JP2004125724A - Method for measuring refractive index distribution of transparent body - Google Patents

Method for measuring refractive index distribution of transparent body Download PDF

Info

Publication number
JP2004125724A
JP2004125724A JP2002293413A JP2002293413A JP2004125724A JP 2004125724 A JP2004125724 A JP 2004125724A JP 2002293413 A JP2002293413 A JP 2002293413A JP 2002293413 A JP2002293413 A JP 2002293413A JP 2004125724 A JP2004125724 A JP 2004125724A
Authority
JP
Japan
Prior art keywords
refractive index
measuring
transparent body
amount
index distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002293413A
Other languages
Japanese (ja)
Other versions
JP3665780B2 (en
Inventor
Kazumasa Sasaki
佐々木 一正
Jiro Morinaga
森永 次郎
Takehiko Yamamoto
山本 岳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCED TECHNOLOGY KK
SWCC Corp
Original Assignee
ADVANCED TECHNOLOGY KK
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCED TECHNOLOGY KK, Showa Electric Wire and Cable Co filed Critical ADVANCED TECHNOLOGY KK
Priority to JP2002293413A priority Critical patent/JP3665780B2/en
Priority to CNA031594913A priority patent/CN1497253A/en
Publication of JP2004125724A publication Critical patent/JP2004125724A/en
Application granted granted Critical
Publication of JP3665780B2 publication Critical patent/JP3665780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately measuring the refractive index distribution of a transparent body, by correcting the amount of distortion and amount of light attenuation of an optical system at measuring the refractive index distribution of the transparent body. <P>SOLUTION: At measuring the refractive index distribution of a preform rod 8, by photographing information from an image 1 arranged in the back of the preform rod 8 by an image photographing device 4, the original amount of distortion and the amount of light attenuation of the optical system, which comprises the image 1; a refractive index matching liquid 2; a refractive index matching liquid tank 3; and the image photographing device 4, are previously measured to correct measured values of the preform rod 8. As a result of this, measure the true refractive index distribution of the transparent body without errors from the optical system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内部に屈折率分布を有する透明体の屈折率分布測定方法に関する。
【0002】
【従来の技術】
最近の通信ネットワークの進展に伴い、光ファイバケーブルの需要はますます増加する傾向にある。光ファイバケーブルを構成している一要素である光ファイバはまずVAD法あるいはMCVD法等によりプリフォームロッド(光ファイバ母材)を作成し、それを所定の径まで線引きして製造している。プリフォームロッドは屈折率の高いコア部とその周囲の屈折率がコア部より低いクラッドとからなっている。
【0003】
ところで、光ファイバに必要とされる特性が設計通りになっているかを判定する指標の一つに屈折率分布を測定する方法がある。光ファイバの屈折率分布を測定する場合は通常プリフォームロッドの状態で測定するが、その一方法として屈折率整合液中に浸漬したプリフォームロッドの背後に画像を配置して、その画像をプリフォームロッドを通して観察したときの歪み量から屈折率分布を測定する方法が本願出願人等によって提案されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−121499号公報
【0005】
【発明が解決しようとする課題】
ところで、上記のような従来の技術には、次のような解決すべき課題があった。即ち、屈折率整合液中に浸漬したプリフォームロッドの背後に画像を配置して、その画像をプリフォームロッドを通して観察したときの歪み量から屈折率分布を測定する方法では、画像撮影装置の能力、例えば光受光素子群の素子数により解像度が決まるが、前記画像、屈折率整合液槽、屈折率整合液及び画像撮影装置からなる光学系が元々有する歪み量や光減衰量が測定結果に影響を及ぼし、プリフォームロッドの屈折率分布の測定結果には誤差が含まれている虞があった。
【0006】
従来画像の歪みから屈折率分布を測定する場合には、例えば白黒2値画像において白と黒の境界線を判別するのに白(最も明るい所)と黒(光のない所)の間を255階調に分割し、その間で予め定めた値(例えば255階調のうちの160番目の明るさの所)を境界線としていた。しかし光学系の汚れやプリフォームロッドの状態等により光が減衰し、最も明るい白のレベルが変化する場合があった。この白のレベルが変化した場合、黒のレベルは変わりないため実際の境界線は動くことになる。しかし境界線の位置は予め定めてあるので結果的に不正確なものとなりこれが誤差の原因となっていた。
【0007】
従来はそのような影響を特に考慮することなくプリフォームロッドの屈折率分布を測定していたが、測定結果に異常がある場合プリフォームロッドそのものの異常なのか光学系の異常なのかがはっきりせず、すべてプリフォームロッドの異常として結論付けしていた。
【0008】
本発明は透明体の屈折率分布を測定する際に光学系の有する歪み量や光減衰量を補正することにより透明体の正確な屈折率分布を測定する方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明は前記した課題を解決するために次のような構成とする。即ち、本発明の屈折率分布測定方法は、屈折率整合液槽に収容された屈折率整合液中に浸漬された透明体の背後に画像を配置し、前記透明体及び画像と同一光軸上で前記透明体を通して前記画像の歪みを前記透明体を間にして前記画像と反対側に配置された画像撮影装置により測定し、この測定結果を解析して前記透明体の屈折率分布を測定する方法において、前記透明体の屈折率分布を測定する前に前記画像、屈折率整合液槽、屈折率整合液及び画像撮影装置からなる光学系の歪み量及び/または光減衰量を測定し、次いで前記透明体の屈折率分布を測定した後に前記光学系の歪み量及び/または光減衰量を補正するようにしたことを特徴としている。
【0010】
具体的には光学系の歪み量の測定は透明体を屈折率整合液中に浸漬しない状態で行うことが好ましく、また光学系の歪み量を測定するに際し、温度補正を行うことが好ましい。光学系の光減衰量の測定は透明体を屈折率整合液中に浸漬して行うことが好ましく、光量の最大値、最小値及びそれらの中間値を少なくとも1点以上測定することが好ましい。さらに光学系の光減衰量を測定するに際し、屈折率分布を求めるべき透明体に含まれる添加物の量に応じて光学系の光減衰量を測定するのに必要な光量を調整することが好ましい。この場合、光量の調整は画像を照明する光源の輝度の調整、画像撮影装置の絞りの使用あるいはフィルタの使用のいずれかの方法により、若しくはこれらの方法を組み合わせて行うことが好ましい。また光学系の歪み量及び/または光減衰量の測定に際し、それぞれの値が予め定めた基準値からはずれた場合に測定を中止し、光学系の補正を行うとよい。
【0011】
【発明の実施の形態】
以下、本発明の透明体の屈折率分布測定方法をその実施の形態について具体例を用いて説明する。
【0012】
図1は本発明の測定方法の一実施の形態を表した平面図である。図1において(a)は本発明の測定方法に用いられる光学系を表している。本発明に用いられる光学系は基本的に画像1、屈折率整合液(マッチングオイル)2が収容された屈折率整合液槽3、画像撮影装置4とからなり、これらは同一光軸上に配置されている。そして、画像1の背後には画像1を照明するための光源5が設けられており、画像撮影装置4にはレンズ6の部分に絞り及びフィルタが取り付けられている。なお、屈折率整合液槽3は画像1の情報が画像撮影装置4にまで到達できるように透明な材質で形成されるか少なくとも画像1から画像撮影装置4までの光軸上において透明体の屈折率分布の測定に必要な範囲に透明な材質でできた窓7を設けると良い。ここで、屈折率整合液は屈折率分布を求めるべき透明体とその周囲の空気との屈折率差に起因する損失を少なくし、より測定精度を向上させるために使用するものである。なお、屈折率分布を測定するための具体的な測定の実施形態については特許文献1に記載されている方法を用いればよい。
【0013】
このような光学系においては元々、屈折率整合液2、屈折率整合液槽3の窓7を構成する材質、レンズ6等を始めとする画像撮影装置4内の各構成部位等に歪み量が存在する。そこで、画像1の情報が上記した各々の構成部位を通過した後の歪み量を光学系全体の歪み量として予め測定しておく。その後図1(b)に示すように屈折率整合液2中に透明体、例えば石英ガラスからなるプリフォームロッド8を浸漬してこのプリフォームロッド8を通過してきた画像1の歪み量を画像撮影装置4により測定する。しかる後プリフォームロッド8を通過した後の歪み量から予め求めていた光学系の歪み量のデータを差し引いてプリフォームロッド8の真の屈折率分布を求める。この時、光学系の周囲温度や屈折率整合液2の温度を測定しておき、温度補正を行うことが望ましい。屈折率整合液2の温度の測定はプリフォームロッド8の屈折率分布を測定するたびに行ってもよいが、屈折率整合液2を一定温度に保持しておけばプリフォームロッド8の屈折率分布を測定するたびに屈折率整合液2の温度測定を行う必要がなくなり測定が簡便になる。
【0014】
図2は本発明の方法によって求めた光学系の歪み量の一例である。本図において、横軸は画像撮影装置の光受光素子の位置を表し、本実施の形態では1280個の素子数の画像撮影装置を用いている。縦軸は画像を画像撮影装置で撮影した時に画像がどれだけ歪んでいるか、即ちずれが生じているかを表したもので、中心線(0の線)に一致したときに歪みがない状態であることを示している。なお、単位は横軸、縦軸ともピクセルである。このような歪み量をプリフォームロッドの屈折率分布を求めた後の歪み量から差し引いてプリフォームロッドの真の屈折率分布を求める。
【0015】
次に光学系の光減衰量を測定する方法について説明する。まず、画像を照明して最も明るい状態にしてそのレベル(光量)を測定し、次いで照明を消して画像を暗黒にしてそのレベル(光量)を測定する。さらに1点以上中間のレベル(光量)を測定して直線性を調べ、光量の最大レベルと最小レベルの間を255階調に分割して所定の位置に境界線を定めるようにする。これをプリフォームロッドの屈折率分布を測定する前に行えばその都度境界線の位置が決定できるため、従来のように境界線の位置が不正確であることによる測定誤差を防止することができる。また、上記のようにして求めた光減衰量から光学系の感度の直線性が保たれていない場合はプリフォームロッドの屈折率分布を測定する前に感度の補正を行って測定誤差をなくすようにすればよい。さらに、光減衰量に所定の基準値を設けておき、この基準値を下回るような場合は光学系に測定に支障を来すような汚れがある場合等が考えられるので、プリフォームロッドの屈折率分布の測定を中止し、その原因を明確にしてから測定すれば信頼度の高い測定結果が得られる。
【0016】
なお、光の減衰量の測定に際しては、プリフォームロッドの状況、例えば添加物量(ドーパント量)の多寡によって光量が変化するので測定精度を向上させるためにはプリフォームロッドを屈折率整合液中に浸漬して測定することが望ましい。このような場合、屈折率分布を求めるべきプリフォームロッドに含まれる添加物の量に応じて光学系の光減衰量を測定するのに必要な光量を調整するとよい。光量の調整は画像を照明する光源の輝度を調整したり、画像撮像装置の絞り、フィルタ等のいずれかを用いたり、若しくはこれらの組み合わせにより行えばよい。
【0017】
また、本実施の形態では石英ガラスからなるプリフォームロッドを例に取り説明したが、本発明は内部に屈折率分布を有する透明体ならばどのようなものにでも適用でき、例えばプラスチック体のようなものを測定する場合にも適用可能である。
【0018】
【発明の効果】
本発明の透明体の屈折率分布測定方法によれば、画像の歪みを利用して透明体の屈折率分布を測定するに際して、測定を行う光学系が元々有している歪み量や光減衰量を予め測定しておき、透明体の測定値からそれらの歪み量や光減衰量を補正するようにしたので、誤差のない真の透明体の屈折率分布が測定できるようになった。
【図面の簡単な説明】
【図1】本発明の屈折率分布測定装置の光学系の一実施の形態を説明する図である。
【図2】光学系の歪み量の一例を示す図である。
【符号の説明】
1・・・画像
2・・・屈折率整合液
3・・・屈折率整合液槽
4・・・画像撮像装置
5・・・光源
8・・・プリフォームロッド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the refractive index distribution of a transparent body having a refractive index distribution inside.
[0002]
[Prior art]
With the recent development of communication networks, the demand for optical fiber cables has been increasing. An optical fiber, which is one component of an optical fiber cable, is manufactured by first preparing a preform rod (optical fiber preform) by a VAD method or an MCVD method and drawing it to a predetermined diameter. The preform rod includes a core portion having a high refractive index and a cladding around the core portion having a lower refractive index than the core portion.
[0003]
By the way, there is a method of measuring the refractive index distribution as one of the indexes for determining whether the characteristics required for the optical fiber are as designed. When measuring the refractive index distribution of an optical fiber, the measurement is usually performed in the state of a preform rod, but as one method, an image is placed behind a preform rod immersed in a refractive index matching liquid, and the image is printed. A method of measuring the refractive index distribution from the amount of distortion when observed through a reform rod has been proposed by the present applicant (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-12499 A
[Problems to be solved by the invention]
By the way, the conventional techniques as described above have the following problems to be solved. That is, in a method of arranging an image behind a preform rod immersed in a refractive index matching liquid and measuring a refractive index distribution from a distortion amount when the image is observed through the preform rod, the capability of the image capturing apparatus is For example, the resolution is determined by the number of elements of the light receiving element group, but the distortion amount and light attenuation originally possessed by the optical system composed of the image, the refractive index matching liquid tank, the refractive index matching liquid, and the image capturing device affect the measurement result. And the measurement result of the refractive index distribution of the preform rod may include an error.
[0006]
When the refractive index distribution is measured from the distortion of the conventional image, for example, in order to determine the boundary between white and black in a black and white binary image, 255 is used between white (the brightest place) and black (the place without light). The image is divided into gradations, and a predetermined value (for example, the 160th brightness point out of 255 gradations) is set as a boundary line between the divided gradations. However, light was attenuated due to contamination of the optical system, the condition of the preform rod, and the like, and the brightest white level sometimes changed. If the white level changes, the actual border will move because the black level does not change. However, since the position of the boundary line is determined in advance, the result is inaccurate, and this causes an error.
[0007]
In the past, the refractive index distribution of the preform rod was measured without considering such effects in particular. All concluded that the preform rod was abnormal.
[0008]
The present invention provides a method for measuring an accurate refractive index distribution of a transparent body by correcting a distortion amount and an optical attenuation amount of an optical system when measuring the refractive index distribution of the transparent body.
[0009]
[Means for Solving the Problems]
The present invention has the following configuration in order to solve the above-mentioned problem. That is, the method of measuring the refractive index distribution of the present invention is such that an image is arranged behind a transparent body immersed in a refractive index matching liquid contained in a refractive index matching liquid tank, and on the same optical axis as the transparent body and the image. The distortion of the image is measured through the transparent body by an image capturing device arranged on the opposite side of the image with the transparent body therebetween, and the measurement result is analyzed to measure the refractive index distribution of the transparent body. In the method, before measuring the refractive index distribution of the transparent body, the amount of distortion and / or the amount of light attenuation of the optical system including the image, the refractive index matching liquid tank, the refractive index matching liquid, and the image capturing device are measured. After measuring the refractive index distribution of the transparent body, the amount of distortion and / or the amount of optical attenuation of the optical system is corrected.
[0010]
Specifically, it is preferable to measure the amount of distortion of the optical system without immersing the transparent body in the refractive index matching liquid, and it is preferable to perform temperature correction when measuring the amount of distortion of the optical system. The measurement of the optical attenuation of the optical system is preferably performed by immersing the transparent body in a refractive index matching liquid, and it is preferable to measure at least one or more of the maximum value, the minimum value and the intermediate value of the amount of light. Further, when measuring the optical attenuation of the optical system, it is preferable to adjust the amount of light required to measure the optical attenuation of the optical system according to the amount of the additive contained in the transparent body for which the refractive index distribution is to be determined. . In this case, the adjustment of the light amount is preferably performed by adjusting the brightness of the light source for illuminating the image, using the aperture of the image capturing device, using a filter, or a combination of these methods. Further, when measuring the amount of distortion and / or the amount of optical attenuation of the optical system, if the respective values deviate from a predetermined reference value, the measurement may be stopped and the optical system may be corrected.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for measuring the refractive index distribution of a transparent body according to the present invention will be described with reference to specific embodiments of the embodiment.
[0012]
FIG. 1 is a plan view showing an embodiment of the measuring method of the present invention. FIG. 1A shows an optical system used in the measuring method of the present invention. The optical system used in the present invention basically comprises an image 1, a refractive index matching liquid tank 3 containing a refractive index matching liquid (matching oil) 2, and an image photographing device 4, which are arranged on the same optical axis. Have been. A light source 5 for illuminating the image 1 is provided behind the image 1, and an aperture and a filter are attached to the lens 6 of the image capturing device 4. The refractive index matching liquid tank 3 is formed of a transparent material so that the information of the image 1 can reach the image capturing device 4 or at least on the optical axis from the image 1 to the image capturing device 4. It is preferable to provide a window 7 made of a transparent material in a range necessary for measuring the rate distribution. Here, the refractive index matching liquid is used to reduce the loss caused by the refractive index difference between the transparent body for which the refractive index distribution is to be obtained and the surrounding air, and to further improve the measurement accuracy. It should be noted that a specific measurement embodiment for measuring the refractive index distribution may use the method described in Patent Document 1.
[0013]
In such an optical system, the amount of distortion originally occurs in the refractive index matching liquid 2, the material constituting the window 7 of the refractive index matching liquid tank 3, the lens 6, and other components in the image photographing apparatus 4 including the lens 6. Exists. Therefore, the distortion amount after the information of the image 1 has passed through each of the above-described constituent parts is measured in advance as the distortion amount of the entire optical system. Thereafter, as shown in FIG. 1 (b), a preform rod 8 made of a transparent material, for example, quartz glass, is immersed in the refractive index matching liquid 2, and the amount of distortion of the image 1 passing through the preform rod 8 is photographed. The measurement is performed by the device 4. Thereafter, the true refractive index distribution of the preform rod 8 is obtained by subtracting the previously obtained data of the amount of distortion of the optical system from the amount of distortion after passing through the preform rod 8. At this time, it is desirable to measure the ambient temperature of the optical system and the temperature of the refractive index matching liquid 2 before performing temperature correction. The temperature of the refractive index matching liquid 2 may be measured each time the refractive index distribution of the preform rod 8 is measured. However, if the refractive index matching liquid 2 is maintained at a constant temperature, the refractive index of the preform rod 8 may be measured. It is not necessary to measure the temperature of the refractive index matching liquid 2 every time the distribution is measured, and the measurement is simplified.
[0014]
FIG. 2 is an example of the distortion amount of the optical system obtained by the method of the present invention. In the figure, the horizontal axis represents the position of the light receiving element of the image photographing device. In this embodiment, an image photographing device having 1280 elements is used. The vertical axis indicates how much the image is distorted when the image is taken by the image photographing device, that is, whether the image is displaced, and when the image coincides with the center line (line of 0), there is no distortion. It is shown that. The unit is pixels on both the horizontal axis and the vertical axis. Such a distortion amount is subtracted from the distortion amount after the refractive index distribution of the preform rod is obtained, to obtain a true refractive index distribution of the preform rod.
[0015]
Next, a method of measuring the optical attenuation of the optical system will be described. First, the image is illuminated to make it the brightest state, and its level (light amount) is measured. Then, the illumination is turned off to darken the image, and the level (light amount) is measured. Further, one or more intermediate levels (light quantities) are measured to check the linearity, and the area between the maximum level and the minimum level of the light quantity is divided into 255 gradations to define a boundary at a predetermined position. If this is performed before measuring the refractive index distribution of the preform rod, the position of the boundary line can be determined each time, so that a measurement error due to the incorrect position of the boundary line can be prevented as in the related art. . Further, if the linearity of the sensitivity of the optical system is not maintained from the optical attenuation obtained as described above, the sensitivity should be corrected before measuring the refractive index distribution of the preform rod to eliminate the measurement error. What should I do? Further, a predetermined reference value is provided for the amount of light attenuation, and if the reference value is lower than the reference value, the optical system may be contaminated, which may interfere with the measurement. If the measurement of the rate distribution is stopped and the cause is clarified before the measurement, a highly reliable measurement result can be obtained.
[0016]
When measuring the amount of light attenuation, the amount of light changes depending on the condition of the preform rod, for example, the amount of an additive (dopant). It is desirable to measure by immersion. In such a case, the amount of light necessary to measure the optical attenuation of the optical system may be adjusted according to the amount of the additive contained in the preform rod for which the refractive index distribution is to be obtained. The adjustment of the light amount may be performed by adjusting the luminance of the light source that illuminates the image, using one of the aperture and the filter of the image pickup device, or a combination thereof.
[0017]
In the present embodiment, a preform rod made of quartz glass has been described as an example, but the present invention can be applied to any transparent body having a refractive index distribution inside, such as a plastic body. The present invention is also applicable to the measurement of unusual objects.
[0018]
【The invention's effect】
According to the method for measuring the refractive index distribution of a transparent body of the present invention, when measuring the refractive index distribution of a transparent body using image distortion, the amount of distortion or light attenuation originally possessed by the optical system that performs the measurement. Was measured in advance, and the amount of distortion and the amount of light attenuation were corrected from the measured values of the transparent body, so that the refractive index distribution of a true transparent body without errors could be measured.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an embodiment of an optical system of a refractive index distribution measuring device according to the present invention.
FIG. 2 is a diagram illustrating an example of a distortion amount of an optical system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Image 2 ... Refractive index matching liquid 3 ... Refractive index matching liquid tank 4 ... Image pickup device 5 ... Light source 8 ... Preform rod

Claims (8)

内部に屈折率分布を有する透明体の屈折率分布測定方法であって、屈折率整合液槽に収容された屈折率整合液中に浸漬された透明体の背後に画像を配置し、前記透明体及び画像と同一光軸上で前記透明体を通して前記画像の歪みを前記透明体を間にして前記画像と反対側に配置された画像撮影装置により測定し、この測定結果を解析して前記透明体の屈折率分布を測定する方法において、前記透明体の屈折率分布を測定する前に前記画像、屈折率整合液槽、屈折率整合液及び画像撮影装置からなる光学系の歪み量及び/または光減衰量を測定し、次いで前記透明体の屈折率分布を測定した後に前記光学系の歪み量及び/または光減衰量を補正するようにしたことを特徴とする透明体の屈折率分布測定方法。A method for measuring a refractive index distribution of a transparent body having a refractive index distribution therein, wherein an image is arranged behind a transparent body immersed in a refractive index matching liquid contained in a refractive index matching liquid tank, And measuring the distortion of the image through the transparent body on the same optical axis as the image by an image capturing device arranged on the opposite side of the image with the transparent body therebetween, and analyzing the measurement result to obtain the transparent body In the method for measuring the refractive index distribution of the above, before measuring the refractive index distribution of the transparent body, the distortion amount and / or light of the optical system composed of the image, the refractive index matching liquid tank, the refractive index matching liquid, and the image capturing device are measured. A method for measuring a refractive index distribution of a transparent body, comprising measuring an amount of attenuation, and then measuring a refractive index distribution of the transparent body, and then correcting a distortion amount and / or an optical attenuation amount of the optical system. 前記光学系の歪み量の測定は前記透明体を前記屈折率整合液中に浸漬しない状態で行うことを特徴とする請求項1記載の透明体の屈折率分布測定方法。2. The method for measuring the refractive index distribution of a transparent body according to claim 1, wherein the measurement of the distortion amount of the optical system is performed without immersing the transparent body in the refractive index matching liquid. 前記光学系の歪み量を測定するに際し、温度補正を行うことを特徴とする請求項2記載の透明体の屈折率分布測定方法。3. The method for measuring a refractive index distribution of a transparent body according to claim 2, wherein a temperature correction is performed when measuring the distortion amount of the optical system. 前記光学系の光減衰量の測定は前記透明体を前記屈折率整合液中に浸漬して行うことを特徴とする請求項1記載の透明体の屈折率分布測定方法。2. The method according to claim 1, wherein the measurement of the optical attenuation of the optical system is performed by immersing the transparent body in the refractive index matching liquid. 前記光学系の光減衰量の測定は光量の最大値、最小値及びそれらの中間値を少なくとも1点以上測定することを特徴とする請求項4記載の透明体の屈折率分布測定方法。5. The method for measuring a refractive index distribution of a transparent body according to claim 4, wherein the measurement of the amount of light attenuation of the optical system measures at least one or more of a maximum value, a minimum value, and an intermediate value of the light amount. 前記光学系の光減衰量を測定するに際し、屈折率分布を求めるべき透明体に含まれる添加物の量に応じて前記光学系の光減衰量を測定するのに必要な光量を調整することを特徴とする請求項4または請求項5記載の透明体の屈折率分布測定方法。When measuring the optical attenuation of the optical system, adjusting the amount of light required to measure the optical attenuation of the optical system according to the amount of the additive contained in the transparent body for which the refractive index distribution is to be determined. The method for measuring the refractive index distribution of a transparent body according to claim 4 or claim 5, wherein 前記光量の調整は前記画像を照明する光源の輝度の調整、前記画像撮影装置の絞りの使用あるいはフィルタの使用のいずれかの方法により、若しくはこれらの方法を組み合わせて行うことを特徴とする請求6記載の透明体の屈折率分布測定方法。7. The method according to claim 6, wherein the adjustment of the light amount is performed by adjusting a luminance of a light source for illuminating the image, using a diaphragm of the image capturing apparatus, using a filter, or a combination of these methods. The method for measuring a refractive index distribution of a transparent body according to the above. 前記光学系の歪み量及び/または光減衰量の測定に際し、それぞれの値が予め定めた基準値からはずれた場合に測定を中止し、光学系の補正を行うことを特徴とする請求項1から請求項7までのいずれかの請求項に記載の透明体の屈折率分布測定方法。The method according to claim 1, wherein, when measuring the amount of distortion and / or the amount of optical attenuation of the optical system, if the respective values deviate from a predetermined reference value, the measurement is stopped and the optical system is corrected. The method for measuring a refractive index distribution of a transparent body according to claim 7.
JP2002293413A 2002-10-07 2002-10-07 Method for measuring refractive index distribution of transparent body Expired - Fee Related JP3665780B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002293413A JP3665780B2 (en) 2002-10-07 2002-10-07 Method for measuring refractive index distribution of transparent body
CNA031594913A CN1497253A (en) 2002-10-07 2003-09-27 Refractivity distributing measuring method of permeant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293413A JP3665780B2 (en) 2002-10-07 2002-10-07 Method for measuring refractive index distribution of transparent body

Publications (2)

Publication Number Publication Date
JP2004125724A true JP2004125724A (en) 2004-04-22
JP3665780B2 JP3665780B2 (en) 2005-06-29

Family

ID=32284325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293413A Expired - Fee Related JP3665780B2 (en) 2002-10-07 2002-10-07 Method for measuring refractive index distribution of transparent body

Country Status (2)

Country Link
JP (1) JP3665780B2 (en)
CN (1) CN1497253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739627A (en) * 2022-03-16 2022-07-12 中国农业大学 Optical matching calibration method and device for internal flow field of complex structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739627A (en) * 2022-03-16 2022-07-12 中国农业大学 Optical matching calibration method and device for internal flow field of complex structure

Also Published As

Publication number Publication date
CN1497253A (en) 2004-05-19
JP3665780B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
CN102667579A (en) Method and system for correction, measurement and display of images
CN111941846A (en) Light equalizing method and device for LCD photocuring 3D printer
WO2017054689A1 (en) Correction device for camera module optical image stabilizer system and correction method therefor
CN104296968B (en) The modulation transfer function test method of multichannel CCD
FR2945365A1 (en) METHOD AND SYSTEM FOR ONLINE SELECTION OF A VIRTUAL GOGGLE FRAME
KR100960546B1 (en) Method for modifying white defect of photomask
CN102183301A (en) Portable type unified glare measuring apparatus
KR20010104449A (en) System for measuring modulation transfer function and method of evaluating image quality of color liquid crystal displays by using the system
CN103353345B (en) A kind of motor vehicle headlamp detector light intensity detection method
CN113873222B (en) Linearity correction method and device for industrial camera
US6493073B2 (en) System and method for measuring properties of an optical component
CN110095262A (en) In detection fiber image guide device between optical fiber optical crosstalk transmitance device
JP3665780B2 (en) Method for measuring refractive index distribution of transparent body
CN111638042B (en) DLP optical characteristic test analysis method
JP5006589B2 (en) Optical transfer function measuring method, measuring apparatus and test chart
JP2006284495A (en) Method and instrument for measuring refractive index dispersion of transparent object
CN116412907A (en) Calibration method and device for ambient light sensor and storage medium
CN108692921A (en) Camera module parses power and checks and approves method with camera lens parsing power
CN210042061U (en) Camera focal distance calibration platform
CN113703203B (en) Automatic testing method for display uniformity of LCD screen
US9269287B2 (en) Method and system for measuring the response time of a liquid crystal display
CN113655061A (en) Method for identifying melting point of substance based on image and melting point instrument
Strasburger et al. Calibrated LCD/TFT stimulus presentation for visual psychophysics in fMRI
CN106770225B (en) A kind of Procalcitonin concentration quantitative measurement method and system
US7876429B2 (en) Method and apparatus as well as corrective optical system for evaluating restoration-premised lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050404

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees