JP2004127851A - Conductive film complex and forming method of conductive film - Google Patents

Conductive film complex and forming method of conductive film Download PDF

Info

Publication number
JP2004127851A
JP2004127851A JP2002294081A JP2002294081A JP2004127851A JP 2004127851 A JP2004127851 A JP 2004127851A JP 2002294081 A JP2002294081 A JP 2002294081A JP 2002294081 A JP2002294081 A JP 2002294081A JP 2004127851 A JP2004127851 A JP 2004127851A
Authority
JP
Japan
Prior art keywords
conductive film
receiving layer
heating
substrate
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002294081A
Other languages
Japanese (ja)
Other versions
JP4234970B2 (en
Inventor
Hiroshi Mihashi
三橋 浩
Takuya Tonomura
外村 卓也
Yoshihisa Mori
森 宣久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2002294081A priority Critical patent/JP4234970B2/en
Publication of JP2004127851A publication Critical patent/JP2004127851A/en
Application granted granted Critical
Publication of JP4234970B2 publication Critical patent/JP4234970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Paints Or Removers (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive film complex not requiring heating at manufacturing or exhibiting a high conductivity by heating at low temperatures and capable of being formed on a substrate with scarce heat resistance. <P>SOLUTION: The conductive film complex comprises an acceptor layer containing at least a porous inorganic filler and a conductive film formed with metallic colloid liquid coated and dried, of which, the acceptor layer and the conductive film are in contact with each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、製造する際に加熱を必要としないか又は低温で加熱することにより高い導電性を示し、耐熱性に乏しい基材上にも形成可能な導電性被膜複合体に関する。
【0002】
【従来の技術】
導電性被膜は、ブラウン管の電磁遮蔽、建材、自動車の赤外線遮蔽、電子機器や携帯電話の静電気帯電防止材、曇りガラスの熱線、回路基板やICカードの配線、樹脂に導電性を付与するためのコーティング、スルーホール、回路自体等の広い分野において用いられる。
【0003】
導電性被膜の製造方法としては従来から、例えば、金属の真空蒸着、化学蒸着、イオンスパッタリング等が行われてきた。しかしながら、これらの方法は真空系又は密閉系での作業を必要とするため、操作が煩雑な上、量産性に乏しく高価であるという問題があった。
【0004】
これに対し、金属粒子を分散媒に分散させた金属コロイド液を基材上に塗布し、加熱焼成することにより導電性被膜を得る方法が提案されている(特許文献1参照)。この方法によれば、真空系又は密閉系での作業を必要とせず、簡便な操作で、安価に導電性被膜を得ることができる。しかしながら、実用上充分な導電性を有する被膜を得るためには200℃以上の高い温度で加熱する必要があり、耐熱性に乏しい基材の上には導電性被膜を形成できないという問題があった。
【0005】
【特許文献1】
特開2001−35255号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、製造する際に加熱を必要としないか又は低温で加熱することにより高い導電性を示し、耐熱性に乏しい基材上にも形成可能な導電性被膜複合体を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、少なくとも多孔質の無機フィラーを含有する受容層と、金属コロイド液を塗布し乾燥することにより得られる導電性被膜とからなり、上記受容層と上記導電性被膜とが接している導電性被膜複合体である。
【0008】
本発明者は、金属コロイド液より形成される導電性被膜を、少なくとも多孔質の無機フィラーを含有する受容層と接するように形成することにより、通常では、導電性を発現させるために熱処理が必要なところ、加熱を必要としないか又は低温で加熱することにより、高い導電性を示す導電性被膜を得ることができることを見出し、本発明を完成するに至った。
以下に本発明を詳述する。
【0009】
本発明の導電性被膜複合体は、少なくとも多孔質の無機フィラーを含有する受容層と、金属コロイド液を塗布し乾燥することにより得られる導電性被膜とからなるものである。
【0010】
上記受容層は、少なくとも多孔質の無機フィラーを含有するものである。
上記多孔質の無機フィラーとしては特に限定されず、例えば、軽質炭酸カルシウム、重質炭酸カルシウム等の炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム等の炭酸マグネシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化チタン、酸化亜鉛、酸化マグネシウム、硫化亜鉛、炭酸亜鉛、サチンホワイト、焼成ケイソウ土等のケイソウ土、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、無定形シリカ、非晶質合成シリカ、コロイダルシリカ等のシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、水酸化マグネシウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、クレイ、ウンモ、ハイドロタルサイト、デラミカオリン、焼成カオリン、アルミノ珪酸塩、活性白土、ベントナイト、セリサイト等の鉱物質顔料、多孔質顔料、多孔質微粒子及び中空微粒子等を挙げることができる。これらは単独で用いられてもよく、2種以上が併用されてもよい。
上記多孔質の無機フィラーのなかでも、多孔質非晶質合成シリカ、多孔質炭酸マグネシウム、多孔質アルミナが好ましい。
【0011】
上記多孔質の無機フィラーの比表面積は、100m/g以上であることが好ましい。比表面積が100m/g未満であると、水吸水性が乏しく、金属コロイド液より形成する導電性被膜の導電性が低くなることがある。より好ましい下限値は200m/gであり、より好ましい上限値は1000m/gである。
【0012】
上記のように少なくとも多孔質の無機フィラーを含有する受容層に接して低温で形成した導電性被膜が高温で加熱焼成した被膜に比べ遜色のない導電性を示す理由は、必ずしも明白ではないが、多孔質で比表面積が大きい無機フィラーにより、導電性に悪影響を及ぼす成分が水系溶媒と共に受容層に吸収され、金属粒子同士があたかも高温焼成したのと同等の接触状態になるものと推定される。
【0013】
上記受容層は、更に水を受容できる高分子物質を含有することが好ましい。
上記水を受容できる高分子物質としては、水性及び/又は水分散性の高分子物質であれば特に限定されず、例えば、ポリビニルアルコール、シリル変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、カチオン変性ポリビニルアルコール、完全又は部分ケン化のポリビニルアルコール、アセトアセチル化ポリビニルアルコール、カルボキシル変性ポリビニルアルコール、オレフィン変性ポリビニルアルコール等のポリビニルアルコール類;カチオン化澱粉、両性澱粉、酸化澱粉、酸素変性澱粉、熱化学変性澱粉、エステル化澱粉、エーテル化澱粉等の澱粉類;カルボキシメチルセルロース、ヒドロキシエチルセルロース、カチオン化ヒドロキシエチルセルロース等のセルロース誘導体;カゼイン、ゼラチン、大豆蛋白、アルブミン、アラビアゴム、アルギン酸ソーダ等の天然樹脂;メラミン樹脂、尿素樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニルブチラール、アルキッド樹脂等の溶剤可溶性の合成樹脂;ポリ酢酸ビニル、スチレン−(メタ)アクリル酸エステル共重合体、酢酸ビニル−(メタ)アクリル酸(エステル)共重合体、エチレン−酢酸ビニル共重合体、ポリビニルピロリドン、ポリエステル、ポリスチレン、ポリ(メタ)アクリルアミド、(メタ)アクリルアミド系共重合体、スチレン−イソプレン共重合体、エチレン−プロピレン共重合体、ポリビニルエーテル、エピクロルヒドリン系樹脂、エポキシ系樹脂、ポリエチレンイミン系樹脂、ポリアミド系樹脂;無水マレイン酸樹脂、スチレン−ブタジエン共重合体、メチルメタクリレート−ブタジエン共重合体等の共役ジエン系共重合体ラテックス;(メタ)アクリル酸エステルの重合体又は共重合体、(メタ)アクリル酸の重合体又は共重合体等のアクリル系重合体ラテックス;エチレン−酢酸ビニル共重合体等のビニル系重合体ラテックス;これらの各種重合体のカルボキシル基等の官能基含有単量体による官能基変性重合体ラテックス;これらの各種重合体ラテックスにアニオン性基及び/又はカチオン性基が付与された官能基含有変性重合体ラテックス類等を挙げることができる。これらは単独で用いられてもよく、2種以上が併用されてもよい。
【0014】
上記受容層の厚さとしては、0.5μm以上であることが好ましい。0.5μm未満であると、水を充分に吸収せず、形成した導電性被膜の導電性が低くなる場合がある。あまりに厚いと基材を曲げたときにクラックが入る恐れがあるため、より好ましい下限値は1.0μmであり、より好ましい上限値は200μmである。
【0015】
上記受容層は、上記無機フィラー及び上記高分子物質等を含有する塗工液を塗布し乾燥することにより得られる。
上記受容層は、上記導電性被膜と接するように形成されればよく、その形成態様としては特に限定されず、例えば、基材上に上記塗工液を塗布し受容層を形成しその上に金属コロイド液を塗布し導電性被膜を形成してもよく、基材上に上記金属コロイド液を塗布し導電性被膜を形成しその上に上記塗工液を塗布し受容層を形成してもよい。更には導電性被膜と受容層とが基材上で隣接して形成されるように金属コロイド液と上記塗工液とを共に基材上に塗布してもよい。
【0016】
上記基材としては特に限定されず、例えば、紙やPET(ポリエチレンテレフタレート)製シート、ポリカーボネート等比較的熱に弱い基材;アルミナ焼結体、フェノール樹脂、ガラスエポキシ樹脂、ガラス等からなる基板;ガラス、樹脂、セラミックス等からなる建材;樹脂やセラミックス等で表面が形成された電子機器等を挙げることができる。
本発明によれば、導電性被膜を製造する際に加熱を必要としないか又は低温で加熱すればよいので、比較的熱に弱い基材を使用することもできる。
【0017】
上記塗工液を塗布する方法としては特に限定されず、例えば、スプレーコーター、ブレードコーター、エアーナイフコーター、ロールコーター、リバースロールコーター、バーコーター、カーテンコーター、ダイスロットコーター、グラビアコーター、チャンプレックスコーター、ブラシコーター、ツーロール、メータリングブレード式のサイズプレスコーター、ゲートロールコーター、ビルブレードコーター、ショートドウェルコーター等の塗工装置や、プレウェット法、フロート法、スクイズロール方式、ドクターバー方式等の通常の含浸装置等を用いる方法を挙げることができる。
上記塗工液を基材に塗工した後常温にて乾燥、又は、必要に応じて加熱して乾燥し、受容層を得ることができる。
【0018】
上記塗工液としては、インクジェット記録用紙用の材料として公知のものを使用することもできる。従って、受容層の上にインクジェットプリンタによって自在に描画することができる。
【0019】
基材上に受容層を形成する際、基材と受容層との濡れ性が悪い場合には、基材を表面処理し、濡れ性を向上させることができる。表面処理方法としては、公知の手法を用いることができ、例えば、物理的に表面を荒らす方法;プラズマ処理、オゾン処理、コロナ処理等の乾式化学処理法;クロム酸混液、濃硫酸、濃塩酸中に浸漬させる方法;シランカップリング剤やチタネートカップリング剤による湿式化学処理等を挙げることができる。これらの方法は単独で用いられてもよく、2種以上が併用されてもよい。
【0020】
上記導電性被膜は、金属コロイド液を塗布し乾燥することにより形成される。上記金属コロイド液は、金属粒子、それに吸着する分散剤、及び、分散媒からなる。
【0021】
上記金属粒子としては特に限定されず、例えば、金、銀、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム等からなるものを挙げることができる。これらのなかでも、金、銀、白金、パラジウムが好ましく、より好ましくは金、銀である。これらの金属は単独で用いられてもよく、2種以上が併用されてもよい。
特に銀を用いる場合には、銀とその他の金属とを併用することが好ましい。銀を用いると、その金属コロイド液を用いて形成される導電性被膜の導電率が良好となるが、マイグレーションの問題を考慮する必要が生じる。銀とその他の金属とを併用することにより、上記マイグレーションが起こりにくくなる。上記その他の金属としては、金、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム等を挙げることができる。なかでも、金、銅、白金、パラジウムが好適である。
【0022】
上記分散媒としては、水及び/又は水溶性溶剤が好ましい。分散媒として水及び/又は水溶性溶剤を用いることにより、金属コロイド液を乾燥して導電性被膜を製造する際、溶剤臭が強くならず、環境にも悪影響が少ない。
【0023】
上記金属コロイド液は分散剤を含有する。上記分散剤としては、分散媒に溶解し分散効果を示すものであれば特に限定されず、例えば、クエン酸三ナトリウム、クエン酸三カリウム、クエン酸三リチウム、リンゴ酸二ナトリウム、酒石酸二ナトリウム、グリコール酸ナトリウム等のイオン性化合物;ドデシルベンゼンスルホン酸ナトリウム、オレイン酸ナトリウム、ポリオキシエチレンアルキルエーテル、パーフルオロアルキルエチレンオキシド付加物等の界面活性剤;ゼラチン、アラビアゴム、アルブミン、ポリエチレンイミン、ポリビニルセルロース類等の高分子物質等を挙げることができる。これらの分散剤は単独で用いられてもよく、2種以上が併用されてもよい。
【0024】
上記導電性被膜は、金属コロイド液を塗布し乾燥することにより形成される。上記金属コロイド液は受容層上に塗布するのが一般的であるが、基材上に受容層と端部を接するように塗布してもよい。
上記受容層上又は基材上に金属コロイド液を塗布する方法としては特に限定されず、例えば、ディッピング、スクリーン印刷、スプレー方式、バーコード法、スピンコート法、インクジェット法、ディスペンサー法、刷毛による塗布等を挙げることができる。
【0025】
上記基材上に受容層及び導電性被膜を接して塗布・乾燥した導電性被膜複合体を、必要に応じて、基材を痛めず、他の不具合も発生しない条件下において更に加熱することもできる。上記加熱方法としては特に限定されず、例えば、オーブン中で加熱する方法の他、誘電加熱法、高周波加熱法等を挙げることができる。
【0026】
上記導電性被膜は、金属コロイド液を高温で加熱焼成して得た導電性被膜に比べて遜色のない導電性を示し、ブラウン管の電磁波遮蔽、建材又は自動車の赤外線遮蔽、電子機器や携帯電話の静電気帯電防止材、曇りガラスの熱線、回路基板やICカードの配線、樹脂に導電性を付与する為のコーティング、スルーホール、回路自体等に用いることができる。
【0027】
金属コロイド液を塗布し乾燥して導電性被膜を形成する方法であって、少なくとも多孔質の無機フィラーを含む受容層と上記導電性被膜とが接するように上記導電性被膜を形成する導電性被膜の形成方法もまた、本発明の1つである。
【0028】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0029】
(実施例1)
(1)受容層の形成
ポリビニルアルコール(PVA117、クラレ社製)と非晶質合成シリカ(ミズカシルP−78F、水沢化学工業社製)を100重量部:150重量部の割合で配合し、20重量%の濃度になるように水に溶解させて塗工液を作製した。上記塗工液を、PET製シートに乾燥時の厚さが約40μmになるように、バーコーターにより塗工した。その後塗工した受容層を、100℃、10分の条件で乾燥し、受容層を形成した。
【0030】
(2)金属コロイド液の作製
分散剤としてクエン酸ナトリウム二水和物(和光純薬工業社製)17.0gと還元剤としてタンニン酸(和光純薬工業社製)0.70gとを水280gに溶解させた水溶液に、10Nの水酸化ナトリウム水溶液3mlを加え、次いで室温雰囲気中でマグネティックスターラーにより攪拌しながら硝酸銀(和光純薬工業社製)1.97gを含む水溶液3mlを滴下して銀粒子を含む溶液を得た。得られた銀粒子を含む溶液を限外濾過器(ADVANTEC社製、ウルトラフィルターQ0500)を用いて脱塩した。CM−20S(東亜電波工業社製)で測定したろ液の電導度が100μS/cm以下になるまで脱塩を繰り返した後20mlまで濃縮し、この濃縮液を3000rpmで10分間遠心分離した。このとき、下層の沈殿と上層の分散液に分離するが、この上層の分散液を銀コロイド水溶液として採取した。
【0031】
(3)導電性被膜複合体の形成
受容層上に銀コロイド水溶液を刷毛で塗布し、常温で乾燥した。所望の厚さの導電性被膜を得るために、塗布と乾燥とを繰り返し行い、導電性被膜複合体を形成した。得られた導電性被膜の厚さは、導電性被膜の重量を金属の比重で除し、更に導電性被膜の幅及び長さで除して求めた。
【0032】
(実施例2)
コロナ処理したPET製シート上に導電性被膜を形成し、その導電性被膜の上を覆うように受容層を形成した以外は、実施例1と同様とした。なお、導電性を測定するために、導電性被膜の端には、受容層を形成しなかった。
【0033】
(比較例1)
PET製シートの上に受容層を形成する代わりに、PET製シートにコロナ処理を施し直接、銀コロイド水溶液を塗布したこと以外は実施例1と同様とした。
【0034】
(比較例2)
銀コロイド水溶液の代わりに、ドータイトXA−436(藤倉化成社製)を用いたこと以外は、実施例1と同様とした。
【0035】
(比較例3)
銀コロイド水溶液の代わりに、磁性流体M−300(シグマハイケミカル社製)を用いたこと以外は、実施例1と同様とした。
【0036】
(比較例4)
非晶質合成シリカの代わりに、真球状アルミナCB−10(昭和電工社製)を用いた以外は、実施例1と同様とした。
【0037】
[評価]
実施例1〜2、及び、比較例1〜4で得られた被膜について以下の評価を行った。
(1)被膜の導電性
被膜の電気抵抗をダブルブリッジ2769(横河M&C社製)により測定し、体積抵抗率を下記式を用いて算出した。但し、比較例2、3の被膜は測定範囲以上であった。結果を表1に示した。
ρv=Rwt/l
ρv:体積抵抗率(Ω・cm)
R:測定端子間の被膜の電気抵抗(Ω)
w:測定端子間の被膜の幅(cm)
t:測定端子間の被膜の厚さ(cm)
l:測定端子間の被膜の長さ(cm)
【0038】
【表1】

Figure 2004127851
【0039】
表1に示した結果より、少なくとも多孔質の無機フィラーを含有する受容層を設けることにより、加熱しなくとも高い導電性を示す導電性被膜が得られることが分かった。
【0040】
【発明の効果】
本発明は、上述のような構成を有するので、金属コロイド液より形成される導電性被膜を少なくとも多孔質の無機フィラーを含有する受容層との複合体として形成することにより、加熱を必要としないか又は低温で加熱することにより高導電性を示す導電性被膜を提供することができる。このため、本発明によれば、熱に弱い基材上にも導電性被膜を形成することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive film composite which does not require heating during production or exhibits high conductivity by heating at a low temperature, and can be formed on a substrate having poor heat resistance.
[0002]
[Prior art]
The conductive coating is used to provide conductivity to electromagnetic shielding of cathode ray tubes, building materials, infrared shielding of automobiles, antistatic materials for electronic devices and mobile phones, heat rays of frosted glass, wiring of circuit boards and IC cards, and resin. It is used in a wide range of fields, such as coatings, through holes, and the circuit itself.
[0003]
Conventionally, as a method for producing a conductive film, for example, vacuum evaporation, chemical vapor deposition, ion sputtering, and the like of a metal have been performed. However, since these methods require work in a vacuum system or a closed system, there are problems that the operation is complicated, mass production is poor, and the cost is high.
[0004]
On the other hand, there has been proposed a method in which a metal colloid liquid in which metal particles are dispersed in a dispersion medium is applied to a substrate and heated and fired to obtain a conductive film (see Patent Document 1). According to this method, a conductive film can be obtained at low cost by a simple operation without the need for a vacuum or closed system operation. However, in order to obtain a film having sufficient conductivity for practical use, it is necessary to heat at a high temperature of 200 ° C. or more, and there is a problem that a conductive film cannot be formed on a substrate having poor heat resistance. .
[0005]
[Patent Document 1]
JP 2001-35255 A
[Problems to be solved by the invention]
The present invention, in view of the current situation, does not require heating during production or shows high conductivity by heating at a low temperature, a conductive film composite that can be formed on a substrate having poor heat resistance. It is intended to provide.
[0007]
[Means for Solving the Problems]
The present invention comprises a receiving layer containing at least a porous inorganic filler, and a conductive film obtained by applying and drying a metal colloid solution, wherein the conductive layer is in contact with the receiving layer and the conductive film. It is a functional coating composite.
[0008]
The present inventors formed a conductive film formed from a metal colloid solution so as to be in contact with at least a receiving layer containing a porous inorganic filler, so that heat treatment was generally required to develop conductivity. However, they have found that a conductive film having high conductivity can be obtained by heating without heating or by heating at a low temperature, and have completed the present invention.
Hereinafter, the present invention will be described in detail.
[0009]
The conductive film composite of the present invention comprises a receptor layer containing at least a porous inorganic filler, and a conductive film obtained by applying and drying a metal colloid solution.
[0010]
The receiving layer contains at least a porous inorganic filler.
The porous inorganic filler is not particularly limited, for example, light calcium carbonate, calcium carbonate such as heavy calcium carbonate, barium carbonate, magnesium carbonate such as basic magnesium carbonate, kaolin, talc, calcium sulfate, barium sulfate, Titanium dioxide, titanium oxide, zinc oxide, magnesium oxide, zinc sulfide, zinc carbonate, diatomaceous earth such as satin white, calcined diatomaceous earth, calcium silicate, aluminum silicate, magnesium silicate, amorphous silica, amorphous synthetic silica, colloidal silica Such as silica, colloidal alumina, pseudo boehmite, aluminum hydroxide, magnesium hydroxide, alumina, lithopone, zeolite, hydrohaloysite, clay, pumice, hydrotalcite, delamikaolin, calcined kaolin, aluminosilicate, activated clay Bentonite, it may be mentioned mineral pigments such as sericite, porous pigment, the porous fine particles and the hollow fine particles and the like. These may be used alone or in combination of two or more.
Among the above-mentioned porous inorganic fillers, porous amorphous synthetic silica, porous magnesium carbonate, and porous alumina are preferable.
[0011]
The specific surface area of the porous inorganic filler is preferably 100 m 2 / g or more. If the specific surface area is less than 100 m 2 / g, the water absorption is poor, and the conductivity of the conductive film formed from the metal colloid liquid may be low. A more preferred lower limit is 200 m 2 / g, and a more preferred upper limit is 1000 m 2 / g.
[0012]
The reason that the conductive film formed at a low temperature in contact with the receiving layer containing at least the porous inorganic filler as described above exhibits conductivity comparable to a film heated and baked at a high temperature is not necessarily clear, It is presumed that the porous and inorganic filler having a large specific surface area absorbs components that adversely affect the electrical conductivity together with the aqueous solvent into the receiving layer, and the metal particles come into contact with each other as if they were fired at a high temperature.
[0013]
It is preferable that the receiving layer further contains a polymer substance that can receive water.
The high-molecular substance capable of accepting water is not particularly limited as long as it is an aqueous and / or water-dispersible high-molecular substance. For example, polyvinyl alcohol, silyl-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, cation-modified polyvinyl alcohol, Polyvinyl alcohols such as completely or partially saponified polyvinyl alcohol, acetoacetylated polyvinyl alcohol, carboxyl-modified polyvinyl alcohol, and olefin-modified polyvinyl alcohol; cationized starch, amphoteric starch, oxidized starch, oxygen-modified starch, thermochemically-modified starch, esters Starch such as carboxymethylcellulose, hydroxyethylcellulose, and cationized hydroxyethylcellulose; casein, gelatin, soybean protein, albumin Resin such as melamine resin, urea resin, polyurethane resin, unsaturated polyester resin, vinyl chloride-vinyl acetate copolymer, polyvinyl butyral, alkyd resin; polyvinyl acetate Styrene- (meth) acrylate copolymer, vinyl acetate- (meth) acrylic acid (ester) copolymer, ethylene-vinyl acetate copolymer, polyvinylpyrrolidone, polyester, polystyrene, poly (meth) acrylamide, ( (Meth) acrylamide copolymer, styrene-isoprene copolymer, ethylene-propylene copolymer, polyvinyl ether, epichlorohydrin resin, epoxy resin, polyethyleneimine resin, polyamide resin; maleic anhydride resin, styrene-butadi Diene-based copolymer latex such as methacrylate copolymer, methyl methacrylate-butadiene copolymer; (meth) acrylate polymer or copolymer, (meth) acrylic acid polymer or copolymer, etc. Acrylic polymer latex; vinyl polymer latex such as ethylene-vinyl acetate copolymer; functional group-modified polymer latex of a functional group-containing monomer such as a carboxyl group of these various polymers; these various polymers Examples include functional group-containing modified polymer latexes in which an anionic group and / or a cationic group are added to the latex. These may be used alone or in combination of two or more.
[0014]
The thickness of the receiving layer is preferably 0.5 μm or more. If it is less than 0.5 μm, water may not be sufficiently absorbed, and the conductivity of the formed conductive film may be low. If the thickness is too large, cracks may occur when the base material is bent. Therefore, a more preferred lower limit is 1.0 μm and a more preferred upper limit is 200 μm.
[0015]
The receiving layer is obtained by applying and drying a coating liquid containing the inorganic filler and the polymer substance.
The receiving layer may be formed so as to be in contact with the conductive film, and the formation mode is not particularly limited. For example, the receiving layer is formed by applying the coating liquid on a substrate to form a receiving layer. A conductive film may be formed by applying a metal colloid liquid, or a receiving layer may be formed by applying the metal colloid liquid on a substrate to form a conductive film, and then applying the coating liquid thereon. Good. Further, the metal colloid liquid and the above-mentioned coating liquid may be applied together on the substrate so that the conductive film and the receiving layer are formed adjacent to each other on the substrate.
[0016]
The substrate is not particularly limited, and is, for example, a substrate made of paper, PET (polyethylene terephthalate), a polycarbonate or the like, which is relatively weak to heat; a substrate made of an alumina sintered body, a phenol resin, a glass epoxy resin, glass, or the like; Building materials made of glass, resin, ceramics, and the like; electronic devices whose surfaces are formed of resin, ceramics, and the like can be given.
According to the present invention, since heating is not required when producing a conductive film or heating may be performed at a low temperature, a substrate relatively weak to heat can be used.
[0017]
The method of applying the coating liquid is not particularly limited, and examples thereof include a spray coater, a blade coater, an air knife coater, a roll coater, a reverse roll coater, a bar coater, a curtain coater, a die slot coater, a gravure coater, and a champx coater. , Brush coater, two-roll, metering blade type press coater, gate roll coater, bill blade coater, short dwell coater and other coating equipment, and pre-wet method, float method, squeeze roll method, doctor bar method etc. And a method using an impregnating device.
The receiving layer can be obtained by applying the above-mentioned coating liquid to a substrate and then drying it at room temperature or, if necessary, drying by heating.
[0018]
As the coating liquid, those known as materials for inkjet recording paper can be used. Therefore, the image can be freely drawn on the receiving layer by the ink jet printer.
[0019]
When the receiving layer is formed on the substrate, if the wettability between the substrate and the receiving layer is poor, the substrate can be subjected to a surface treatment to improve the wettability. As the surface treatment method, a known method can be used, for example, a method of physically roughening the surface; a dry chemical treatment method such as a plasma treatment, an ozone treatment, and a corona treatment; a mixed solution of chromic acid, concentrated sulfuric acid, and concentrated hydrochloric acid. A wet chemical treatment with a silane coupling agent or a titanate coupling agent. These methods may be used alone or in combination of two or more.
[0020]
The conductive film is formed by applying and drying a metal colloid solution. The metal colloid liquid includes metal particles, a dispersant adsorbed on the metal particles, and a dispersion medium.
[0021]
The metal particles are not particularly limited, and examples thereof include particles made of gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium, osmium, and the like. Among these, gold, silver, platinum and palladium are preferable, and gold and silver are more preferable. These metals may be used alone or in combination of two or more.
Particularly when silver is used, it is preferable to use silver in combination with another metal. When silver is used, the conductivity of a conductive film formed by using the metal colloid solution becomes good, but it is necessary to consider the problem of migration. By using silver and another metal together, the migration is less likely to occur. Examples of the other metals include gold, copper, platinum, palladium, rhodium, ruthenium, iridium, and osmium. Among them, gold, copper, platinum and palladium are preferred.
[0022]
As the dispersion medium, water and / or a water-soluble solvent are preferable. By using water and / or a water-soluble solvent as the dispersion medium, when the metal colloid liquid is dried to produce a conductive film, the solvent odor does not become strong and there is little adverse effect on the environment.
[0023]
The metal colloid liquid contains a dispersant. The dispersant is not particularly limited as long as it dissolves in a dispersion medium and exhibits a dispersing effect, and for example, trisodium citrate, tripotassium citrate, trilithium citrate, disodium malate, disodium tartrate, Ionic compounds such as sodium glycolate; surfactants such as sodium dodecylbenzenesulfonate, sodium oleate, polyoxyethylene alkyl ether and perfluoroalkylethylene oxide adduct; gelatin, gum arabic, albumin, polyethylene imine, polyvinyl cellulose And the like. These dispersants may be used alone or in combination of two or more.
[0024]
The conductive film is formed by applying and drying a metal colloid solution. The above-mentioned metal colloid liquid is generally applied onto the receiving layer, but may be applied onto the substrate so that the receiving layer is in contact with the end.
The method for applying the metal colloid liquid on the receiving layer or the substrate is not particularly limited, and examples thereof include dipping, screen printing, a spray method, a bar code method, a spin coating method, an inkjet method, a dispenser method, and application by a brush. And the like.
[0025]
The conductive coating composite applied and dried by contacting the receiving layer and the conductive coating on the base material, if necessary, may be further heated under conditions where the base material is not damaged and other troubles do not occur. it can. The heating method is not particularly limited, and examples thereof include a dielectric heating method and a high-frequency heating method in addition to a method of heating in an oven.
[0026]
The conductive film has conductivity comparable to that of a conductive film obtained by heating and baking a metal colloid solution at a high temperature, electromagnetic wave shielding of a cathode ray tube, infrared shielding of building materials or automobiles, electronic equipment and mobile phones. It can be used for antistatic material, hot wire of frosted glass, wiring of circuit board and IC card, coating for giving conductivity to resin, through hole, circuit itself and the like.
[0027]
A method for forming a conductive film by applying a metal colloid solution and drying the conductive film, wherein the conductive film is formed so that the receiving layer containing at least a porous inorganic filler is in contact with the conductive film. Is also one of the present inventions.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0029]
(Example 1)
(1) Formation of Receptive Layer Polyvinyl alcohol (PVA117, manufactured by Kuraray Co., Ltd.) and amorphous synthetic silica (Mizukasil P-78F, manufactured by Mizusawa Chemical Industry Co., Ltd.) were blended at a ratio of 100 parts by weight: 150 parts by weight, and 20 parts by weight % To obtain a coating solution. The above coating liquid was coated on a PET sheet using a bar coater so that the thickness when dried was about 40 μm. Thereafter, the coated receiving layer was dried at 100 ° C. for 10 minutes to form a receiving layer.
[0030]
(2) Preparation of Metal Colloid Solution 280 g of water was prepared by adding 17.0 g of sodium citrate dihydrate (manufactured by Wako Pure Chemical Industries) as a dispersant and 0.70 g of tannic acid (manufactured by Wako Pure Chemical Industries) as a reducing agent. 3 ml of a 10 N aqueous solution of sodium hydroxide was added to the aqueous solution dissolved in water, and 3 ml of an aqueous solution containing 1.97 g of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise while stirring with a magnetic stirrer in a room temperature atmosphere. Was obtained. The solution containing the obtained silver particles was desalted using an ultrafilter (ADVANTEC, Ultrafilter Q0500). The filtrate was repeatedly desalted until the conductivity of the filtrate measured by CM-20S (manufactured by Toa Denpa Kogyo Co., Ltd.) became 100 μS / cm or less, then concentrated to 20 ml, and the concentrated solution was centrifuged at 3000 rpm for 10 minutes. At this time, the lower layer was separated into a precipitate and an upper layer dispersion, and the upper layer dispersion was collected as a silver colloid aqueous solution.
[0031]
(3) Formation of Conductive Coating Complex An aqueous silver colloid solution was applied on the receiving layer with a brush and dried at room temperature. In order to obtain a conductive film having a desired thickness, application and drying were repeated to form a conductive film composite. The thickness of the obtained conductive film was determined by dividing the weight of the conductive film by the specific gravity of the metal, and further dividing the weight by the width and length of the conductive film.
[0032]
(Example 2)
Example 1 was the same as Example 1 except that a conductive film was formed on a corona-treated PET sheet, and a receiving layer was formed so as to cover the conductive film. In order to measure the conductivity, no receiving layer was formed on the end of the conductive film.
[0033]
(Comparative Example 1)
Instead of forming the receiving layer on the PET sheet, the same procedure as in Example 1 was performed, except that the PET sheet was subjected to corona treatment and the silver colloid aqueous solution was directly applied.
[0034]
(Comparative Example 2)
The same procedure as in Example 1 was performed, except that Doitite XA-436 (manufactured by Fujikura Kasei) was used instead of the aqueous silver colloid solution.
[0035]
(Comparative Example 3)
Example 1 was the same as Example 1 except that the magnetic fluid M-300 (manufactured by Sigma High Chemical Co.) was used instead of the silver colloid aqueous solution.
[0036]
(Comparative Example 4)
Example 1 was repeated except that spherical amorphous CB-10 (manufactured by Showa Denko KK) was used instead of amorphous synthetic silica.
[0037]
[Evaluation]
The coatings obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were evaluated as follows.
(1) The electric resistance of the conductive film was measured with a double bridge 2769 (manufactured by Yokogawa M & C), and the volume resistivity was calculated using the following equation. However, the coatings of Comparative Examples 2 and 3 were over the measurement range. The results are shown in Table 1.
ρv = Rwt / l
ρv: Volume resistivity (Ω · cm)
R: Electric resistance of the film between the measurement terminals (Ω)
w: Width (cm) of coating between measurement terminals
t: thickness of the coating between the measurement terminals (cm)
l: Length of coating between measurement terminals (cm)
[0038]
[Table 1]
Figure 2004127851
[0039]
From the results shown in Table 1, it was found that by providing the receiving layer containing at least the porous inorganic filler, a conductive film having high conductivity can be obtained without heating.
[0040]
【The invention's effect】
Since the present invention has the above-described configuration, it does not require heating by forming a conductive film formed from a metal colloid liquid as a complex with a receiving layer containing at least a porous inorganic filler. Alternatively, a conductive film having high conductivity can be provided by heating at a low temperature. For this reason, according to the present invention, a conductive film can be formed even on a heat-sensitive substrate.

Claims (3)

少なくとも多孔質の無機フィラーを含有する受容層と、金属コロイド液を塗布し乾燥することにより形成される導電性被膜とからなり、前記受容層と前記導電性被膜とが接していることを特徴とする導電性被膜複合体。A receiving layer containing at least a porous inorganic filler, and a conductive film formed by applying and drying a metal colloid solution, wherein the receiving layer and the conductive film are in contact with each other. Conductive coating composite. 導電性被膜の主成分が、金、銀、銅、白金、パラジウム、ロジウム、ルテニウム、イリジウム及びオスミウムからなる群より選ばれる少なくとも1種の金属であることを特徴とする請求項1記載の導電性被膜複合体。The conductive material according to claim 1, wherein a main component of the conductive film is at least one metal selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, ruthenium, iridium, and osmium. Coating composite. 金属コロイド液を塗布し乾燥して導電性被膜を形成する方法であって、少なくとも多孔質の無機フィラーを含む受容層と前記導電性被膜とが接するように前記導電性被膜を形成することを特徴とする導電性被膜の形成方法。A method for forming a conductive film by applying and drying a metal colloid liquid, wherein the conductive film is formed such that at least a receiving layer containing a porous inorganic filler and the conductive film are in contact with each other. A method for forming a conductive film.
JP2002294081A 2002-10-07 2002-10-07 Conductive film composite and method for forming conductive film Expired - Fee Related JP4234970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294081A JP4234970B2 (en) 2002-10-07 2002-10-07 Conductive film composite and method for forming conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294081A JP4234970B2 (en) 2002-10-07 2002-10-07 Conductive film composite and method for forming conductive film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008006746A Division JP5221154B2 (en) 2008-01-16 2008-01-16 Conductive film composite and method for forming conductive film

Publications (2)

Publication Number Publication Date
JP2004127851A true JP2004127851A (en) 2004-04-22
JP4234970B2 JP4234970B2 (en) 2009-03-04

Family

ID=32284790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294081A Expired - Fee Related JP4234970B2 (en) 2002-10-07 2002-10-07 Conductive film composite and method for forming conductive film

Country Status (1)

Country Link
JP (1) JP4234970B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114076A1 (en) 2006-04-05 2007-10-11 Toray Industries, Inc. Method for producing conductive substrate and conductive substrate
JP2008112698A (en) * 2006-10-31 2008-05-15 Fujikura Ltd Conductive base, manufacturing method thereof, and electronic device
JP2009021153A (en) * 2007-07-13 2009-01-29 Mitsubishi Paper Mills Ltd Conductivity manifestation method and conductive member
JP2009104807A (en) * 2007-10-19 2009-05-14 Mitsubishi Paper Mills Ltd Conductivity development method and conductive member
DE112007001519T5 (en) 2006-06-22 2009-06-18 Mitsubishi Paper Mills Limited Method for producing a conductive material
EP2315813A4 (en) * 2008-07-25 2012-11-28 Methode Electronics Inc Metal nanoparticle ink compositions
JP2015520256A (en) * 2012-04-17 2015-07-16 アーケマ・インコーポレイテッド Aqueous fluoropolymer glass coating
WO2020217491A1 (en) 2019-04-26 2020-10-29 花王株式会社 Method for manufacturing electrically conductive member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114076A1 (en) 2006-04-05 2007-10-11 Toray Industries, Inc. Method for producing conductive substrate and conductive substrate
DE112007001519T5 (en) 2006-06-22 2009-06-18 Mitsubishi Paper Mills Limited Method for producing a conductive material
DE112007001519B4 (en) 2006-06-22 2022-03-10 Mitsubishi Paper Mills Limited Method of making a conductive material
JP2008112698A (en) * 2006-10-31 2008-05-15 Fujikura Ltd Conductive base, manufacturing method thereof, and electronic device
JP2009021153A (en) * 2007-07-13 2009-01-29 Mitsubishi Paper Mills Ltd Conductivity manifestation method and conductive member
JP2009104807A (en) * 2007-10-19 2009-05-14 Mitsubishi Paper Mills Ltd Conductivity development method and conductive member
EP2315813A4 (en) * 2008-07-25 2012-11-28 Methode Electronics Inc Metal nanoparticle ink compositions
JP2015520256A (en) * 2012-04-17 2015-07-16 アーケマ・インコーポレイテッド Aqueous fluoropolymer glass coating
WO2020217491A1 (en) 2019-04-26 2020-10-29 花王株式会社 Method for manufacturing electrically conductive member
KR20210140751A (en) 2019-04-26 2021-11-23 카오카부시키가이샤 Method for manufacturing a conductive member

Also Published As

Publication number Publication date
JP4234970B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP5118824B2 (en) Conductive expression method
JP5265392B2 (en) Conductive pattern forming substrate and conductive member
JP4704564B2 (en) Silica dispersion, coating composition, and recording medium
JP5096771B2 (en) Conductive expression method
JP4234970B2 (en) Conductive film composite and method for forming conductive film
FI124372B (en) Method and products related to the deposited particles
JP5221154B2 (en) Conductive film composite and method for forming conductive film
EP2227510A1 (en) Pigment dispersion and inkjet recording medium using the same
JP2009021153A (en) Conductivity manifestation method and conductive member
JP2013504864A (en) Support for electronic circuit
JP6068077B2 (en) Conductive pattern forming substrate and conductive member
TW202012203A (en) Pattern-transferred object manufacturing method
WO2019225286A1 (en) Pattern-transferred object manufacturing method
JP4424723B2 (en) Conductive coating composite
JP5238215B2 (en) Conductive expression method and conductive member
JP7232595B2 (en) Method for manufacturing conductive material
JP7077261B2 (en) Substrate for transfer
JP7232594B2 (en) Method for manufacturing conductive member
JP2013201311A (en) Base material for conductive pattern formation, and conductive member
JP2020004902A (en) Method for manufacturing conductive member
JP2020009705A (en) Method for producing conductive material
JP2020024874A (en) Method for producing conductive material
JP2004169162A (en) Metallic colloidal liquid, its preparation process and use
JP2013191469A (en) Conductive pattern formation method and conductive member
JP2020043276A (en) Method of manufacturing conductive member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4234970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees