layer, and a non-Ag alloy layer are repeatedly laminated in nine layers in this order from the substrate side to the transparent substrate surface, and further a dielectric layer is laminated thereon. The transparent conductive film thus formed is characterized by having a surface resistance (sheet resistance) of 2.5 Ω / □ or less and a visible light transmittance of 70% or more.
[0009]
Further, the substrate with an electromagnetic wave shielding film according to the present invention is characterized in that each Ag layer has a thickness of 9 to 15 nm, and further, that any of the Ag layers has an Ag purity of 5N or more. The Ag layer forms a high-density structure by setting the base pressure at the time of film formation to a high vacuum by using polycold or the like, whereby a thin film having a low specific resistance can be obtained.
[0010]
Furthermore, the substrate with an electromagnetic wave shielding film of the present invention is obtained by forming a first dielectric layer composed of a transparent metal oxide layer / a first Ag layer / a first non-Ag alloy layer composed of ZnAl / a transparent metal oxide layer on a transparent substrate. Second dielectric layer / second Ag layer / second non-Ag alloy layer made of ZnAl / third dielectric layer made of transparent metal oxide layer / third Ag layer / third non-Ag alloy layer made of ZnAl / transparent metal A substrate on which a transparent conductive film composed of a fourth dielectric layer composed of an oxide layer is laminated, wherein the thickness of each Ag layer is 9 to 15 nm, and the thickness of a non-Ag alloy layer composed of ZnAl is 1. 0 to 3.0 nm, the first and fourth dielectric layers have a thickness of 40 to 50 nm, and the second and third dielectric layers have a thickness of 75 to 85 nm. .
[0011]
Further, the substrate with an electromagnetic wave shielding film of the present invention is characterized in that a protective plate made of a resin film is provided on the front and / or back surface of the substrate.
Further, the substrate with an electromagnetic wave shielding film according to the present invention is characterized in that it is mounted on the front surface of a plasma display.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The substrate with an electromagnetic wave shielding film of the present invention is a transparent conductive film in which a dielectric layer, an Ag layer, and a non-Ag alloy layer are repeatedly laminated in nine layers on a transparent substrate surface in this order, and a dielectric layer is further laminated thereon. , And the sheet has a sheet resistance of 2.5 Ω / □ or less and a visible light transmittance of 70% or more. Further, the transparent conductive film is, from the substrate side, a first dielectric layer composed of a transparent metal oxide layer / a first Ag layer / a first non-Ag alloy layer composed of ZnAl / a second dielectric composed of a transparent metal oxide layer. Layer / second Ag layer / second non-Ag alloy layer made of ZnAl / third dielectric layer made of transparent metal oxide layer / third Ag layer / third non-Ag alloy layer made of ZnAl / transparent metal oxide layer The first dielectric layer and the fourth dielectric layer are formed of a fourth dielectric layer, each of the Ag layers has a thickness of 9 to 15 nm, the thickness of the non-Ag alloy layer made of ZnAl is 1.0 to 3.0 nm, respectively. The thickness of the body layer is 40 to 50 nm, and the thickness of the second dielectric layer and the third dielectric layer is 75 to 85 nm.
[0013]
The Ag layer which affects the electromagnetic shielding performance, the thickness of the Ag layer affects the electromagnetic shielding property, the visible light transmittance and the visible light reflectance, and in order to obtain a high electromagnetic shielding property of 30 dB or more, each Ag layer is required. In both cases, a film thickness of 10 nm or more is required. On the other hand, visible light transmittance is maintained at 70% or more for brightening an image and visibility is improved, and visible light reflectance is 4% for enhancing image contrast. In order to make the thickness as low as possible, the thickness of each Ag layer is preferably 15 nm or less. In particular, the thickness of the first Ag layer is 9 to 10 nm, the thickness of the second Ag layer is 13 to 14 nm, and the thickness of the third silver layer. Is more preferably 11 to 12 nm. When only two Ag layers are provided, the surface resistance of the film surface as in the present invention is 2.5Ω / □ or less, the visible light transmittance is 70% or more, and the visible light reflectance is 4% or less. Getting things is not easy.
Further, the Ag layer used in the present invention is preferably a layer that does not contain an additive such as Pd, particularly Ag having a purity of 5N or more. (Polycold is a product name of POLYCOLD SYSTEMS in the United States.) It is possible to form an Ag film having a low specific resistance by forming a high-density structure by applying a high vacuum by using such a method.
Next, each dielectric layer composed of a transparent oxide layer is formed at least of a zinc oxide layer or a tin oxide layer, and the thickness of each dielectric layer is 3 to 50 nm for the tin oxide layer of the first dielectric layer. The zinc oxide layer is 5 to 50 nm, the tin oxide layer in the second dielectric layer is 0 to 85 nm, the zinc oxide layer is 5 to 85 nm, the tin oxide layer in the third dielectric layer is 5 to 85 nm, and the zinc oxide layer is 5 to 85 nm. The thickness of the tin oxide layer in the fourth dielectric layer is preferably 0 to 50 nm, and the thickness of the zinc oxide layer is preferably 0 to 50 nm. If the thickness is outside the above range, the visible light transmittance cannot be 70% or more. .
[0014]
Of these, the amorphous coating consisting of a tin oxide layer as an oxide layer is chemically and mechanically strong, and has a strong adhesive force with glass due to its amorphous loose structure, and also generates internal stress. Hard to do. Therefore, it is desirable to coat directly on the glass. The tin oxide layer not only enhances adhesion to glass, but also plays a role in cutting off the influence of alkali ions. The dielectric layer is not limited to the zinc oxide layer and the tin oxide layer, but may be titanium oxide, SnZnO, ZnAlO, ITO, or the like.
[0015]
However, the tin oxide layer has particularly poor adhesion to silver and is likely to peel off at the tin oxide layer / silver layer interface. In addition, tin oxide has a weak bond with oxygen, as can be seen from its ionization tendency, and because of the high chemical potential of oxygen in the coating, oxygen easily diffuses into the silver layer, increasing the electrical resistance and achieving high electromagnetic wave shielding. hard.
For these reasons, it is preferred that the tin oxide layer not be in contact with the silver layer. Note that the tin oxide layer may contain an element as an amorphous coating component that improves the chemical and mechanical properties and increases the adhesion to glass.
[0016]
On the other hand, the zinc oxide layer has a high adhesion to the silver layer and a low oxygen potential in the layer due to a high bonding force with oxygen, so that oxygen hardly diffuses into the silver layer. Therefore, the layer immediately below the silver layer is preferably a zinc oxide layer. Note that the zinc oxide layer may contain a known element (Al, Sn, or the like) as a component of a film that does not reduce the adhesion to the silver layer and makes oxygen less likely to diffuse into the silver layer. .
[0017]
It is important to keep the chemical potential of oxygen in the oxide layer in contact with the silver layer as low as possible, and it is desirable to add as much argon as possible together with oxygen to the atmosphere during the formation of zinc oxide. A desirable argon addition rate varies depending on the equipment, but is generally 10 to 30%. This value is determined by gradually adding argon from an oxygen atmosphere, observing a sudden increase in the voltage applied to the target or a sudden decrease in the current, and then slightly reducing the argon.
In addition, the zinc oxide layer is dense and has an effect of preventing the diffusion of corrosive gas in the atmosphere, and has a function of absorbing ultraviolet rays contained in sunlight, but has low chemical durability. When a zinc oxide layer is used, it is preferable to further provide a tin oxide layer, which is an amorphous oxide, on the zinc oxide layer.
[0018]
Further, as the metal oxide layer as the dielectric layer, it is preferable to use a ZnAl x O y (x = 1 to 2, y = 1 to 4) layer in addition to the ZnO layer. This ZnAl x O y layer is particularly useful for preventing oxidation of the Ag layer when a heat treatment is performed at a temperature higher than the softening point of glass after forming a conductive film for bending and / or strengthening (including semi-strengthening). It is particularly effective, and is preferably provided immediately above a non-Ag alloy layer made of ZnAl described later.
[0019]
Next, immediately above the Ag layer, a non-Ag alloy layer for preventing light scattering due to unevenness at the interface between the Ag layer and the oxide dielectric layer is provided. When the oxide dielectric layer is formed directly on the Ag layer, irregularities are formed at the Ag / dielectric interface, and the irregularities cause light scattering, which significantly reduces the light transmittance. However, since this non-Ag alloy layer is a light absorbing layer, even if it is too thick, the light transmittance is reduced. In order to obtain an appropriate transmittance, the thickness of the non-Ag alloy layer needs to be 1.0 to 3.0 nm. Further, the non-Ag alloy layer is composed of a ZnAl alloy layer containing Al, and by doping Zn with Al, a smooth layer with less unevenness can be formed on the surface. On the other hand, if the content of Al is too large, the extinction coefficient of the ZnAl alloy layer becomes large, and the light transmittance is greatly reduced. To obtain an appropriate transmittance, the Al content needs to be 1 to 10% by weight. Note that the non-Ag alloy layer referred to here is an alloy layer having the entire thickness immediately after the formation of the non-Ag alloy layer immediately above the Ag layer. When the oxide is formed, a part of the upper layer of the alloy layer is converted to the oxide because the oxide is formed in an oxidizing atmosphere (for example, oxygen 80%, argon 20%). A non-Ag alloy layer including a part of the oxide layer whose upper part is oxidized and a part of the alloy layer is referred to as a non-Ag alloy layer. That is, the thickness of the non-Ag alloy layer indicates the thickness when the ZnAl alloy layer is formed first.
[0020]
The transparent conductive film coated on the substrate surface with the electromagnetic wave shielding film of the present invention is characterized in that the resistance value of the film surface is 2.5 Ω / □ or less as sheet resistance and the visible light transmittance is 70% or more. However, the lower the resistance value, the higher the electromagnetic wave shielding performance is obtained. For example, when the sheet resistance, which is the resistance value, is 2.5 Ω / □ or less, the electromagnetic wave shielding performance at a frequency of 1 GHz is 30 dB or more. This makes it possible to shield electromagnetic waves radiated from devices such as PDPs to a certain extent. Further, since the visible light transmittance is as high as 70% or more, a sufficiently bright image display can be obtained. Further, since the visible light reflectance on the glass surface side is about 4% or less, there is an advantage that an image of the surrounding scenery is less reflected and an image display with excellent contrast can be performed.
[0021]
As the transparent substrate of the present invention, transparent glass, plastic, and the like can be used. For example, the glass substrate is a general-purpose ordinary plate glass, so-called float plate glass, and various colored glass such as clear, green, and bronze. Needless to say, it can be used as various kinds of glass products such as glass, various functional glasses, tempered glass and similar glasses, laminated glass, double-glazed glass and the like, and furthermore, flat and bent plates. Further, the glass may be a laminate with a transparent plastic plate or the like. The glass composition is soda lime glass, aluminosilicate glass, or the like, but it is needless to say that the glass composition is not limited to these.
Note that it is more preferable to use reinforced tempered glass (for example, surface compressive stress is about 100 MN / m2) or semi-tempered glass (for example, surface compressive stress is about 40 to 80 MN / m2) because the glass is hard to break.
The method for forming a conductive film of the present invention is preferably a sputtering method from the viewpoint of productivity, but is formed by other film forming methods such as a vacuum deposition method, an ion plating method, and a PCVD (plasma CVD) method. It is also possible.
[0022]
The substrate with an electromagnetic wave shielding film of the present invention can be used as a substrate with an electromagnetic wave shielding film having a shielding function of an electromagnetic wave generated from the front surface of a display such as a PDP or a CRT or a near infrared ray that causes a malfunction of a remote controller. For example, when used for a PDP, the front and back surfaces of the substrate with an electromagnetic wave shielding film of the present invention are used to prevent reflection by an adhesive or the like, to prevent moisture from the silver-based transparent conductive film, to prevent scattering when glass breaks, and to add a dye to the adhesive layer. A transparent film having a function of adjusting the chromaticity of the entire filter is attached to the front surface of the PDP (the electromagnetic shielding film is on the PDP side) and used.
[0023]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. The film was formed by DC magnetron sputtering. However, the present invention is not limited to such an embodiment.
[0024]
In addition, the performance evaluation of the sample of the board | substrate with an electromagnetic wave shielding film obtained by the following Example and the comparative example was evaluated by the following methods.
(1) Visible light transmittance, visible light reflectance:
According to JIS R 3106, a visible light transmittance Tv and a visible light reflectance (film surface side) between 380 and 780 nm in wavelength were measured by a spectrophotometer (Model 4000, a spectrophotometer manufactured by Hitachi, Ltd.).
(2) Resistance value:
4-probe probe resistance meter (Epson)
(3) Film thickness:
It was measured by a step difference measuring instrument dektak3 (manufactured by Sloan).
(4) Electromagnetic shielding:
Example 1 according to US military standard MIL-std285
Sputtering is performed on the surface of a float glass substrate (visible light transmittance: 90.4%, black frame printed on the periphery of glass and with a bus bar, semi-reinforced product) having a size of 1000 mm × 580 mm × about 3 mm (thickness). Coatings were formed using the apparatus in the following order.
[0025]
First, after a metal target of Sn, Zn (three), Ag, and ZnAl (Al content: 4 wt%) was previously attached to the cathode of the sputtering apparatus, the pressure before film formation was 1.5 × 10 −4 Pa. The vacuum chamber was sufficiently evacuated until the following conditions were reached. In this method, a transfer roll is installed below a target in a vacuum chamber, and when a glass substrate reciprocates on the roll, a predetermined metal layer or metal oxide layer is applied to the glass plate from the target to which power is applied. A film is formed thereon.
[0026]
As a first pass, the atmosphere in the film forming chamber is kept in an oxidizing atmosphere (O2: Ar = 9: 1), and a SnO2 layer as the first layer of the first dielectric layer is formed to a thickness of 3 nm using a Sn target. Under the same conditions as the first layer, a second ZnO layer was formed to a thickness of 38 nm using a Zn target.
[0027]
In the second pass, the atmosphere was maintained in an inert atmosphere of Ar 100%, and an Ag layer was formed as a first Ag layer to a thickness of 10 nm using an Ag target, and a ZnAl alloy layer as a first non-Ag alloy layer was formed to a thickness of 1.6 nm using a ZnAl target. .
[0028]
As the third pass, the atmosphere in the film formation chamber was again kept in the oxidizing atmosphere (O 2 : Ar = 9: 1), and the metal oxide layer as the second dielectric layer was formed. The ZnAl x O y layer as the first layer of the second dielectric layer is 3.3 nm, the SnO 2 layer as the second layer is 1.8 nm, the ZnO layer as the third layer is 45 nm, and the SnO layer as the fourth layer is Two layers were sequentially formed at 3.5 nm, and a fifth ZnO layer was formed at 22.4 nm.
[0029]
In the fourth pass, the atmosphere was kept in an inert atmosphere of 100% Ar, and an Ag layer as a second Ag layer was formed to a thickness of 14 nm using an Ag target, and a ZnAl alloy layer as a second non-Ag alloy layer was formed to a thickness of 1.6 nm using a ZnAl target. .
In the fifth pass, the atmosphere in the film forming chamber is again kept in the oxidizing atmosphere (O 2 : Ar = 9: 1), and the ZnAl x O y layer as the first layer of the third dielectric layer is 3.4 nm, The first SnO 2 layer was 1.8 nm, the third ZnO layer was 46 nm, the fourth SnO 2 layer was 3.6 nm, and the fifth ZnO layer was 23.2 nm. .
[0030]
At the sixth pass, the atmosphere is maintained in an inert atmosphere of 100% Ar, and an Ag layer is formed as a third Ag layer with a thickness of 12 nm using an Ag target, and a ZnAl alloy layer as a third non-Ag alloy layer is formed with a thickness of 2.2 nm using a ZnAl target. did.
[0031]
At the seventh pass, the atmosphere in the film forming chamber is again kept at the oxidizing atmosphere (O 2 : Ar = 9: 1), and the ZnAlxOy layer as the first layer of the fourth dielectric layer is 1.3 nm and the second layer is the second layer. The SnO 2 layer of 0.7 nm, the ZnO layer as the third layer was 18.4 nm, the SnO 2 layer as the fourth layer was 1.4 nm, the ZnO layer as the fifth layer was 18.5 nm, and the sixth layer was the SnO 2 layer are sequentially deposited 0.7 nm, it was taken out from the deposition chamber an electromagnetic wave shielding film coated substrate a transparent conductive film is coated. FIG. 1 shows the layer structure of the obtained transparent conductive film.
[0032]
As described above, a substrate sample with an electromagnetic wave shielding film of the present invention was produced.
[0033]
As a result of evaluating the characteristics of the obtained substrate with an electromagnetic wave shielding film, the surface resistance was 2.5Ω / □, the electromagnetic wave shielding property (30 to 1000 MHz) was 30 dB or more, the visible light transmittance was 70%, and the visible light reflectance was 4%. And excellent characteristics. Next, an AR (anti-reflection) -treated AR film having an adhesive (Nippon Oil & Fat, Realook, base material) is provided on the front and back surfaces of the substrate for electromagnetic wave shielding film covered with the transparent conductive film obtained above. Is a TAC resin, and the adhesive is an acrylic resin) to produce an electromagnetic wave shield filter. The AR film has functions of preventing reflection, protecting the transparent conductive film, and preventing the glass substrate from cracking and scattering. The transparent conductive film was connected to a bus bar provided on the upper surface of a black frame printed and printed on the periphery of the glass substrate surface.
[0034]
As a result of evaluating the characteristics of the produced electromagnetic wave shielding filter, the surface resistance was 2.5Ω / □, the electromagnetic wave shielding property (30 to 1000 MHz) was 30 dB or more, the visible light transmittance was 71%, and the visible light reflectance was the near infrared transmittance. (950 nm): 2.8% and moisture resistance (60 ° C., 90% RH, 1000 h) was evaluated. As a result, there was no remarkable film defect having a size of 0.2 mm or more and no change in chromaticity. Of the present invention as an electromagnetic shield filter.
[0035]
Example 2
Using the same film forming substrate as in Example 1, under the same film forming conditions as in Example 1, the first dielectric layer had a thickness of 41 nm, the first Ag layer had a thickness of 9.5 nm, and the first non-Ag alloy layer had a thickness of 9.5 nm. 1.6 nm, second dielectric layer thickness 80 nm, second Ag layer thickness 13.5 nm, second non-Ag alloy layer thickness 1.6 nm, third dielectric layer thickness 82 nm, third Ag layer An electromagnetic wave shielding film coated with a transparent conductive film by adjusting the film forming time so that the film thickness becomes 11.5 nm, the third non-Ag alloy layer thickness becomes 2.2 nm, and the fourth dielectric layer film thickness becomes 42 nm. The attached substrate was produced.
[0036]
Example 3
The film thickness of the first dielectric layer was 41 nm, the thickness of the first Ag layer was 10 nm, and the thickness of the first non-Ag alloy layer was 2. using the same deposition substrate as in Example 1 and the same deposition conditions as in Example 1. 0 nm, the second dielectric layer thickness is 76 nm, the second Ag layer thickness is 14 nm, the second non-Ag alloy layer thickness is 2.0 nm, the third dielectric layer thickness is 78 nm, and the third Ag layer thickness is 12 nm. A substrate with an electromagnetic shielding film covered with a transparent conductive film was manufactured by adjusting the film forming time so that the thickness of the third non-Ag alloy layer was 2.6 nm and the thickness of the fourth dielectric layer was 41 nm.
[0037]
Example 4
Using the same film-forming substrate as in Example 1, under the same film-forming conditions as in Example 1, the first dielectric layer has a thickness of 41 nm, the first Ag layer has a thickness of 9 nm, and the first non-Ag alloy layer has a thickness of 1. 6 nm, the second dielectric layer thickness is 76 nm, the second Ag layer thickness is 13 nm, the second non-Ag alloy layer thickness is 1.6 nm, the third dielectric layer thickness is 78 nm, and the third Ag layer thickness is 11 nm. By adjusting the film forming time so that the thickness of the third non-Ag alloy layer was 2.2 nm and the thickness of the fourth dielectric layer was 41 nm, a substrate with an electromagnetic shielding film covered with a transparent conductive film was produced.
[0038]
Table 1 shows the thickness of each layer, the visible light transmittance, the visible light reflectance, and the surface resistance of the transparent conductive films of Examples 1 to 4.
[0039]
[Table 1]
Figure 2004128220
[0040]
Comparative Example 1
Using the same film-forming substrate as in Example 1, under the same film-forming conditions as in Example 1, the first dielectric layer has a thickness of 35 nm, the first Ag layer has a thickness of 10 nm, and the first non-Ag alloy layer has a thickness of 1. 6 nm, the second dielectric layer thickness is 70 nm, the second Ag layer thickness is 14 nm, the second non-Ag alloy layer thickness is 1.6 nm, the third dielectric layer thickness is 70 nm, and the third Ag layer thickness is 12 nm. By adjusting the film formation time so that the thickness of the third non-Ag alloy layer was 2.2 nm and the thickness of the fourth dielectric layer was 35 nm, a substrate with an electromagnetic shielding film covered with a transparent conductive film was produced.
[0041]
Comparative Example 2
Using the same deposition substrate as in Example 1, under the same deposition conditions as in Example 1, the thickness of the first dielectric layer was 41 nm, the thickness of the first Ag layer was 10 nm, the thickness of the first non-Ag alloy layer was 0 nm, The second dielectric layer has a thickness of 76 nm, the second Ag layer has a thickness of 14 nm, the second non-Ag alloy layer has a thickness of 0 nm, the third dielectric layer has a thickness of 78 nm, the third Ag layer has a thickness of 12 nm, and the third non-Ag layer has a thickness of 12 nm. The film formation time was adjusted so that the thickness of the Ag alloy layer was 0 nm and the thickness of the fourth dielectric layer was 41 nm, to produce a substrate with an electromagnetic wave shielding film covered with a transparent conductive film.
[0042]
Comparative Example 3
The film thickness of the first dielectric layer was 41 nm, the thickness of the first Ag layer was 10 nm, and the thickness of the first non-Ag alloy layer was 3. using the same deposition substrate as in Example 1 and the same deposition conditions as in Example 1. 2 nm, the second dielectric layer thickness is 76 nm, the second Ag layer thickness is 14 nm, the second non-Ag alloy layer thickness is 3.2 nm, the third dielectric layer thickness is 78 nm, and the third Ag layer thickness is 12 nm. By adjusting the film formation time so that the thickness of the third non-Ag alloy layer was 3.2 nm and the thickness of the fourth dielectric layer was 41 nm, a substrate with an electromagnetic shielding film covered with a transparent conductive film was produced.
[0043]
Comparative Example 4
The same film-forming substrate as in Example 1 was used, and a film was formed under the same film-forming conditions and film thickness as in Example 1 except that the Al content of the ZnAl target previously attached to the cathode of the sputtering apparatus was 15 wt%. A substrate with an electromagnetic wave shielding film coated with the film was produced.
[0044]
Table 2 shows the thickness of each layer of the transparent conductive films of Comparative Examples 1 to 4, the visible light transmittance, the visible light reflectance, and the surface resistance.
[0045]
[Table 2]
Figure 2004128220
[0046]
【The invention's effect】
The substrate with an electromagnetic wave shielding film of the present invention is excellent in electromagnetic shielding performance when the resistance value of the transparent conductive film is 2.5Ω / □ or less, and has a visible light transmittance of 70% or more and a low reflectance, so that image display is easy to see. A well-balanced substrate with an electromagnetic wave shielding film can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a sectional view of a layer configuration of a transparent conductive film according to an embodiment of the present invention.

Claims (6)

透明基板上に、透明金属酸化物層よりなる第1誘電体層/第1Ag層/ZnAlよりなる第1非Ag合金層/透明金属酸化物層よりなる第2誘電体層/第2Ag層/ZnAlよりなる第2非Ag合金層/透明金属酸化物層よりなる第3誘電体層/第3Ag層/ZnAlよりなる第3非Ag合金層/透明金属酸化物層よりなる第4誘電体層からなる透明導電膜が積層された基板であって、各Ag層の膜厚がそれぞれ9〜15nm、ZnAlよりなる非Ag合金層の膜厚がそれぞれ1.0〜3.0nm、第1誘電体層および第4誘電体層の膜厚が40〜50nm、第2誘電体層および第3誘電体層の膜厚が75〜85nmからなり、該透明導電膜表面の抵抗値(シート抵抗)が2.5Ω/□以下であり、可視光線透過率が70%以上であり、透明導電膜が被覆された面側の可視光反射率が4%以下であり、該透明導電膜を構成するいずれのAg層もAgの純度が5N(99.999%)以上の純度であり、該透明導電膜を構成するいずれのZnAlの非Ag合金層が、Alを1〜10重量%含むZnAl合金であることを特徴とする電磁波シールド膜付き基板。A first dielectric layer composed of a transparent metal oxide layer / a first Ag layer / a first non-Ag alloy layer composed of ZnAl / a second dielectric layer composed of a transparent metal oxide layer / second Ag layer / ZnAl on a transparent substrate A third dielectric layer composed of a second non-Ag alloy layer composed of a transparent metal oxide layer, a third dielectric layer composed of a third Ag layer, a third non-Ag alloy layer composed of ZnAl, and a fourth dielectric layer composed of a transparent metal oxide layer. A substrate on which a transparent conductive film is laminated, wherein the thickness of each Ag layer is 9 to 15 nm, the thickness of the non-Ag alloy layer made of ZnAl is 1.0 to 3.0 nm, respectively, and the first dielectric layer and The thickness of the fourth dielectric layer is 40 to 50 nm, the thickness of the second dielectric layer and the third dielectric layer is 75 to 85 nm, and the resistance (sheet resistance) of the surface of the transparent conductive film is 2.5 Ω. / □ or less, visible light transmittance is 70% or more, transparent The visible light reflectance on the side covered with the electro-conductive film is 4% or less, and any of the Ag layers constituting the transparent conductive film has an Ag purity of 5N (99.999%) or more. A substrate with an electromagnetic wave shielding film, wherein any non-Ag alloy layer of ZnAl constituting the transparent conductive film is a ZnAl alloy containing 1 to 10% by weight of Al. 第1Ag層の膜厚が9〜10nm、第2Ag層の膜厚が13〜14nm、第3銀層の膜厚が11〜12nmであることを特徴とする請求項1に記載の電磁波シールド膜付き基板。The electromagnetic wave shielding film according to claim 1, wherein the thickness of the first Ag layer is 9 to 10 nm, the thickness of the second Ag layer is 13 to 14 nm, and the thickness of the third silver layer is 11 to 12 nm. substrate. 第1誘電体層における酸化錫層が3〜50nm、酸化亜鉛層が5〜50nm、第2誘電体層における酸化錫層が0〜85nm、酸化亜鉛層が5〜85nm、第3誘電体層における酸化錫層が5〜85nm、酸化亜鉛層が5〜85nm、第4誘電体層における酸化錫層が0〜50nm、酸化亜鉛層が0〜50nmであることを特徴とする請求項1乃至2に記載の電磁波シールド膜付き基板。The tin oxide layer in the first dielectric layer is 3 to 50 nm, the zinc oxide layer is 5 to 50 nm, the tin oxide layer in the second dielectric layer is 0 to 85 nm, the zinc oxide layer is 5 to 85 nm, and the third dielectric layer is The tin oxide layer has a thickness of 5 to 85 nm, the zinc oxide layer has a thickness of 5 to 85 nm, the tin oxide layer of the fourth dielectric layer has a thickness of 0 to 50 nm, and the zinc oxide layer has a thickness of 0 to 50 nm. The substrate with the electromagnetic wave shielding film according to the above. 透明基板の直上層が酸化錫層よりなることを特徴とする請求項1乃至3に記載の電磁波シールド膜付き基板。4. The substrate with an electromagnetic wave shielding film according to claim 1, wherein a layer immediately above the transparent substrate comprises a tin oxide layer. 電磁波シールド膜付き基板の前面及び/又は裏面に、樹脂フィルムよりなる保護板を設けてなることを特徴とする請求項1乃至4に記載の電磁波シールド膜付き基板。The substrate with an electromagnetic wave shielding film according to any one of claims 1 to 4, wherein a protective plate made of a resin film is provided on a front surface and / or a back surface of the substrate with an electromagnetic wave shielding film. 電磁波シールド膜付き基板が、プラズマデイスプレイパネルの前面に装着されてなることを特徴とする請求項1または5に記載の電磁波シールド膜付き基板。The substrate with an electromagnetic wave shielding film according to claim 1 or 5, wherein the substrate with an electromagnetic wave shielding film is mounted on a front surface of a plasma display panel.
JP2002290283A 2001-10-26 2002-10-02 Substrate with electromagnetic wave shield film Pending JP2004128220A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002290283A JP2004128220A (en) 2002-10-02 2002-10-02 Substrate with electromagnetic wave shield film
PCT/JP2002/010983 WO2003037056A1 (en) 2001-10-26 2002-10-23 Substrate with electromagnetic shield film
TW91132012A TW200300109A (en) 2001-10-26 2002-10-28 Substrate with electromagnetic shield film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290283A JP2004128220A (en) 2002-10-02 2002-10-02 Substrate with electromagnetic wave shield film

Publications (1)

Publication Number Publication Date
JP2004128220A true JP2004128220A (en) 2004-04-22

Family

ID=32282218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290283A Pending JP2004128220A (en) 2001-10-26 2002-10-02 Substrate with electromagnetic wave shield film

Country Status (1)

Country Link
JP (1) JP2004128220A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090798A1 (en) * 2005-02-25 2006-08-31 Asahi Glass Company, Limited Electromagnetic shielding laminate and display using same
JP2008021979A (en) * 2006-07-14 2008-01-31 Samsung Corning Co Ltd Electromagnetic wave shielding optical member, and optical filter and display device including it
JP2008087454A (en) * 2006-04-05 2008-04-17 Ricoh Co Ltd Optical recording medium
JP2010527145A (en) * 2007-05-10 2010-08-05 エルジー・ケム・リミテッド Blackened electromagnetic interference shielding glass and method for producing the same
JP2012504104A (en) * 2008-09-30 2012-02-16 サン−ゴバン グラス フランス Method for producing a substrate provided with a laminate having thermal properties, in particular for producing heated glazing
JP2013502366A (en) * 2009-08-21 2013-01-24 サン−ゴバン グラス フランス Substrates with multiple layers with thermal properties, especially for producing heated glazing units

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090798A1 (en) * 2005-02-25 2006-08-31 Asahi Glass Company, Limited Electromagnetic shielding laminate and display using same
JP2008087454A (en) * 2006-04-05 2008-04-17 Ricoh Co Ltd Optical recording medium
JP2008021979A (en) * 2006-07-14 2008-01-31 Samsung Corning Co Ltd Electromagnetic wave shielding optical member, and optical filter and display device including it
JP2010527145A (en) * 2007-05-10 2010-08-05 エルジー・ケム・リミテッド Blackened electromagnetic interference shielding glass and method for producing the same
JP2012504104A (en) * 2008-09-30 2012-02-16 サン−ゴバン グラス フランス Method for producing a substrate provided with a laminate having thermal properties, in particular for producing heated glazing
JP2013502366A (en) * 2009-08-21 2013-01-24 サン−ゴバン グラス フランス Substrates with multiple layers with thermal properties, especially for producing heated glazing units

Similar Documents

Publication Publication Date Title
US8147975B2 (en) Plasma display panel including frameless EMI filter, and/or method of making the same
KR100587200B1 (en) Electromagnetic wave filter for plasma display panel
US8040062B2 (en) Electroconductive laminate, and electromagnetic wave shielding film and protective plate for plasma display
JP5369177B2 (en) EMI filter for plasma display panel
US7740946B2 (en) Electroconductive laminate, and electromagnetic wave shielding film for plasma display and protective plate for plasma display
US20050074591A1 (en) Transparent substrate with antiglare coating having abrasion-resistant properties
JP5249413B2 (en) Plasma display panel having TCEMI filter and / or manufacturing method thereof
KR101027610B1 (en) Electromagnetic shielding multilayer body and display using same
WO1998013850A1 (en) Plasma display protective plate and its manufacturing method
WO2003037056A1 (en) Substrate with electromagnetic shield film
EP2641458B1 (en) Plasma display panel including emi filter, and / or method of making the same
JP4078520B2 (en) Manufacturing method of filter with antireflection function for display device
JP2003133787A (en) Substrate with electromagnetic wave shielding film
JP2004128220A (en) Substrate with electromagnetic wave shield film
JP3549761B2 (en) Substrate with electromagnetic wave shielding film
JP2004047216A (en) Transparent electrically conductive film
JP2002003244A (en) Substrate for electromagnetic wave shielding filter
JP2811917B2 (en) Heat shielding glass
JP2003139909A (en) Conductive antireflection film and glass panel for cathode ray tube
JP2004264350A (en) Front filter
JP2008077102A (en) Method for manufacturing filter with antireflection function for display device
JP2002063852A (en) Front glass for plasma display panel, the plasma display panel and manufacturing method of the same
KR20040003241A (en) Pdp filter having structure of multi-layer thin film