JP3549761B2 - Substrate with electromagnetic wave shielding film - Google Patents

Substrate with electromagnetic wave shielding film Download PDF

Info

Publication number
JP3549761B2
JP3549761B2 JP04932399A JP4932399A JP3549761B2 JP 3549761 B2 JP3549761 B2 JP 3549761B2 JP 04932399 A JP04932399 A JP 04932399A JP 4932399 A JP4932399 A JP 4932399A JP 3549761 B2 JP3549761 B2 JP 3549761B2
Authority
JP
Japan
Prior art keywords
layer
thickness
transparent
substrate
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04932399A
Other languages
Japanese (ja)
Other versions
JP2000252682A (en
Inventor
正司 大西
正昭 片野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP04932399A priority Critical patent/JP3549761B2/en
Publication of JP2000252682A publication Critical patent/JP2000252682A/en
Application granted granted Critical
Publication of JP3549761B2 publication Critical patent/JP3549761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、外部からの電磁波を室内に入れない、或いは発生する電磁波を外部に出さないようにする電磁波遮蔽膜付き基板に関する。
【0002】
【従来技術とその解決すべき課題】
事務所ビルなどにおいて、建物内でOA機器などの電子機器、高周波機器などが発生する電磁波を外部に出さず、外部の自動車、電車などの乗り物、各種の無線機器、高圧線などから到来する電磁波を建物内に入れないことで、建物内のフロアを電波に対して独立した空間にすることが、近年求められるようになってきた。
【0003】
従って、建物などにおいては、壁、天井、床などを電磁波遮蔽構造とするとともに、窓などの開口部にも電磁波遮蔽部材を使用して、ビル全体或いは特定のフロアを電磁遮蔽構造にする必要がある。
【0004】
このような窓などに好適な電磁波遮蔽ガラスとして、ガラス上にITO膜やSnO2膜等の導電性膜を被覆するものがあるが、電磁波の遮蔽性能を30dB以上とするには該膜の表面シート抵抗を2.3Ω/□以下の低抵抗とする必要があり、そのためには膜厚を約1,000nm以上に厚くする必要がある。
しかしながら、そのように膜厚を厚くすると可視光線透過率が非常に低くなるとともに、ニュートラルな色調を得ることは困難であるという欠点がある。
【0005】
また、例えば、特公平5−70580号公報、特公平8−324436号公報には、抵抗値が低いLow−Eの膜としてAg層を2層にし、透明酸化物と交互に積層したものが一般に知られている。しかし、これらの構成のものは比較的高い可視光線透過率で低い抵抗値のガラスを得ることは可能であるが、前記のように2.3Ω/□以下の低抵抗のものを得るためには、2層の各々のAg層の膜厚を15nm以上の膜厚にする必要がある。
このようにすると可視光線透過率が低くなり外の景色がほとんど見えなくなったり、反射色調が赤紫色等の非常に濃い色となってしまい外観の品質上、一般的なビルの外層や住宅向けには使用に耐えられないものとなる欠点がある。
また、従来の銀層を有するものは、耐湿性に劣るため取り扱いに充分な注意をしないと斑点状の欠陥が発生する恐れがあった。
【0006】
【課題を解決するための手段】
本発明は、従来のかかる課題に鑑みてなしたものであって、高可視光線透過率で耐湿性に優れ且つ反射色調に違和感のない30dB以上(1GHz)の高電磁波遮蔽性能を有する電磁波遮蔽膜付き基板について鋭意検討した結果、Ag層を15nm以上に厚くしても特定の膜構成で且つ銀層の直上層に亜鉛金属にAl金属を含有させたZnAl合金からなる金属バリアー層を特定の厚さ設けることにより高電磁波遮蔽性能を有する高品質の電磁波遮蔽膜付き基板が得られることを見出した。
【0007】
すなわち、本発明は、透明基板上に、透明酸化物層および/または
透明窒化物層よりなる第1層/Ag層よりなる第2層/ZnAl合金の金属バリー層よりなる第3層/透明酸化物層および/または透明窒化物層よりなる第4層/Ag層よりなる第5層/ZnAl合金の金属バリー層よりなる第6層/透明酸化物層および/または透明窒化物よりなる第7層からなる被膜が順次積層され、第1層目の膜厚が26〜36nm,第2層及び第5層の膜厚がそれぞれ15nm〜50nm、第3層及び第6層の膜厚がそれぞれ1.5nm以下、第4層の膜厚が80〜100nm、第7層の膜厚が23〜40nmからなることを特徴とする電磁波遮蔽膜付き基板に関する。
【0008】
また、前記被膜の表面シート抵抗値が2.3Ω/□以下、可視光線透過率が30〜80%、被膜の被覆されていない透明基板面の反射色調はLa*b*表示において、−20<a*<−5、−40<b*<10の範囲である無彩色からやや青緑色の色調を呈することことが好ましい。
【0009】
さらに、第1層、第4層および第7層の透明金属酸化物層および/または透明金属窒化物層は、ZnO,ZnAlO、SnO、TiO、Al、Siのうちから選択された少なくとも1種からなることが好ましい。
【0010】
さらにまた、ZnAlの金属バリアー層は、Alを1〜10原子%含むZnAl合金であることが好ましく、さらに、第2層および第5層のAg層の膜厚が20nm以上で、1GHZにおける電磁波遮蔽性能が40dB以上であることが好適である。
【0011】
【発明の実施の形態】
本発明の電磁波遮蔽膜付き基板は、透明基板上に、透明酸化物層および/または透明窒化物層よりなる第1層/Ag層よりなる第2層/ZnAl合金の金属バリー層よりなる第3層/透明酸化物層および/または透明窒化物層よりなる第4層/Ag層よりなる第5層/ZnAl合金の金属バリー層よりなる第6層/透明酸化物層および/または透明窒化物よりなる第7層からなる被膜が順次積層され、第1層目の膜厚が26〜36nm,第2層及び第5層の膜厚がそれぞれ15nm〜50nm、第3層及び第6層の膜厚がそれぞれ1.5nm以下、第4層の膜厚が80〜100nm、第7層の膜厚が23〜40nmからなる。
【0012】
上記の透明酸化物層および/または透明窒化物層よりなる第1層、第4層および第7層は、ZnO,ZnAlO、SnO、TiO2等の透明酸化物、Al、SiN3等の透明窒化物の内から選択された少なくとも1種からなることが好ましい。
なお、第1層の膜厚を26〜36nm,第4層の膜厚を80〜100nm、7層の膜厚を23〜40nmの範囲にそれぞれすることにより、目的とする色調および光学特性を得ることができる。
【0013】
そのうち、酸化物層としてのSnO層および/またはTiO層よりなる非晶質の被膜は、化学的にも機械的にも強く、且つ非晶質のルーズな構造のためガラスとの密着力も強く、内部応力も発生しにくい。従ってガラスの直上に被覆する第1層被膜はSnO層及び/又はTiO層が望ましい。ガラスとの密着力を高め、アルカリイオンの影響を断つための第1層のSnO層および/またはTiO層の厚みは少なくとも5nmが必要である。
【0014】
しかし、SnO層および/またはTiO層は特にAgとの密着力が劣り、SnO層、TiO層/Ag層界面での剥離が起こりやすい。又、SnOはそのイオン化傾向から分かるように酸素との結合が弱く、被膜内の酸素の化学的ポテンシャルが高いため、Ag層に酸素が拡散しやすく電気抵抗が上り、高電磁波遮蔽を達成し難い。
【0015】
以上より、SnO層および/またはTiO層よりなる層はAg層と接触させないことが好ましい。なお、SnO層および/またはTiO層には化学的、機械的特性を向上し、またガラスとの密着力も強くする非晶質の被膜成分としての元素が含まれても良い。
【0016】
ZnO層は、Ag層との密着力が高く、又酸素との高い結合力によって層内の酸素のポテンシャルが低いため、Ag層内に酸素が拡散しにくい。従ってAg層直下の層はZnO層が望ましい。その下のSnO層からの酸素の拡散を防ぎ、Ag層との強い密着力を得るためのZnO層の厚みは少なくとも3nmは必要である。なお、ZnO層にはAg層との密着力を低下せず、Ag層内に酸素が拡散しにくくするような被膜の成分としての公知の元素が含まれても良い。
【0017】
なお、Ag層に接触する酸化物層中の酸素の化学ポテンシャルはできる限り低く保つことが肝要で、ZnO成膜時の雰囲気は酸素と共にできるだけ多くのアルゴンを添加するのが望ましい。望ましいアルゴンの添加率は設備によって異なるが、概ね10〜30%である。この値は酸素雰囲気から徐々にアルゴンを添加していき、ターゲットに掛かる電圧が急に上がるか、電流が急に下がる現象を観測し、そこからアルゴンを若干減らすことで決められる。
【0018】
また、ZnO層は緻密で大気中の腐食性ガスの拡散を防ぐ効果があり、また太陽光線に含まれる紫外線を吸収する働きがあるが化学的耐久性が低いため、第7層の上層にZnO層を用いる場合には、さらにその上層に非晶質酸化物であるSnO層および/またはTiO層を設けるのが望ましい。該SnO層および/またはTiO層の膜厚は1nm以上が好ましい。
【0019】
第2層、第5層に用いられるAg層の厚みは、電磁波遮蔽性、可視光線透過率および反射色調に影響し、30dB以上の高電磁波遮蔽性を得るためには15nm以上の膜厚が必要であり、高可視光線透過率、とりわけ70%以上を確保し、且つ赤い反射光を避けるためには60nm以下とすることが好ましい。
【0020】
なお、Ag層の膜厚を20nm以上とすることにより、該膜の表面シート抵抗は、2Ω/□以下の低抵抗となり、電磁遮蔽性能も40dB以上が得られるので、さらに高電磁遮蔽性能が必要な窓には、Ag層の膜厚を20nm以上の膜構成とすることが特に好ましい。また、Ag層はAgを主成分としAgにAu、Cu、Pt、Ir等の元素が含まれても良い。
【0021】
Ag層の直上部に用いられる第4層、第7層の金属バリアー層は、Ag層と酸化物層および/または窒化物層の両方に高い密着性をもつAlを1〜10原子%含むZnAl合金層が望ましい。なお、ここでいう金属バリアー層とは、Ag層の直上に第4層および/または第7層の金属バリアー層を成膜した直後は全厚が合金層であるが、次いで、例えば、該合金層の上層に第4層あるいは第7層の酸化物層等を成膜する時、酸化性雰囲気(例えば酸素80%、アルゴン20%)で成膜するため、該合金層の上層部の一部が酸化物に変換される。この上層部が酸化された酸化物層と残った合金層を含めて金属バリアー層と呼ぶ。すなわち、金属バリアー層の膜厚とは、最初にZnAl合金層を成膜した時の膜厚を示す。
【0022】
該金属バリアー層の作用は、前記第4層或いは第7層の酸化物層を成膜する際に、その酸化性雰囲気の影響が下部のAg層に及ばないように成膜中のAg層を保護することと、或いは窒化物の場合にはAg層が酸化されないように該金属バリアー層を介在させて該Ag層が酸化されるのを保護するためのものである。さらに、成膜後に大気中の水分が膜中に入りこみAgを酸化させるのを防ぎ、Ag層の耐湿性を向上する作用も併せて有している。
この金属バリアー層としては、前記のようにZnAl合金が好ましく、特にAlを1.0〜10.0原子%含むZnAl合金は、酸素との結合力が高く、最も効果的にAg層中に拡散してきた酸素その他の腐食性イオンをトラップするので特に好ましい。
【0023】
金属バリアー層の膜厚は、厚いほど強い効果が長続きすることは当然であるが、厚すぎると可視光線透過率を下げてしまう。しかし次に酸化物を成膜する際、該金属バリアー層の一部は酸化されるので、その酸化前の最初の金属層の厚みは例えば8nm以下とし、前記のようにその一部が酸化され残った金属バリアー層が1.5nm以下とすれば高い透過率が得られる。
【0024】
本発明の透明基板としては、透明のガラス、プラスチック等を用いることが出来、例えばガラス基板としては、自動車用ならびに建築用ガラス等に通常用いられている普通板ガラス、所謂フロート板ガラスなどであり、クリアをはじめグリ−ン、ブロンズ等各種着色ガラスや各種機能性ガラス、強化ガラスやそれに類するガラス、合せガラスのほか複層ガラス等、さらに平板あるいは曲げ板等各種板ガラス製品として使用できることは言うまでもない。また、ガラスは透明プラスチック板等との積層体であってもよい。なお、ガラスの組成は、ソーダ石灰ガラス、アルミノシリケートガラス等であるが、これらに限定されないことは、言うまでもない。
【0025】
得られた電磁波遮蔽膜付き基板は、被膜の表面シート抵抗値が2.3Ω/□以下、可視光線透過率が30〜80%と高透過率から低透過率まで自在に制御でき、また、色調についてはLa*b*表示において、
−20<a*<−5、−40<b*<10の範囲である無彩色からやや青緑色の色調を呈するので、目視で見た場合に違和感のない落ち着いた感じの色調となる。また、電磁波遮蔽性能(1GHZ)については、30dBが可能であり、用途によって40dB以上のさらに高性能のものも自由に選択出来る。
【0026】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、成膜はDCマグネトロンスパッタリング法により行った。ただし本発明は係る実施例に限定されるものではない。
【0027】
実施例1
大きさが1800mm×24000mm×約3mmのフロートガラス上に、下記順序で被膜を形成した。スパッタ装置は、カソードに予めSn、Zn(3台)、Ag、ZnAl(Al含有率4原子%)の各金属ターゲットを取り付けたのち、成膜前の圧力が5×10−5Torrとなるまで真空チャンバー内の排気を充分に行った。本方法は、真空チャンバー内のターゲットの下方に搬送ロールが設置され、そのロール上をガラス板が往復動する時に電力が印加されたターゲットより所定の金属層あるいは金属酸化物層がガラス板上に成膜されるようになっている。
【0028】
先ず1パス目として、成膜室の雰囲気を酸化性雰囲気(O:Ar=8:2)に保持し、Snターゲットにより第1層の1層目としてのSnO層を8.8nm成膜した後、 1層目と同条件でZnターゲットにより第1層の2層目のZnO層を23.1nm成膜した。次に2パス目として雰囲気をAr100%の不活性雰囲気に保持し、Agターゲットにより第2層としてのAg層を16.5nm、ZnAlターゲットにより第3層のZnAl合金層(いわゆる金属バリアー層)を0.8nm成膜した。3パス目として成膜室の雰囲気を再び酸化性雰囲気(O:Ar=8:2)に保持し、第4層の酸化物層を形成した。第4層の1層目としてのZnAlO層を3.6nm、2層目としてのSnO層を6.9nm、3層目としてのZnO層を17.9nmを順次成膜した。、さらに4パス目として3パス目と同じ雰囲気で3層目の追加としてのZnO層を17.8nm、4層目としてのSnO層を13.8nm成膜した後、さらに5パス目として5層目としてのZnO層を35.7nm成膜した。さらに6パス目として雰囲気をAr100%の不活性雰囲気に保持し、Agターゲットにより第5層としてのAg層を16.5nm、ZnAlターゲットにより第6層のZnAl合金層(いわゆる金属バリアー層)を0.8nm成膜した。次に7パス目として成膜室の雰囲気を再び酸化性雰囲気(O:Ar=8:2)に保持し、第7層の1層目としてのZnAlO層を2.9nm、2層目としてのSnO層を5.5nm、3層目としてのZnO層を18.7nm、8パス目として4層目としてのSnO層を1.7nm順次成膜し、ガラスを成膜室より排出した。
【0029】
なお、第3層および第6層のZnAl合金層(金属バリアー層)の上層に酸化性雰囲気で第4層および第7層を成膜するとき、第3層および第6層のZnAl合金層は酸化されていた。
また、第1層、第4層および第7層の酸化物層の膜厚は、合計でそれぞれ31.9nm、95.7nm、28.8nmであった。
膜構成と各膜の膜厚を、表1に示す。
なお、表1にはZnO層、SnO層、ZnAlO層を簡略化のためZnO、SnO、ZnAlOで示した。
【0030】
【表1】

Figure 0003549761
また、各被膜の膜厚Dは搬送速度とカソード電力で調整し、その値は予め100nm前後の厚さに電力E、搬送速度Vで成膜した被膜を部分的にエッチングによって除去し、その段差を触針式表面粗さ計で測定して厚みDを求め、実施例におけるカソード電力E、搬送速度をVとして、D=D×E/E×V/Vの式に従って求めた。
【0031】
得られた電磁波遮蔽基板の可視光透過率(%)、被膜の被覆していない側のガラス面の反射率(%)、ガラス面の反射色調a*値、b*値(La*b*表示法による)、ガラス面の目視による色調(目視角度;真正面および45°方向)、膜表面のシート抵抗値(Ω/□)、電磁遮蔽性能値(1GHZ)および耐湿性を表2に、また反射色調の色度座標を図1に示す。
【0032】
なお、表2の耐湿性の欄における◎、△、×の各記号は下記の内容を示す。
【0033】
◎:2週間経過後 径=0.2mm以上の欠陥なし
△:2週間経過後 径=0.2mm以上の欠陥有り,径=0.5mm以上の欠陥なし
×:2週間経過後 径=0.5mm以上の欠陥有り
また、図1の色度座標における、図内の▲1▼〜▲8▼は下記サンプルNoを示す。
【0034】
▲1▼;実施例1、▲2▼;実施例2、▲3▼;実施例3、▲4▼;比較例1、▲5▼;比較例2,▲6▼;比較例3,▲7▼;比較例4、▲8▼;比較例5
【0035】
【表2】
Figure 0003549761
得られた電磁波遮蔽基板の可視光線透過率は、分光光度計により、また反射色調は、photal(型式;MC−850A(コントロール),MCPD100(スペクトロマルチチャンネル),UV−VIS(フォトディテクター)、大塚エレクトロニクス製)により、また抵抗値は、4探針プローブ抵抗計(エプソン社製)により、電磁波遮蔽性能は、米国軍用規格MIL−std285に準じる、また耐湿性は温度30度 湿度90%の恒温槽に保管(環境試験機 タバイエタック 製品名 ビルトイン Hシリーズ 型式 TBL−3HWOGAC)によりそれぞれ測定した。
【0036】
評価の結果、表2および図1に示すように、可視光線透過率は約75%と高く、ガラス面の反射色調も緑色から青緑色の落ち着いた色調であり、電磁波遮蔽性能も35dB以上と高性能のものが得られた。
さらに、耐湿性も良好であった。
【0037】
実施例2
実施例1と比較して、第4層5層目のZnO層は成膜せず、その他は表1に示すような膜厚になるように実施例1と同様に成膜した。
なお、第1層、第4層および第7層の酸化物層の膜厚は、合計でそれぞれ33.4nm、85.8nm、35.7nmであった。
【0038】
評価の結果、可視光線透過率は約66%と高く、ガラス面の反射色調も青緑色から青色の落ち着いた色調であり、電磁波遮蔽性能も41dBと高性能のものが得られた。
さらに、耐湿性も良好であった。なお、表2の耐湿性の欄の◎印は耐湿性の良好のものであり、△印は長期耐湿性に劣り好ましくなく、×印は全く耐湿性に劣るものを示す。
【0039】
実施例3
実施例1と比較して、第4層5層目のZnO層は成膜せず、その他は表1に示すような膜厚になるように実施例1と同様に成膜した。
なお、第1層、第4層および第7層の酸化物層の膜厚は、合計でそれぞれ34.8nm、91.1nm、35.4nmであった。
【0040】
評価の結果、可視光線透過率は約56%とやや透視性を抑えたものであり、ガラス面の反射色調も青緑色から青色の落ち着いた色調であり、電磁波遮蔽性能も43dBと高性能のものが得られた。
さらに、耐湿性も良好であった。
【0041】
比較例1
実施例1と同様に、カソードには予め、Zn、Agの各金属ターゲットを取り付けた。先ず1パス目として、成膜室の雰囲気を酸化性雰囲気(O:Ar=8:2)に保持し、第1層としてのZnO層を38.0nm成膜した。次に2パス目として雰囲気をAr100%の不活性雰囲気に保持し、次いでAg層を16.6nm、第3層のZn層を1.7nm成膜した。3パス目として成膜室の雰囲気を再び酸化性雰囲気(O:Ar=8:2)に保持し、次にZnO層を70nm成膜し、さらに4パス目として2パス目と同じ雰囲気で、第5層のAg層を16.6nm、第6層のZn層を1.7nm成膜し、5パス目として3パス目と同じ雰囲気でZnO層を32.5nm成膜ガラスしたのち、成膜室より排出した。
【0042】
評価の結果、可視光線透過率は約65%と高透過率であり、電磁波遮蔽性能も36dBと高性能のものが得られたが、ガラス面の反射色調が赤から橙色と違和感のある色調であり、好ましいものではなかった。
さらに、耐湿性も2週間経過後膜の白濁のピンホール欠陥がみられ、好ましくなかった。
【0043】
比較例2
比較例1と比較して、第3層および第6層の金属バリアー層としてのZnの代わりに、Tiターゲットを用いてTiの金属バリアー層を成膜した。なお、各膜の膜厚は表1に示す通りである。
【0044】
評価の結果、可視光線透過率は約69%と高透過率であり、電磁波遮蔽性能も37dBと高性能のものが得られたが、比較例1と同様にガラス面の反射色調が赤から橙色と違和感のある色調であり、好ましいものではなかった。
さらに、耐湿性も2週間経過後膜の白濁のピンホール欠陥がみられ、好ましくなかった。
【0045】
比較例3
比較例2と同じターゲットを用いて、表1に示す膜厚に成膜した。
【0046】
評価の結果、可視光線透過率は約76%と高透過率であり、電磁波遮蔽性能も30dBものが得られたが、ガラス面の反射色調が白から赤紫色と違和感のある色調であり、好ましいものではなかった。
さらに、耐湿性も2週間経過後膜の白濁のピンホール欠陥がみられ、好ましくなかった。
【0047】
比較例4
比較例1と同様に、カソードには予め、Zn、Ag、ZnAの各金属ターゲットを取り付けた。先ず1パス目として、成膜室の雰囲気を酸化性雰囲気(O:Ar=8:2)に保持し、第1層としてのZnO層を38.0nm成膜した。次に2パス目として雰囲気をAr100%の不活性雰囲気に保持し、次いでAg層を17.0nm、第3層のZnAl層を1.0nm成膜した。3パス目として成膜室の雰囲気を再び酸化性雰囲気(O:Ar=8:2)に保持し、第4層の1層目としてのZnAlO層を3.6nm、2層目としてのZnO層を61.4nmを順次成膜し、さらに4パス目として2パス目と同じ雰囲気で、第5層のAg層を17.0nm、第6層のZnAl層を1.0nm成膜し、5パス目として3パス目と同じ雰囲気でZnAlO層を3.6nm、次いでZnO層を28.4nmを順次成膜したのち、成膜室より排出した。
なお、第4層および第7層の酸化物層の膜厚は、合計でそれぞれ69.0nm、34.0nmであった。
【0048】
評価の結果、可視光線透過率は約72%と高透過率であり、電磁波遮蔽性能も36dBと高性能のものが得られたが、比較例1と同様にガラス面の反射色調が赤から橙色と違和感のある色調であり、好ましいものではなかった。
さらに、耐湿性も2週間経過後膜の白濁のピンホール欠陥がみられ、好ましくなかった。
【0049】
比較例5
比較例4と同じターゲットを用いて、表1に示すような膜厚になるようにそれぞれ成膜した。
【0050】
評価の結果、可視光線透過率は約71%と高透過率であり、電磁波遮蔽性能も36dBと高性能のものが得られたが、比較例3と同様にガラス面の反射色調が白から紫色と違和感のある色調であり、好ましいものではなかった。
さらに、耐湿性も2週間経過後膜の白濁のピンホール欠陥がみられ、好ましくなかった。
【0051】
【発明の効果】
本発明は、反射色調が無彩色から青緑色である違和感のない30dB以上(1GHz)の高電磁波遮蔽性能を有し、さらに可視光線透過率が80%以下から30%まで自在に得られる耐湿性の優れた高品質・高性能の電磁波遮蔽膜付き基板が容易に得られる効果を有する。
【図面の簡単な説明】
【図1】反射色調の色度座標図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate provided with an electromagnetic wave shielding film that prevents external electromagnetic waves from entering a room or prevents generated electromagnetic waves from being output to the outside.
[0002]
[Prior art and problems to be solved]
In office buildings, etc., electromagnetic waves generated by electronic equipment such as OA equipment, high-frequency equipment, etc. in the building do not emit to the outside, but electromagnetic waves arriving from external automobiles, vehicles such as trains, various wireless devices, high-voltage lines, etc. In recent years, it has been demanded that a floor in a building be made an independent space for radio waves by not allowing a building to enter a building.
[0003]
Therefore, in a building or the like, it is necessary to use an electromagnetic wave shielding structure for walls, ceilings, floors, and the like, and to use an electromagnetic wave shielding member for an opening such as a window so that the entire building or a specific floor has an electromagnetic shielding structure. is there.
[0004]
As an electromagnetic wave shielding glass suitable for such windows and the like, there is a glass in which a conductive film such as an ITO film or a SnO2 film is coated on the glass. However, in order to make the electromagnetic wave shielding performance 30 dB or more, a surface sheet of the film is required. It is necessary that the resistance be as low as 2.3 Ω / □ or less, and for that purpose, the film thickness needs to be increased to about 1,000 nm or more.
However, such a thick film has the drawbacks that the visible light transmittance becomes extremely low and it is difficult to obtain a neutral color tone.
[0005]
In addition, for example, Japanese Patent Publication No. 5-70580 and Japanese Patent Publication No. 8-324436 generally disclose a low-E film having a low resistance value in which two Ag layers are alternately laminated with a transparent oxide. Are known. However, with these structures, it is possible to obtain a glass having a relatively high visible light transmittance and a low resistance value, but in order to obtain a glass having a low resistance of 2.3 Ω / □ or less as described above, It is necessary that the thickness of each of the two Ag layers be 15 nm or more.
If this is done, the visible light transmittance will be low and the outside scene will be almost invisible, or the reflection color will be very dark, such as reddish purple. Has the drawback that it cannot be used.
Further, a conventional silver layer is inferior in moisture resistance, so that spot-like defects may be generated unless sufficient care is taken in handling.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of the above-mentioned problems, and has an electromagnetic wave shielding film having a high electromagnetic wave shielding performance of 30 dB or more (1 GHz) that has high visible light transmittance, has excellent moisture resistance, and does not have a sense of incongruity in reflection color tone. As a result of diligent studies on the substrate with a coating, even if the Ag layer is thickened to 15 nm or more, the metal barrier layer made of a ZnAl alloy in which Al metal is added to zinc metal has a specific thickness even immediately above the silver layer. The present inventors have found that a high-quality substrate with an electromagnetic wave shielding film having high electromagnetic wave shielding performance can be obtained by providing such a structure.
[0007]
That is, the present invention has, on a transparent substrate, a transparent oxide layer and / or of a transparent nitride layer from comprising a first layer / Ag layer second layer / ZnAl made of a metal burr A over layer of an alloy third layer / a transparent oxide layer and / or the transparent nitride layer consisting of the fourth layer / Ag layer of the fifth layer / ZnAl alloy consisting of metal burrs a over layer 6th layer / transparent oxide layer and / or the transparent nitride The first layer has a thickness of 26 to 36 nm, the second layer and the fifth layer have a thickness of 15 to 50 nm, and the third and sixth layers have a thickness of 26 to 36 nm. Each having a thickness of 1.5 nm or less, a fourth layer having a thickness of 80 to 100 nm, and a seventh layer having a thickness of 23 to 40 nm.
[0008]
Further, the surface sheet resistance of the coating is 2.3 Ω / □ or less, the visible light transmittance is 30 to 80%, and the reflection color tone of the transparent substrate surface not coated with the coating is −20 <in La * b * display. It is preferable to exhibit an achromatic to slightly blue-green color tone in the range of a * <− 5 and −40 <b * <10.
[0009]
Further, the transparent metal oxide layer and / or the transparent metal nitride layer of the first layer, the fourth layer and the seventh layer are made of ZnO 2 , ZnAlO 2 , SnO 2 , TiO 2 , Al 2 N 3 , and Si 2 N 3 It is preferred that it be made of at least one selected from the group consisting of:
[0010]
Further, the metal barrier layer of ZnAl is preferably a ZnAl alloy containing 1 to 10 atomic% of Al. Further, the second and fifth Ag layers have a thickness of 20 nm or more and an electromagnetic wave shielding at 1 GHZ. Preferably, the performance is at least 40 dB.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Electromagnetic shielding film-coated substrate of the present invention, on a transparent substrate, made of a transparent oxide layer and / or of a transparent nitride layer from comprising a first layer / Ag layer second layer / ZnAl alloy metal burrs A over layer third layer / transparent oxide layer and / or consisting of the fourth layer / Ag layer made of a transparent nitride layer fifth layer / ZnAl alloy consisting of metal burrs a over layer 6th layer / transparent oxide layer and / or A film composed of a seventh layer made of transparent nitride is sequentially laminated, the first layer having a thickness of 26 to 36 nm, the second and fifth layers having a thickness of 15 to 50 nm, the third layer and the sixth layer, respectively. Each of the layers has a thickness of 1.5 nm or less, the fourth layer has a thickness of 80 to 100 nm, and the seventh layer has a thickness of 23 to 40 nm.
[0012]
The first, fourth, and seventh layers made of the transparent oxide layer and / or the transparent nitride layer are made of a transparent oxide such as ZnO 2 , ZnAlO 2 , SnO 2 , and TiO 2 , Al 2 N 3 , and Si. it is preferably made of at least one selected from among transparent nitrides such as 2 N3.
By setting the thickness of the first layer in the range of 26 to 36 nm, the thickness of the fourth layer in the range of 80 to 100 nm, and the thickness of the seventh layer in the range of 23 to 40 nm, desired color tone and optical characteristics are obtained. be able to.
[0013]
Among them, an amorphous film composed of a SnO 2 layer and / or a TiO 2 layer serving as an oxide layer is chemically and mechanically strong, and has an adhesive force to glass due to an amorphous loose structure. Strong and hard to generate internal stress. Therefore, the first layer coating directly above the glass is preferably a SnO 2 layer and / or a TiO 2 layer. The thickness of the first layer of SnO 2 and / or TiO 2 for increasing the adhesion to glass and cutting off the influence of alkali ions must be at least 5 nm.
[0014]
However, the SnO 2 layer and / or the TiO 2 layer are particularly inferior in adhesion to Ag, and are likely to peel off at the SnO 2 layer, TiO 2 layer / Ag layer interface. In addition, SnO 2 has a weak bond with oxygen, as can be seen from its ionization tendency, and has a high chemical potential of oxygen in the film, so that oxygen is easily diffused into the Ag layer, the electric resistance increases, and high electromagnetic wave shielding is achieved. hard.
[0015]
From the above, it is preferable that the layer composed of the SnO 2 layer and / or the TiO 2 layer is not brought into contact with the Ag layer. Note that the SnO 2 layer and / or the TiO 2 layer may contain an element as an amorphous coating component that improves the chemical and mechanical properties and enhances the adhesion to glass.
[0016]
Since the ZnO 2 layer has a high adhesion to the Ag layer and a low oxygen potential in the layer due to a high bonding force with oxygen, oxygen is unlikely to diffuse into the Ag layer. Therefore, the layer immediately below the Ag layer is preferably a ZnO 2 layer. The ZnO 2 layer must have a thickness of at least 3 nm in order to prevent diffusion of oxygen from the SnO 2 layer thereunder and to obtain a strong adhesion to the Ag layer. The ZnO 2 layer may contain a known element as a component of the coating that does not decrease the adhesion to the Ag layer and makes it difficult for oxygen to diffuse into the Ag layer.
[0017]
It is important to keep the chemical potential of oxygen in the oxide layer in contact with the Ag layer as low as possible, and it is desirable to add as much argon as possible together with oxygen to the atmosphere during the formation of ZnO 2 . A desirable argon addition rate varies depending on the equipment, but is generally about 10 to 30%. This value is determined by gradually adding argon from an oxygen atmosphere, observing a sudden increase in the voltage applied to the target or a sudden decrease in the current, and then slightly reducing the argon.
[0018]
In addition, the ZnO 2 layer is dense and has an effect of preventing the diffusion of corrosive gas in the atmosphere, and has a function of absorbing ultraviolet rays contained in sunlight, but has low chemical durability. When a ZnO 2 layer is used, it is desirable to further provide an SnO 2 layer and / or a TiO 2 layer, which are amorphous oxides, on the ZnO 2 layer. The thickness of the SnO 2 layer and / or TiO 2 layer is preferably 1 nm or more.
[0019]
The thickness of the Ag layer used for the second layer and the fifth layer affects the electromagnetic wave shielding property, the visible light transmittance and the reflection color tone, and a thickness of 15 nm or more is required to obtain a high electromagnetic wave shielding property of 30 dB or more. In order to ensure high visible light transmittance, especially 70% or more, and to avoid red reflected light, the thickness is preferably 60 nm or less.
[0020]
By setting the thickness of the Ag layer to 20 nm or more, the surface sheet resistance of the film becomes a low resistance of 2 Ω / □ or less, and the electromagnetic shielding performance is 40 dB or more. For such a window, it is particularly preferable that the thickness of the Ag layer be 20 nm or more. The Ag layer may contain Ag as a main component and Ag may contain elements such as Au, Cu, Pt, and Ir.
[0021]
The fourth and seventh metal barrier layers used immediately above the Ag layer are ZnAl containing 1 to 10 atomic% of Al having high adhesion to both the Ag layer and the oxide layer and / or the nitride layer. An alloy layer is desirable. The metal barrier layer referred to here is an alloy layer immediately after the fourth and / or seventh metal barrier layer is formed immediately above the Ag layer. When forming the fourth layer or the seventh oxide layer on the upper layer, since the film is formed in an oxidizing atmosphere (for example, oxygen 80%, argon 20%), a part of the upper layer of the alloy layer is formed. Is converted to an oxide. This upper layer portion is referred to as a metal barrier layer including the oxidized oxide layer and the remaining alloy layer. That is, the thickness of the metal barrier layer refers to the thickness when the ZnAl alloy layer is first formed.
[0022]
The function of the metal barrier layer is to prevent the influence of the oxidizing atmosphere from forming on the lower Ag layer when forming the fourth or seventh oxide layer. This is to protect, or in the case of nitride, protect the Ag layer from being oxidized by interposing the metal barrier layer so that the Ag layer is not oxidized. Further, it also has an effect of preventing moisture in the atmosphere from entering the film after film formation and oxidizing Ag, and improving the moisture resistance of the Ag layer.
As the metal barrier layer, a ZnAl alloy is preferable as described above. In particular, a ZnAl alloy containing 1.0 to 10.0 atomic% of Al has a high bonding force with oxygen and is most effectively diffused into the Ag layer. It is particularly preferable because it traps oxygen and other corrosive ions that have been generated.
[0023]
It goes without saying that the thicker the metal barrier layer is, the longer the strong effect lasts. However, if the metal barrier layer is too thick, the visible light transmittance is reduced. However, when the next oxide film is formed, a part of the metal barrier layer is oxidized. Therefore, the thickness of the first metal layer before the oxidation is set to, for example, 8 nm or less, and the part is oxidized as described above. If the remaining metal barrier layer has a thickness of 1.5 nm or less, a high transmittance can be obtained.
[0024]
As the transparent substrate of the present invention, transparent glass, plastic or the like can be used.For example, the glass substrate is a common plate glass commonly used for automobiles and architectural glass, so-called float plate glass, etc. Needless to say, it can be used as various kinds of colored glass such as green and bronze, various kinds of functional glass, tempered glass and the like, laminated glass, multi-layer glass, and various kinds of sheet glass products such as flat and bent plates. Further, the glass may be a laminate with a transparent plastic plate or the like. The glass composition is soda lime glass, aluminosilicate glass, or the like, but it is needless to say that the glass composition is not limited to these.
[0025]
The obtained substrate with an electromagnetic wave shielding film has a surface sheet resistance of 2.3 Ω / □ or less, a visible light transmittance of 30 to 80%, and can be freely controlled from a high transmittance to a low transmittance. For La * b * display,
Since it has a color tone ranging from achromatic to slightly blue-green in the range of -20 <a * <-5 and -40 <b * <10, the color tone has a calm feeling without discomfort when visually observed. Further, the electromagnetic wave shielding performance (1 GHZ) can be 30 dB, and a higher performance of 40 dB or more can be freely selected depending on the application.
[0026]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. The film was formed by DC magnetron sputtering. However, the present invention is not limited to such an embodiment.
[0027]
Example 1
A coating was formed on a float glass measuring 1800 mm × 24000 mm × about 3 mm in the following order. The sputtering apparatus attaches each metal target of Sn, Zn (three), Ag, and ZnAl (Al content: 4 atomic%) to the cathode in advance, and until the pressure before film formation reaches 5 × 10 −5 Torr. The vacuum chamber was sufficiently evacuated. In this method, a transfer roll is installed below a target in a vacuum chamber, and when a glass plate reciprocates on the roll, a predetermined metal layer or metal oxide layer is applied to the glass plate from a target to which power is applied. A film is formed.
[0028]
First, in the first pass, the atmosphere in the film formation chamber is kept in an oxidizing atmosphere (O 2 : Ar = 8: 2), and an SnO 2 layer as a first layer of 8.8 nm is formed as a first layer using a Sn target. After that, a 23.1 nm-thick ZnO 2 layer as the first layer was formed with a Zn target under the same conditions as the first layer. Next, in the second pass, the atmosphere is maintained in an inert atmosphere of Ar 100%, the Ag layer as the second layer is 16.5 nm with the Ag target, and the third ZnAl alloy layer (so-called metal barrier layer) with the ZnAl target. 0.8 nm was formed. As a third pass, the atmosphere in the film formation chamber was again kept in an oxidizing atmosphere (O 2 : Ar = 8: 2), and a fourth oxide layer was formed. A ZnAlO 2 layer as a first layer of the fourth layer was 3.6 nm, a SnO 2 layer as a second layer was 6.9 nm, and a ZnO 2 layer as a third layer was 17.9 nm. Further, as a fourth pass, a ZnO 2 layer as an additional third layer is formed at 17.8 nm in the same atmosphere as the third pass, and a SnO 2 layer as a fourth layer is formed at 13.8 nm, and further as a fifth pass. A ZnO 2 layer as a fifth layer was formed to a thickness of 35.7 nm. Further, in the sixth pass, the atmosphere is maintained in an inert atmosphere of Ar 100%, the Ag layer as the fifth layer is 16.5 nm with an Ag target, and the sixth ZnAl alloy layer (so-called metal barrier layer) is set as 0 with a ZnAl target. A film having a thickness of 0.8 nm was formed. Next, in the seventh pass, the atmosphere in the film formation chamber is again kept in the oxidizing atmosphere (O 2 : Ar = 8: 2), and the ZnAlO 2 layer as the first layer of the seventh layer is 2.9 nm and the second layer is the second layer. 5.5nm the SnO 2 layer as a, 18.7 nm of ZnO 2 layer as the third layer, and 1.7nm sequentially deposited SnO 2 layer as a fourth layer as 8-pass, the glass from the film forming chamber Discharged.
[0029]
When the fourth and seventh layers are formed in an oxidizing atmosphere on the third and sixth ZnAl alloy layers (metal barrier layers), the third and sixth ZnAl alloy layers are Had been oxidized.
The total thickness of the first, fourth, and seventh oxide layers was 31.9 nm, 95.7 nm, and 28.8 nm, respectively.
Table 1 shows the film configuration and the thickness of each film.
In Table 1, the ZnO 2 layer, SnO 2 layer, and ZnAlO 2 layer are represented by ZnO, SnO, and ZnAlO for simplification.
[0030]
[Table 1]
Figure 0003549761
Further, the film thickness D of each film is adjusted by the transport speed and the cathode power, and the value is previously removed by partially etching the film formed at the power E 0 and the transport speed V 0 to a thickness of about 100 nm, The step is measured with a stylus type surface roughness meter to determine the thickness D 0, and the cathode power E and the transport speed are V in the examples, and according to the formula of D = D 0 × E / E 0 × V 0 / V. I asked.
[0031]
Visible light transmittance (%) of the obtained electromagnetic wave shielding substrate, reflectance (%) of the glass surface on the uncoated side, reflection color tone a * value of glass surface, b * value (La * b * display) Table 2 shows the color tone of the glass surface (visual angle; straight front and 45 ° direction), the sheet resistance value (Ω / □), the electromagnetic shielding performance value (1 GHZ), and the moisture resistance of the glass surface. FIG. 1 shows the chromaticity coordinates of the color tone.
[0032]
The symbols ◎, Δ, and × in the column of moisture resistance in Table 2 indicate the following.
[0033]
:: After 2 weeks, no defect with diameter = 0.2 mm or more 以上: After 2 weeks, defect with diameter = 0.2 mm or more, no defect with diameter = 0.5 mm or more ×: After 2 weeks, diameter = 0. There is a defect of 5 mm or more. In the chromaticity coordinates of FIG. 1, (1) to (8) in the figure indicate the following sample Nos.
[0034]
(1); Example 1, (2); Example 2, (3); Example 3, (4); Comparative Example 1, (5); Comparative Example 2, (6); Comparative Example 3, (7). ▼; Comparative Example 4, ▲ 8 ▼; Comparative Example 5
[0035]
[Table 2]
Figure 0003549761
The visible light transmittance of the obtained electromagnetic wave shielding substrate was measured by a spectrophotometer, and the reflection color tone was photoal (model: MC-850A (control), MCPD100 (spectro multichannel), UV-VIS (photodetector), Otsuka Electronics), the resistance value is measured by a 4-probe probe resistance meter (manufactured by Epson), and the electromagnetic wave shielding performance conforms to the U.S. military standard MIL-std285. (Environmental tester Tabayetac, product name, built-in H series, model TBL-3HWOGAC).
[0036]
As a result of the evaluation, as shown in Table 2 and FIG. 1, the visible light transmittance was as high as about 75%, the reflection color of the glass surface was a calm color from green to bluish green, and the electromagnetic wave shielding performance was as high as 35 dB or more. Performance was obtained.
Furthermore, the moisture resistance was also good.
[0037]
Example 2
Compared to Example 1, the fourth and fifth ZnO 2 layers were not formed, and the other layers were formed in the same manner as in Example 1 so as to have a film thickness as shown in Table 1.
Note that the total thickness of the oxide layers of the first, fourth, and seventh layers was 33.4 nm, 85.8 nm, and 35.7 nm, respectively.
[0038]
As a result of the evaluation, the visible light transmittance was as high as about 66%, the reflection color tone of the glass surface was calm from blue-green to blue, and the electromagnetic wave shielding performance was 41 dB, which was high.
Furthermore, the moisture resistance was also good. In the column of moisture resistance in Table 2, ◎ indicates good moisture resistance, Δ indicates poor long-term moisture resistance, which is not preferable, and X indicates poor moisture resistance.
[0039]
Example 3
Compared to Example 1, the fourth and fifth ZnO 2 layers were not formed, and the other layers were formed in the same manner as in Example 1 so as to have a film thickness as shown in Table 1.
Note that the total thickness of the first, fourth, and seventh oxide layers was 34.8 nm, 91.1 nm, and 35.4 nm, respectively.
[0040]
As a result of the evaluation, the visible light transmittance was about 56%, which slightly suppressed the transparency, and the reflection color of the glass surface was a calm color from blue green to blue, and the electromagnetic wave shielding performance was 43 dB, which was high performance. was gotten.
Furthermore, the moisture resistance was also good.
[0041]
Comparative Example 1
As in Example 1, each metal target of Zn and Ag was attached to the cathode in advance. First, as a first pass, the atmosphere in the film formation chamber was kept in an oxidizing atmosphere (O 2 : Ar = 8: 2), and a ZnO 2 layer as a first layer was formed to a thickness of 38.0 nm. Next, in the second pass, the atmosphere was maintained in an inert atmosphere of 100% Ar, and then an Ag layer was formed to 16.6 nm and a third Zn layer was formed to 1.7 nm. In the third pass, the atmosphere in the film forming chamber is again kept in the oxidizing atmosphere (O 2 : Ar = 8: 2), then a ZnO 2 layer is formed to a thickness of 70 nm, and as the fourth pass, the same atmosphere as in the second pass Then, the fifth Ag layer is formed to a thickness of 16.6 nm, the sixth Zn layer is formed to a thickness of 1.7 nm, and a fifth pass is formed by forming a ZnO 2 layer of 32.5 nm in the same atmosphere as the third pass. Was discharged from the film forming chamber.
[0042]
As a result of the evaluation, the visible light transmittance was as high as about 65%, and the electromagnetic wave shielding performance was as high as 36 dB. However, the reflection color tone of the glass surface was a strange color from red to orange. Yes, not preferred.
Further, the film was unfavorable in moisture resistance after 2 weeks, because pinhole defects of cloudiness were observed in the film.
[0043]
Comparative Example 2
In comparison with Comparative Example 1, a Ti metal barrier layer was formed using a Ti target instead of Zn as the third and sixth metal barrier layers. The thickness of each film is as shown in Table 1.
[0044]
As a result of the evaluation, the visible light transmittance was as high as about 69%, and the electromagnetic wave shielding performance was as high as 37 dB. However, as in Comparative Example 1, the reflection color tone of the glass surface was red to orange. The color tone was uncomfortable, and was not preferable.
Further, the film was unfavorable in moisture resistance after 2 weeks, because pinhole defects of cloudiness were observed in the film.
[0045]
Comparative Example 3
Using the same target as in Comparative Example 2, a film was formed to a film thickness shown in Table 1.
[0046]
As a result of the evaluation, the visible light transmittance was as high as about 76%, and the electromagnetic wave shielding performance was as high as 30 dB. However, the reflection color tone of the glass surface was uncomfortable from white to reddish purple, which is preferable. It was not something.
Further, the film was unfavorable in moisture resistance after 2 weeks, because pinhole defects of cloudiness were observed in the film.
[0047]
Comparative Example 4
As in Comparative Example 1, metal targets of Zn, Ag, and ZnA were attached to the cathode in advance. First, as a first pass, the atmosphere in the film formation chamber was kept in an oxidizing atmosphere (O 2 : Ar = 8: 2), and a ZnO 2 layer as a first layer was formed to a thickness of 38.0 nm. Next, as the second pass, the atmosphere was maintained in an inert atmosphere of 100% Ar, and then an Ag layer was formed to 17.0 nm and a third ZnAl layer was formed to 1.0 nm. In the third pass, the atmosphere in the film formation chamber is again kept in the oxidizing atmosphere (O 2 : Ar = 8: 2), and the ZnAlO 2 layer as the first layer of the fourth layer is 3.6 nm, and the second layer is the second layer. A ZnO 2 layer is sequentially formed to a thickness of 61.4 nm, a fourth pass is formed in the same atmosphere as in the second pass, and a fifth Ag layer is formed to 17.0 nm and a sixth ZnAl layer is formed to a thickness of 1.0 nm. In the same atmosphere as the third pass, a ZnAlO 2 layer of 3.6 nm and a ZnO 2 layer of 28.4 nm were successively formed in the same atmosphere as the third pass, and then discharged from the film forming chamber.
Note that the total thickness of the fourth and seventh oxide layers was 69.0 nm and 34.0 nm, respectively.
[0048]
As a result of the evaluation, the visible light transmittance was as high as about 72% and the electromagnetic wave shielding performance was as high as 36 dB. However, as in Comparative Example 1, the reflection color tone of the glass surface was red to orange. The color tone was uncomfortable, and was not preferable.
Further, the film was unfavorable in moisture resistance after 2 weeks, because pinhole defects of cloudiness were observed in the film.
[0049]
Comparative Example 5
Films were formed using the same targets as in Comparative Example 4 so as to have film thicknesses as shown in Table 1.
[0050]
As a result of the evaluation, the visible light transmittance was as high as about 71% and the electromagnetic wave shielding performance was as high as 36 dB. However, as in Comparative Example 3, the reflection color tone of the glass surface was white to purple. The color tone was uncomfortable, and was not preferable.
Further, the film was unfavorable in moisture resistance after 2 weeks, because a pinhole defect of cloudiness was observed in the film.
[0051]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention has a high electromagnetic wave shielding performance of 30 dB or more (1 GHz) without a sense of incongruity in which the reflection color tone is achromatic to bluish green, and furthermore, a moisture resistance that allows visible light transmittance to be freely obtained from 80% or less to 30%. This has the effect of easily obtaining a high-quality, high-performance substrate with an electromagnetic wave shielding film having excellent characteristics.
[Brief description of the drawings]
FIG. 1 is a chromaticity coordinate diagram of a reflection color tone.

Claims (5)

透明基板上に、透明酸化物層および/または透明窒化物層よりなる第1層/Ag層よりなる第2層/ZnAl合金の金属バリー層よりなる第3層/透明酸化物層および/または透明窒化物層よりなる第4層/Ag層よりなる第5層/ZnAl合金の金属バリー層よりなる第6層/透明酸化物層および/または透明窒化物よりなる第7層からなる被膜が順次積層され、第1層目の膜厚が26〜36nm,第2層および第5層の膜厚がそれぞれ15nm〜50nm、第3層および第6層の膜厚がそれぞれ1.5nm以下、第4層の膜厚が80〜100nm、第7層の膜厚が23〜40nmからなることを特徴とする電磁波遮蔽膜付き基板。 On a transparent substrate, a third layer / transparent oxide layer made of a transparent oxide layer and / or the second layer / ZnAl alloy metal burrs A over layer made of the first layer / Ag layer made of a transparent nitride layer and / or a fourth layer / Ag layer than consisting fifth layer / ZnAl alloy consisting of metal burrs a over layer 6th layer / transparent oxide layer and / or the seventh layer of a transparent nitride made of a transparent nitride layer Coatings are sequentially laminated, the first layer having a thickness of 26 to 36 nm, the second and fifth layers each having a thickness of 15 to 50 nm, and the third and sixth layers each having a thickness of 1.5 nm or less. And a fourth layer having a thickness of 80 to 100 nm and a seventh layer having a thickness of 23 to 40 nm. 前記被膜の表面シート抵抗値が2.3Ω/□以下、前記膜付き基板の可視光線透過率が30〜80%、被膜の被覆されていない透明基板面の反射色調はLa*b*表示において−20<a*<−5、−40<b*<10の範囲である無彩色からやや青緑色の色調を呈することを特徴とする請求項1記載の電磁波遮蔽膜付き基板。The surface sheet resistance of the film is 2.3Ω / □ or less, the visible light transmittance of the film-coated substrate is 30 to 80%, and the reflection color tone of the transparent substrate surface not coated with the film is La−b * display. 2. The substrate with an electromagnetic wave shielding film according to claim 1, wherein the substrate has an achromatic color to a slightly bluish green color in a range of 20 <a * <-5 and -40 <b * <10. 第1層、第4層および第7層の透明金属酸化物層および/または透明金属窒化物層は、ZnO2,ZnAlO2、SnO2、TiO2、Al23、Si23のうちから選択された少なくとも1種からなることを特徴とする請求項1乃至2記載の電磁波遮蔽膜付き基板。The first, fourth, and seventh transparent metal oxide layers and / or transparent metal nitride layers are formed of ZnO 2 , ZnAlO 2 , SnO 2 , TiO 2 , Al 2 N 3 , and Si 2 N 3 . 3. The substrate with an electromagnetic wave shielding film according to claim 1, wherein the substrate comprises at least one selected from the group consisting of: ZnAl合金の金属バリアー層は、Alを1〜10原子%含むZnAl合金であることを特徴とする請求項1乃至3記載の電磁波遮蔽膜付き基板。4. The substrate with an electromagnetic wave shielding film according to claim 1, wherein the ZnAl alloy metal barrier layer is a ZnAl alloy containing 1 to 10 atomic% of Al. 第2層および第5層のAg層の膜厚がそれぞれ20nm以上で、1GHZにおける電磁波遮蔽性能が40dB以上であることを特徴とする請求項1乃至4記載の電磁波遮蔽膜付き基板。5. The substrate with an electromagnetic wave shielding film according to claim 1, wherein the thickness of each of the second and fifth Ag layers is 20 nm or more, and the electromagnetic wave shielding performance at 1 GHZ is 40 dB or more.
JP04932399A 1999-02-26 1999-02-26 Substrate with electromagnetic wave shielding film Expired - Lifetime JP3549761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04932399A JP3549761B2 (en) 1999-02-26 1999-02-26 Substrate with electromagnetic wave shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04932399A JP3549761B2 (en) 1999-02-26 1999-02-26 Substrate with electromagnetic wave shielding film

Publications (2)

Publication Number Publication Date
JP2000252682A JP2000252682A (en) 2000-09-14
JP3549761B2 true JP3549761B2 (en) 2004-08-04

Family

ID=12827781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04932399A Expired - Lifetime JP3549761B2 (en) 1999-02-26 1999-02-26 Substrate with electromagnetic wave shielding film

Country Status (1)

Country Link
JP (1) JP3549761B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547657B2 (en) * 2001-04-04 2010-09-22 日本電気硝子株式会社 Fireproof glass articles
JP2002368482A (en) * 2001-06-11 2002-12-20 Gunze Ltd Electromagnetic wave shielding member and method of manufacturing the same
WO2003037056A1 (en) * 2001-10-26 2003-05-01 Central Glass Company, Limited Substrate with electromagnetic shield film
US7514037B2 (en) * 2002-08-08 2009-04-07 Kobe Steel, Ltd. AG base alloy thin film and sputtering target for forming AG base alloy thin film
FR2859721B1 (en) * 2003-09-17 2006-08-25 Saint Gobain TRANSPARENT SUBSTRATE WITH THIN FILM STACK FOR ELECTROMAGNETIC SHIELDING
JP2007191384A (en) * 2005-12-22 2007-08-02 Central Glass Co Ltd Low emissivity glass
JP4935215B2 (en) * 2006-07-18 2012-05-23 日亜化学工業株式会社 Light emitting device
JP4858032B2 (en) * 2006-09-15 2012-01-18 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2000252682A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US5962115A (en) Pane of transparent material having a low emissivity
JP4602498B2 (en) Transparent substrate with thin film laminate
JP3902676B2 (en) Transparent substrate with a thin film stack acting on sunlight and / or infrared
JP5851495B2 (en) Solar control plate glass
JP4109451B2 (en) Window glass
JP4988342B2 (en) Transparent substrate with thin film multilayers and reflective in the range of infrared and / or solar radiation
WO1998013850A1 (en) Plasma display protective plate and its manufacturing method
KR101027610B1 (en) Electromagnetic shielding multilayer body and display using same
JPWO2006090798A1 (en) Electromagnetic wave shielding laminate and display device using the same
JP4114429B2 (en) Laminates and structures
WO2006088108A1 (en) Conductive laminated body, electromagnetic wave shielding film for plasma display and protection plate for plasma display
WO2002004376A1 (en) Photocatalytic member
WO2006059448A1 (en) Electroconductive laminate, and electromagnetic wave shielding film and protective plate for plasma display
JP3053668B2 (en) Heat shielding film
JP4013329B2 (en) Laminate and glass laminate for window
JP7038868B2 (en) Laminated glazing for solar control
JP3549761B2 (en) Substrate with electromagnetic wave shielding film
CA2261080A1 (en) Sunlight shielding translucent glass panel and sunlight shielding translucent multilayer glass panel assembly
JP3335384B2 (en) Heat shielding film
TW200300109A (en) Substrate with electromagnetic shield film
WO2011001983A1 (en) Conductive laminate and protective sheet for plasma display
JPWO2018051638A1 (en) Solar radiation shielding member
JP3724936B2 (en) Low emission glass laminate
JP2003133787A (en) Substrate with electromagnetic wave shielding film
JP3924849B2 (en) Transparent conductive film and electromagnetic wave shielding filter using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term