JP2004125675A - Method for evaluating quality of wash free rice - Google Patents

Method for evaluating quality of wash free rice Download PDF

Info

Publication number
JP2004125675A
JP2004125675A JP2002291761A JP2002291761A JP2004125675A JP 2004125675 A JP2004125675 A JP 2004125675A JP 2002291761 A JP2002291761 A JP 2002291761A JP 2002291761 A JP2002291761 A JP 2002291761A JP 2004125675 A JP2004125675 A JP 2004125675A
Authority
JP
Japan
Prior art keywords
rice
layer
quality
free rice
wash free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291761A
Other languages
Japanese (ja)
Inventor
Takamasa Mesaki
目崎 孝昌
Hiroyuki Maehara
前原 裕之
Michiko Matsuda
松田 美智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to JP2002291761A priority Critical patent/JP2004125675A/en
Publication of JP2004125675A publication Critical patent/JP2004125675A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the quality of wash free rice capable of accurately analyzing components, performing functional evaluation on taste, etc., and graduating wash free rice. <P>SOLUTION: Polished rice after milling is processed into wash free rice, and the quality of wash free rice is evaluated in the method. From the luminance of autofluorescence acquired by irradiating the wash free rice with exciting light, the quantitative ratio of excipulum adhering to the wash free rice is determined. A degreasing operation by an organic solvent is performed on the wash free rice. Then the wash free rice is imaged, and image processing is performed to determine the component ratio of an aleurone layer. On the basis of the quantitative ratios of the determined excipulum layer, the aleurone layer, and albumen, the quality of the wash free rice is evaluated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、搗精後の精白米を無洗化処理した無洗米製品について、その品質評価を行う無洗米の品質評価方法及びその装置に関する。
【0002】
【従来の技術】
従来、炊飯前に研がずに炊けるいわゆる無洗米については公知である。この無洗米の製法としては、搗精後の精白米に付着した糠粉やアリューロン層を水中搗精により除去したり、精白米に付着した糠粉やアリューロン層を粘着性物質で吸着・除去したり、精白米を乾式により研米して糠粉やアリューロン層を除去したりするものが知られている。このような製法で得られる無洗米については、炊飯前に研がずに炊けて便利であるだけでなく、食味がよく、かつ、保管性に優れているといった更なる付加価値が求められてきている。これまでは、製品の品質を知るために、製品を水に浸けて振とう混合したときの濁度、製品の白度、製品の水分、脂肪酸度、水浸割粒率などを無洗米の評価項目として取り上げていた。
【0003】
例えば、濁度では、無洗米試料20gを三角フラスコに入れ、200mlの水を注いだ後、ゴム栓をして振とう機(ヤマト科学(株)製、振とう機、型式SA−31A)により10分間振とう(144〜150サイクル/分、スピード目盛3.5)し、その希釈液を濁度計(野田通信(株)製、濁度計、型式M−204)にて測定する、という方法により行われる。一般的には、濁度計にて測定した値が70ppm以下であれば無洗米として望ましいとされている。
【0004】
しかしながら、上記の濁度、白度、水分、脂肪酸度、水浸割粒率といった評価項目では、無洗米加工前の精白米と同じ評価項目が適用されており、製品となる無洗米表面に付着した微量の糠成分となる種皮層、果皮層及びアリューロン層と、胚乳層とを識別することができなかった。このように、微量の糠成分を識別することができる無洗米の評価法が確立されていないことから、必然的に無洗米専用の評価測定機器も存在しない。また、現在、精米工場などで普及している食味評価装置により無洗米相互を点数評価することも考えられるが、実際は、精白米の品種や銘柄と官能による食味との点数評価であり、精白米とは加工歩留まり及び表面状態が異なる無洗米の品質を評価することは困難であった。
【0005】
ところで、蛍光発光を利用してタンパク質や澱粉質などの組成を識別することは従来から公知であり、例えば、特公昭61−18980号公報では、穀粒の外皮層、アリューロン層及び澱粉質胚乳成分部分を信頼をもって識別することができる方法が開示されている。これによれば、粉砕して製造した穀粒製品中の割合を同定する方法において、約250〜約300nmの波長帯に電磁輻射線で照射して製品中の澱粉質胚乳部分を励起して蛍光発光させ、約300〜約370nmの波長帯にある電磁輻射線で照射して製品中のアリューロン層部分を励起して蛍光発光させ、さらに、約410〜約490nm波長帯にある電磁輻射線で照射して製品中の外皮層部分を励起して蛍光発光する工程と、その結果製品により放出される蛍光を分析して製品中の澱粉質胚乳、アリューロン層及び外皮層の相対割合を同定する工程と、を含むことを特徴とするものである。
【0006】
一方、特開昭62−73139号公報には、選択された波長範囲の電磁放射線のランプにより穀粒試料を照明して、その穀粒の露出した澱粉部分に蛍光を発生させ、それによって穀粒試料の損傷部分と非損傷部分との間で視覚的な対照を起こさせて、損傷部分と非損傷部分とを識別する穀粒損傷測定システムが開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特公昭61−18980号公報に開示された穀粒の成分識別方法にあっては、澱粉質胚乳部分、アリューロン層部分及び外皮層部分を、それぞれの部位に適した特有の励起波長を照射して、その蛍光発光を別々に測定したものを、粒全体に組み合わせるという手法であるから、例えば、アリューロン層部分の領域と外皮層部分の領域とが重複する箇所が生じて(励起の重なり現象)、正確な成分分析が行なえない欠点がある。また、特開昭62−73139号公報に開示された穀粒損傷測定システムでは、穀粒が損傷しているか否かしか判定できないので、穀粒の成分分析などに用いることができなかった。さらに、両者ともに、穀粒の各成分と食味などの官能値との相関が関連づけられておらず、また、従来の食味評価装置にあっては、無洗米表面に付着した微量の糠成分による食味の影響が考慮されておらず、無洗米に対しての食味評価を詳細に分析することはできなかった。
【0008】
本発明は上記問題点にかんがみ、正確な成分分析を行うとともに、食味などの官能的な評価をも行なって、無洗米に対してその等級付けを行うことが可能な無洗米の品質評価方法及びその装置を提供することを技術的課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため本発明は、搗精後の精白米を無洗化処理した無洗米の品質評価を行う方法であって、上記無洗米に励起光を照射して得られる自家蛍光の輝度により、その表面に付着する外皮層の量的割合を求めること、上記無洗米を有機溶媒による脱脂操作を施してから撮像し、画像処理することによって、アリューロン層の成分割合を求めること、上記求めた外皮層、アリューロン層及び胚乳の量的割合に基づいて、無洗米の品質評価を行う方法とした。
【0010】
これにより、搗精後の精白米を無洗化処理した無洗米製品について、その表面に付着した外皮層、アリューロン層及び胚乳層の各部分の量的な割合を同時に識別し、被測定物となる無洗米を、例えば、炊飯前に製品を2〜3回程度洗った方が美味しい炊き上がりとなる軽処理無洗米、炊飯前に製品を1回程度洗った方が美味しい炊き上がりとなる中処理無洗米及び炊飯前に製品を洗わずに炊ける重処理無洗米の3つのグループに区分けし、品質を評価することができる。
【0011】
また、上記の方法によれば、米表面に対して有機溶媒による脱脂操作を施すことで、アリューロン層のみ白色化することができる。すなわち、アリューロン層とそれ以外の層との識別を可能にする。そこで、この米表面をカラー画像(または白黒画像)でとらえて画像処理することによって白色化部分の面積率を測定して、アリューロン層の成分割合を求めることができる。
【0012】
【発明の実施の形態】
本発明の実施の形態を図面を参照して説明する。
【0013】
まず、無洗米の製法であるが、例えば、図6に示すような、搗精後の精白米に付着した糠粉やアリューロン層を水中搗精により除去する無洗米製造装置Aや、図7に示すような、精白米に付着した糠粉やアリューロン層を粘着性物質で吸着・除去する無洗米製造装置Bを適用する製法がある。
【0014】
図6を参照すれば、無洗米製造装置A(特開平11−42056号公報参照)は、一端に精白米の供給部101を、他端に排出部102を各々設けて、精白米の連通部103を形成し、該連通部103の排出部102側を遠心脱水部104に形成する一方、前記供給部101と前記遠心脱水部104との間の前記連通部103を搗精部105に形成するとともに、該搗精部105に水分添加手段106を接続した搗精装置107と、該搗精装置107の前記排出部102とを連通し、かつ、該搗精装置107から排出される精白米を調質する調質装置108とから構成される。そして、精白米が供給部101から搗精部105に供給されると、水分添加手段106からの水も搗精部105に供給されるが、このときの水の添加量は、精白米に対して5〜20重量%で、好ましくは15重量%が添加される。精白米は水とともに搗精部105内のスクリュー109、110、111により移送されるとともに、攪拌・搗精される。これにより、精白米の付着糠が水中で遊離し、搗精が進み、このときの搗精度合いは精白米に対して0.5〜2.0%である。そして、搗精部105を通過した米粒は次工程の遠心脱水部104へ供給される。
【0015】
遠心脱水部104では、米粒と水がスクリュー112によりさらに下方へ移送され、多孔壁113から糠粉及びアリューロン層を含んだ水が排水される。次に、米粒は遠心脱水部104から排出部102を経て排出され、調質装置108にて乾燥させられる。
【0016】
調質装置108では米粒がネット114上に広げられ、風の通風作用を受けて調質・乾燥され、米粒が適当な水分に調質されると、排米口115より無洗米製品として排出される。
【0017】
一方、図7を参照して無洗米製造装置B(特許第3206752号公報参照)を説明すると、無洗米製造装置Bは、その上部から順に湿式加工部200、粒状物混合部201及び分離乾燥部202を備え、精白米が湿式加工部200、粒状物混合部201及び分離乾燥部202を順に通過することで、米粒表面にほとんど糠が付着していない無洗米に仕上げられるのである。
【0018】
湿式加工部200の供給筒203に接続されたスクリュー筒204内に精白米が投入されると、供給筒203付近に臨ませた噴霧口205から米粒重量比約5%の霧状水分が添加され、毎分500回転する供給用スクリュー刃206により搬送終端側に向けて搬送されるとともに、攪拌羽根207によって攪拌される。こうして攪拌されることにより、霧状の水分が米粒表面にむらなく付着し、米粒表面の凹部の糠を軟質化させる。
【0019】
次に、粒状物混合部201では、湿式加工部200の排出口208から排出筒209を経て粒状物混合部201のスクリュー筒210内に供給された米粒は、毎分600回転の供給用スクリュー刃211及び攪拌羽根212によって搬送終端側に向けて攪拌されながら搬送されるのであるが、この際、粒状物供給ホッパー213内の粒状物がスクリュー筒210内に供給される。粒状物は、例えば、タピオカなどの澱粉質のものをアルファー化して乾燥し、硬度2〜5kgf/cmのほぼ球状となし、かつ、米粒の粒度よりも小さい一定の粒度に造粒して形成したものであり(例えば、粒度を1mm〜1.7mmに造粒するとよい)、70℃〜100℃の高温状態で供給されて米粒と混合される。混合比は、米粒に対して約50重量%(重量比)である。
【0020】
前工程で水分を吸収し軟質化した精白米に付着した糠粉などは、高温の粒状物に接触した瞬間にアルファー化して粒状物に吸着・除去され、糠が精白米の表面に再付着することはない。また、このとき、蒸発潜熱により米粒表面の温度を下げる作用を奏する。
【0021】
また、分離乾燥部202では、粒状物混合部201から排出筒214を経て流下した米粒が、最終工程の分離乾燥部202のスクリーン筒215内に供給され、毎分280回転する供給用スクリュー刃216によって搬送終端側に移送されるとともに攪拌翼217によって攪拌される。このとき、給風口218から毎分60mで流入する約40℃の風により、やや湿った米粒表面を乾燥させ、同時に、粒状物との分離を容易に行なわしめる。
【0022】
スクリーン筒215を通過した米粒は、製品排出口219から機外へ排出され、精白米の凹部内の糠が完全に除去された無洗米に仕上がる。
【0023】
以上が被測定物となる無洗米の製造法の一例である。そして、これら無洗米の品質を知るために、本発明では、無洗米に励起光を照射し、得られる自家蛍光の輝度の違いを利用して、その粒表面に付着した外皮層、アリューロン層及び胚乳層の各部分の量的な割合を同時に識別して品質を評価するのである。
【0024】
図1は本発明の無洗米品質評価装置の概略説明図である。この評価装置1は、被測定物を貯留するホッパー2と、該ホッパー2から所定量の被測定物を取り出すロータリーバルブ3a付タンク3と、該ロータリーバルブ付タンク3からの被測定物を振動により移送するバイブレータフィーダ4と、該バイブレータフィーダ4から被検査物を整列させて測定位置で保持させる被測定物保持手段5と、該被測定物保持手段5の上方及び下方に位置し、被測定物に励起光を照射する励起用光源6(6A及び6B)と、被測定物からの透過光又は反射光から得られる自家蛍光の輝度を取得する受光手段7(7A及び7B)と、整列された被測定物を被測定物保持手段5から削(そ)ぎ落として除去する除去手段8と、該除去手段8により除去された被測定物を受けるホッパー9と、該ホッパー9に接続する受け皿10及び受け皿10内の被測定物を計量するロードセル11を備えたものである。
【0025】
前記受光手段7には、図2に示すように画像処理部12を介して演算制御手段13が接続され、該演算制御手段13からは表示手段14が接続されている。そして、該演算制御手段13では、得られた自家蛍光の輝度から前記被測定物の表面に付着する外皮層、アリューロン層及び胚乳層の各部分の量的な割合を算出する。表示手段14では、演算制御手段13で演算された無洗米の品質又は食味値を表示する表示器15を備えている。該表示器15は、少なくとも、外皮層、アリューロン層及び胚乳層の各部分の割合を表示する成分表示部15Aと、当該無洗米の品質又は食味値を点数又はランキングで表示する品質評価表示部15Bとを備えている。また、その他の成分測定機器と接続可能な構成として、ナイアシン成分表示部15C、可溶性タンパク成分表示部15D、硬さ表示部15E及びアリューロン壁残存度表示部15Fを設けてもよい。
【0026】
さらに、図1及び図3を参照して前記品質評価装置1の構成を詳細に説明する。前記被測定物保持手段5は、被測定物を供給位置と測定位置19と排出位置との間を、図示A方向又はB方向に適宜モータ(図示せず)により移動させるスライド板構造であり、また、前記励起用光源6からの光線を透過させる透明材料、例えば、ガラス板やアクリル樹脂製で形成してある。また、被測定物を単層状態で複数列に並ばせるように、溝部16を複数列設けてあり、雑然と不揃(そろ)いに並べられたものに比べて取得画像がきれいになる。
【0027】
符号17は光源6と被測定物保持手段5との間に設けられたフィルターであり、励起用光源6を該フィルター17に通すことで約560〜570nm付近の緑色領域の波長を励起光として照射することが可能となる。該フィルター17はモータ18により回動可能となっており(図3参照)、各種フィルター17の使用を選択することができる。
【0028】
また、前記励起用光源6は、一般的なハロゲンランプ、タングステンランプ、キセノンランプなどを使用し、その光線をフィルター17に通して約560〜570nm付近の緑色領域の波長を励起光として照射することが可能であるが、このようなランプは寿命が短く、また、消費電力が多く発熱するという欠点がある。一方で、励起用光源6として光量の大きいレーザー光を使用して鮮明な画像を取得することも考えられるが、付属機器などが必要となり高価となる欠点がある。以上を考慮すれば、励起用光源6としては、長寿命で消費電力も少ないLEDなどの発光ダイオードを使用することが好ましい。発光ダイオードは光量が少ないという欠点があるが、これを解消するため、本実施形態では、複数素子からなるリング型に形成した光源を用いている(図3参照)。このような照明であれば被測定物保持手段5の全面に斑(むら)なく照射することが可能である。そして、このLEDリング型光源6の中央部に受光手段7を配設すると、鮮明な画像を取得することが可能である。なお、被測定物保持手段5は透明材料にて形成してあり、例えば、光源6と受光手段7を上方側と下方側とに配設すれば、米粒の背部(表部)と腹部(裏部)とを測定することができ、より正確に品質評価することができる。
【0029】
前記受光手段7としては、自家蛍光の輝度の違いにより粒表面の各層を同時に識別する必要があるため、広い領域を瞬時に把握できるCCDラインセンサ(又はエリアセンサ)や、CMOSラインセンサ(又はエリアセンサ)を使用するのが好ましい。
【0030】
以下、上記構成の作用を説明する。被測定物である無洗米をホッパー2から投入すると、該ロータリーバルブ3a付タンク3底部から測定する分量だけの無洗米がロータリーバルブ3aから取り出されるとともに、バイブレータフィーダ4によって無洗米が移送されて、被測定物保持手段5に整列されながら供給される。被測定物保持手段5に無洗米が供給されると、被測定物保持手段5が測定位置19に移動されて測定が開始される。
【0031】
そして、励起用光源6からの光線がフィルター17を通って、約560〜570nm付近の緑色領域の波長が励起光として無洗米に照射される。そうすると、受光手段7には無洗米からの透過光又は反射光から約590nm以上の赤色領域の波長を自家蛍光として取得される。
【0032】
この受光手段7は、被測定物に励起光を照射して得られる自家蛍光を受光するから、反射光のみ又は透過光のみで測定を行うものに比べて、被測定物の表面状態のほか、内部状態をも光学的に評価することができる。例えば、図4は米粒の内部状態と輝度との関係を示す図であるが、これにより、自家蛍光の輝度が米粒表面からの深さによって異なることが分かる。図4を参照すれば、果皮層及び種皮層(〜約12μm)の輝度は約40〜50の範囲であり、アリューロン層(約12〜25μm)の輝度は約15〜25の範囲であり、胚乳層(約25μm〜)の輝度は約5〜10の範囲であることが分かる。
【0033】
以上のように、各層の輝度の違いを基準として、被測定物となる無洗米をグループ分けして品質を評価するのである。例えば、図5は外皮層の付着割合を示し、無洗米の処理程度により、A.炊飯前に製品を2〜3回程度洗った方が美味しい炊き上がりとなる軽処理無洗米、B.炊飯前に製品を1回程度洗った方が美味しい炊き上がりとなる中処理無洗米、C.炊飯前に製品を洗わずに炊ける重処理無洗米の3つのグループに区分けして品質を評価するのである。
【0034】
【表1】

Figure 2004125675
【0035】
表1は無洗米の処理程度による米粒表面の露出割合と食味との関係を示すものである。無洗米の処理程度が軽ということは、外皮層が多く付着しているため、高輝度の割合が多く、また、胚乳層はその露出割合が低いため、低輝度の割合が少ないということになる。反対に無洗米の処理程度が重ということは、外皮層が少ないため、高輝度の割合が少なく、また、胚乳層はその露出割合が高いため、低輝度の割合が多いということになる。
【0036】
一方、無洗米の処理程度は重処理のほうが必ずしも食味値が良いとは限らない。表1の米粒を実際に官能試験により外観、香り、味、粘り、硬さなどの評価項目を総合的に評価してみると、精白米、無洗米中処理タイプ、無洗米重処理タイプ、無洗米軽処理タイプという順で食味値が良いことが分かった。
【0037】
したがって、図2に示す演算制御手段13に入力される輝度の高低割合から、無洗米の外皮層、アリューロン層及び胚乳層の各成分の割合とを関連づけて無洗米処理程度を把握し、さらに、この無洗米処理程度と予め官能試験などで記憶した食味値との相関を関連付けることが、無洗米に対しての食味評価を詳細に分析する上で必要となる。
【0038】
以上のように算出された、無洗米の外皮層、アリューロン層及び胚乳層の各成分の割合は、図2の成分表示部15Aに表示されるとともに、無洗米処理程度などの品質や食味値は点数又はランキングで表示する品質評価表示部15Bに表示される。
【0039】
表示手段14により無洗米の品質が表示されて一連の測定が終了すると、被測定物保持手段5から無洗米が除去される。つまり、図1の被測定物保持手段5をA方向に移動させ、再びB方向に戻る際に、除去手段8の突出部8Aを被測定物保持手段5に接触させ、該突出部8Aにより整列された無洗米を被測定物保持手段5から削(そ)ぎ落とすことで除去が行われる。該除去手段8により除去された無洗米はホッパー9から受け皿10に受けられ、受け皿10内の無洗米はロードセル11によって計量される。この計量値は演算制御手段13に入力して、無洗米の品質の統計に利用するとよい。
【0040】
以下実施例を示し、本発明を更に具体的に説明する。
実施例1
供試玄米として新潟コシヒカリを使用し、これを精米して、A社製法により加工した無洗米、B社製法により加工した無洗米、C社製法により加工した無洗米、D社製法により加工した無洗米、E社製法により加工した無洗米、F社製法により加工した無洗米の8種類のサンプルを用いて、励起波長560nm、蛍光波長590nmの条件で品質評価を行なった。
【表2】
Figure 2004125675
【0041】
品質評価の結果、食味値は外皮層が少なく、胚乳層が多いという理由でB社製法の無洗米が1位、A社製法の無洗米が2位、C社製法の無洗米が3位となった。
【0042】
実施例2
供試玄米として北海道ほしのゆめを使用し、実施例1と同様の条件で品質評価を行なった。
【表3】
Figure 2004125675
【0043】
品質評価の結果、食味値は外皮層が少なく、胚乳層が多いという理由でB社製法の無洗米が1位となり、A社製及びC社製の無洗米が同率で2位となった。
【0044】
被測定物(米)に励起光を照射して得られる輝度は、図4の例では、表皮層は約40〜50μm、アリューロン層は約12〜25μm、胚乳層の輝度は5〜10μmであることは前述した。しかし、もし、アリューロン層の輝度と胚乳層の輝度とが(図4に示す例よりもさらに)接近していたならば、図2に示す演算手段13はそこに入力される自家蛍光がアリューロン層の輝度なのか胚乳層の輝度なのかその同定が困難になる。
【0045】
そこで、別途、以下の方法を用いて米表面のアリューロン層の割合を正確に測定してその値(B)と、さらに、図2に示す演算手段13で得た外皮の割合(A)と、100−(A+B)=Cの計算で得られる胚乳層の割合(C)とから、米の品質を評価するようにしてもよい。
【0046】
[アリューロン層の測定]
1.金属性の網の中に米を収納する。
2.アルコールやアセトン等の有機溶剤が入ったビーカの中に、米を上記網ごと5秒間浸漬する。
3.ビーカの中から米を取り出してキムワイプ上に置いて風乾させる。この段階で、米は有機溶剤によってその表面(アリューロン層内部の油分)が脱脂されて、アリューロン層は白色化している。ただし、米の外皮層及び胚乳層はそのままの色を保ち、白色化されない。
4.この米をカラーCCDカメラで撮像し、画像処理することにより、米表面に分布する白色化部分の面積率を測定することで、アリューロン層の成分割合Bを得る。
【0047】
以上のように、上記の方法によれば、米表面に対して有機溶媒による脱脂操作を施すことで、アリューロン層のみ白色化することができる。すなわち、アリューロン層とそれ以外の層との識別を可能にする。そして、面積率を画像処理することでアリューロン層の成分割合を求めることができる。
【0048】
【発明の効果】
本発明によれば、搗精後の精白米を無洗化処理した無洗米の品質評価を行う方法であって、上記無洗米に励起光を照射して得られる自家蛍光の輝度により、その表面に付着する外皮層の量的割合を求めること、上記無洗米を有機溶媒による脱脂操作を施してから撮像し、画像処理することによって、アリューロン層の成分割合を求めること、上記求めた外皮層、アリューロン層及び胚乳の量的割合に基づいて、無洗米の品質評価を行う方法とした。
【0049】
これにより、搗精後の精白米を無洗化処理した無洗米製品について、その表面に付着した外皮層、アリューロン層及び胚乳層の各部分の量的な割合を同時に識別し、被測定物となる無洗米を、例えば、炊飯前に製品を2〜3回程度洗った方が美味しい炊き上がりとなる軽処理無洗米、炊飯前に製品を1回程度洗った方が美味しい炊き上がりとなる中処理無洗米及び炊飯前に製品を洗わずに炊ける重処理無洗米の3つのグループに区分けし、品質を評価することができる。
【0050】
また、上記の方法によれば、米表面に対して有機溶媒による脱脂操作を施すことで、アリューロン層のみ白色化することができる。すなわち、アリューロン層とそれ以外の層との識別を可能にする。そこで、この米表面をカラー画像(または白黒画像)でとらえて画像処理することによって白色化部分の面積率を測定して、アリューロン層の成分割合を求めることができる。
【図面の簡単な説明】
【図1】本発明の無洗米品質評価装置の概略説明図である。
【図2】受光手段、演算制御手段及び表示手段の接続を示す概略図である。
【図3】粒状物保持手段と受光手段を示す概略斜視図である。
【図4】米粒の内部状態と輝度との関係を示す図である。
【図5】外皮層の付着割合により無洗米のグループ分けを示す図である。
【図6】無洗米製造装置の概略構造を示す縦断面図である。
【図7】無洗米製造装置の概略構造を示す縦断面図である。
【符号の説明】
1 品質評価装置
2 ホッパー
3 ロータリーバルブ付タンク
4 バイブレータフィーダ
5 被測定物保持手段
6 光源
7 受光手段
8 除去手段
9 ホッパー
10 受け皿
11 ロードセル
12 画像処理部
13 演算制御手段
14 表示手段
15 表示器
16 溝部
17 フィルター
18 モータ
19 測定位置
101 供給部
102 排出部
103 連通部
104 遠心脱水部
105 搗精部
106 水分添加手段
107 搗精装置
108 調質装置
109 スクリュー
110 スクリュー
111 スクリュー
112 スクリュー
113 多孔壁
114 ネット
115 排米口
200 湿式加工部
201 粒状物混合部
202 分離乾燥部
203 供給筒
204 スクリュー筒
205 噴霧口
206 供給用スクリュー刃
207 攪拌羽根
208 排出口
209 排出筒
210 スクリュー筒
211 供給用スクリュー刃
212 攪拌羽根
213 粒状物供給ホッパー
214 排出筒
215 スクリーン筒
216 供給用スクリュー刃
217 攪拌翼
218 給風口
219 製品排出口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for evaluating the quality of unwashed rice in which the quality of a non-washed rice product obtained by subjecting milled rice to a non-washing process is evaluated.
[0002]
[Prior art]
Conventionally, so-called non-washed rice that can be cooked without grinding before cooking is known. As a method of producing this unwashed rice, the bran powder and the aleurone layer attached to the milled rice after milling are removed by underwater milling, and the bran powder and the aleurone layer attached to the milled rice are adsorbed and removed with an adhesive substance. There is known a method of polishing polished rice by a dry method to remove the bran powder and the aleurone layer. As for the non-washed rice obtained by such a manufacturing method, not only is it convenient to cook without sharpening before cooking rice, but also a further added value such as good taste and excellent storage property has been required. I have. Until now, in order to know the quality of the product, the turbidity, the whiteness of the product, the moisture content of the product, the fatty acid content, the percentage of water-soaked granules, etc. when the product is immersed in water and shaken are evaluated for unwashed rice. Was taken up as an item.
[0003]
For example, in the case of turbidity, 20 g of a non-washed rice sample is put in an Erlenmeyer flask, and after pouring 200 ml of water, a rubber stopper is used and a shaking machine (manufactured by Yamato Scientific Co., Ltd., shaking machine, model SA-31A) is used. Shaking for 10 minutes (144 to 150 cycles / min, speed scale 3.5), and measuring the diluted liquid with a turbidimeter (turbidity meter, model M-204, manufactured by Noda Communication Co., Ltd.). Done by the method. Generally, if the value measured with a turbidimeter is 70 ppm or less, it is considered that the rice is desirable as non-washed rice.
[0004]
However, in the above-mentioned evaluation items such as turbidity, whiteness, moisture, fatty acid content, and water immersion cracking ratio, the same evaluation items as the polished rice before the non-washed rice processing are applied, and adhere to the surface of the unwashed rice as a product. The seed coat layer, pericarp layer, and aleurone layer, which were trace amounts of bran components, could not be distinguished from the endosperm layer. As described above, since an evaluation method of non-washed rice capable of discriminating a trace amount of bran component has not been established, there is inevitably no evaluation and measurement device dedicated to non-washed rice. In addition, it is conceivable to evaluate scores of non-washed rice with each other by using a taste evaluation device that is currently widely used in rice mills, but in fact, it is a score evaluation of the taste and taste of polished rice varieties and brands and sensuality. It was difficult to evaluate the quality of non-washed rice having different processing yield and surface condition.
[0005]
By the way, it has been conventionally known to identify the composition of proteins, starches, and the like by using fluorescence emission. For example, Japanese Patent Publication No. 18980/1986 discloses a hull layer, an aleurone layer, and a starch endosperm component of a grain. A method is disclosed that allows parts to be reliably identified. According to this method, in a method of identifying the proportion in a crushed and manufactured grain product, the wavelength range of about 250 to about 300 nm is irradiated with electromagnetic radiation to excite the starchy endosperm portion in the product to fluoresce. It emits light, irradiates it with electromagnetic radiation in the wavelength band of about 300 to about 370 nm, excites the aleurone layer portion in the product to emit fluorescence, and further irradiates it with electromagnetic radiation in the wavelength band of about 410 to about 490 nm. Exciting the skin layer portion of the product to emit fluorescence, and analyzing the fluorescence emitted by the product to identify the relative proportions of the starchy endosperm, the aleurone layer and the skin layer in the product. , Are included.
[0006]
On the other hand, Japanese Patent Application Laid-Open No. 62-73139 discloses that a grain sample is illuminated by a lamp of electromagnetic radiation in a selected wavelength range, and fluorescence is generated in an exposed starch portion of the grain. A grain damage measurement system is disclosed that provides a visual contrast between damaged and undamaged portions of a sample to distinguish between damaged and undamaged portions.
[0007]
[Problems to be solved by the invention]
However, in the method for identifying components of grains disclosed in JP-B-61-18980, the starchy endosperm portion, the aleurone layer portion and the hull layer portion are irradiated with a specific excitation wavelength suitable for each site. Then, since the fluorescence emission is measured separately and combined into the whole grain, for example, the area of the aleurone layer and the area of the outer skin layer may overlap (excitation overlap phenomenon). ), There is a drawback that accurate component analysis cannot be performed. Further, the grain damage measuring system disclosed in Japanese Patent Application Laid-Open No. 62-73139 can only determine whether or not a grain is damaged, and thus cannot be used for component analysis of the grain. Furthermore, in both cases, the correlation between each component of the grain and the sensory value such as taste is not related, and in the conventional taste evaluation device, the taste due to a trace amount of bran component adhering to the surface of unwashed rice is not recognized. Because the effects of the rice were not taken into account, it was not possible to analyze the taste evaluation of unwashed rice in detail.
[0008]
In view of the above problems, the present invention performs an accurate component analysis, and also performs a sensory evaluation of taste and the like, and a method for evaluating the quality of non-washed rice that can perform the grading of the non-washed rice and It is a technical object to provide such a device.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is a method for evaluating the quality of unwashed rice obtained by subjecting milled rice to a non-washing treatment after milling, and the brightness of autofluorescence obtained by irradiating the unwashed rice with excitation light. Calculating the quantitative ratio of the outer skin layer attached to the surface, imaging the unwashed rice after performing a degreasing operation with an organic solvent, and performing image processing to determine the component ratio of the aleurone layer, the above obtained Based on the quantitative ratio of the outer coat layer, the aleurone layer and the endosperm, a method of evaluating the quality of the unwashed rice was adopted.
[0010]
Thereby, for the non-washed rice product in which the milled rice after the milling has been subjected to the non-washing treatment, the quantitative ratio of each portion of the outer skin layer, the aleurone layer and the endosperm layer adhered to the surface thereof is simultaneously identified, and the measured object is obtained. Lightly treated non-washed rice, for example, it is better to wash the product about two or three times before cooking, and lightly treated non-washed rice. The product can be divided into three groups of heavy-treatment non-washed rice, which can be cooked without washing the product before washing and cooking, and the quality can be evaluated.
[0011]
Further, according to the above method, by performing a degreasing operation on the rice surface with an organic solvent, only the aleurone layer can be whitened. That is, it is possible to distinguish the Aleuron layer from other layers. Therefore, the surface ratio of the whitened portion is measured by capturing the rice surface as a color image (or a black-and-white image) and performing image processing to determine the component ratio of the aleurone layer.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0013]
First, there is a method for producing unwashed rice. For example, as shown in FIG. 6, an unwashed rice manufacturing apparatus A for removing bran powder and aleurone layer adhered to polished rice by underwater milling, or as shown in FIG. In addition, there is a manufacturing method in which a non-washing rice manufacturing apparatus B for applying a sticky substance to remove and remove a bran powder and an aleurone layer attached to polished rice is used.
[0014]
Referring to FIG. 6, a non-washed rice producing apparatus A (see Japanese Patent Application Laid-Open No. 11-42056) is provided with a supply unit 101 of polished rice at one end and a discharge unit 102 at the other end, and a communication unit for polished rice. 103 is formed, and the discharge unit 102 side of the communication unit 103 is formed in the centrifugal dewatering unit 104, and the communication unit 103 between the supply unit 101 and the centrifugal dewatering unit 104 is formed in the milling unit 105. And a refining device 107 in which a water adding means 106 is connected to the refining unit 105 and the discharge unit 102 of the refining device 107, and a refining process for refining the polished rice discharged from the polishing device 107. And a device 108. When the milled rice is supplied from the supply unit 101 to the milling unit 105, the water from the water addition means 106 is also supplied to the milling unit 105. At this time, the amount of water added is 5 to the milled rice. -20% by weight, preferably 15% by weight are added. The milled rice is transported together with the water by the screws 109, 110, 111 in the milling unit 105, and is also stirred and milled. Thereby, the adhered bran of the polished rice is released in the water, and the milling proceeds. At this time, the milling accuracy is 0.5 to 2.0% based on the polished rice. Then, the rice grains that have passed through the milling unit 105 are supplied to the centrifugal dewatering unit 104 in the next step.
[0015]
In the centrifugal dewatering unit 104, the rice grains and water are further transferred by the screw 112, and the water containing the rice bran powder and the aleurone layer is drained from the porous wall 113. Next, the rice grains are discharged from the centrifugal dewatering unit 104 via the discharge unit 102, and dried by the refining device 108.
[0016]
In the refining device 108, the rice grains are spread on the net 114, are refined and dried by the ventilation of the wind, and when the rice grains are reconditioned to an appropriate moisture, they are discharged from the rice discharge port 115 as a non-washed rice product. You.
[0017]
On the other hand, the non-washed rice manufacturing apparatus B will be described with reference to FIG. 7. The non-washed rice manufacturing apparatus B includes a wet processing section 200, a granular material mixing section 201, and a separation drying section in order from the top. By providing the milled rice 202 in order through the wet processing section 200, the granular material mixing section 201, and the separation and drying section 202, the rice grain can be finished to a non-washed rice with almost no rice bran attached.
[0018]
When the polished rice is put into the screw cylinder 204 connected to the supply cylinder 203 of the wet processing section 200, about 5% by weight of rice grain mist-like water is added from the spray port 205 facing the supply cylinder 203. The toner is conveyed toward the conveyance end by the supply screw blade 206 rotating at 500 revolutions per minute, and is stirred by the stirring blade 207. As a result of the stirring, mist-like water uniformly adheres to the surface of the rice grain, and softens the bran in the concave portion on the surface of the rice grain.
[0019]
Next, in the granular material mixing section 201, the rice grains supplied into the screw cylinder 210 of the granular material mixing section 201 from the discharge port 208 of the wet processing section 200 via the discharge cylinder 209 are supplied to the supply screw blade at 600 revolutions per minute. The particles are conveyed while being stirred toward the conveying end by the 211 and the stirring blades 212. At this time, the granular material in the granular material supply hopper 213 is supplied into the screw cylinder 210. Granules are formed, for example, by pregelatinizing a starchy substance such as tapioca and drying it to make it approximately spherical with a hardness of 2 to 5 kgf / cm 2 and granulating it to a certain particle size smaller than that of rice grains. (For example, the particle size is preferably granulated to 1 mm to 1.7 mm), and supplied at a high temperature of 70 ° C. to 100 ° C. to be mixed with rice grains. The mixing ratio is about 50% by weight (weight ratio) based on rice grains.
[0020]
Bran flour adhering to softened polished rice that absorbed water in the previous process becomes alpha when it comes in contact with high-temperature granules, is adsorbed and removed by the granules, and the bran re-adheres to the polished rice surface Never. Also, at this time, an effect of lowering the temperature of the rice grain surface by the latent heat of evaporation is exerted.
[0021]
In the separation / drying unit 202, the rice grains flowing down from the granular material mixing unit 201 through the discharge tube 214 are supplied into the screen tube 215 of the separation / drying unit 202 in the final step, and the supply screw blade 216 rotates 280 times per minute. And is stirred by the stirring blade 217. At this time, the slightly wet rice grain surface is dried by the wind of about 40 ° C. flowing from the air supply port 218 at a rate of 60 m 3 per minute, and at the same time, separation from the granular material is easily performed.
[0022]
The rice grains that have passed through the screen cylinder 215 are discharged out of the machine through the product discharge port 219, and are finished as unwashed rice in which the bran in the recesses of the polished rice has been completely removed.
[0023]
The above is an example of a method for producing unwashed rice to be measured. Then, in order to know the quality of these unwashed rice, in the present invention, the unwashed rice is irradiated with excitation light, and by utilizing the difference in brightness of the obtained autofluorescence, the outer skin layer, the aleurone layer and The quantitative proportion of each part of the endosperm layer is simultaneously identified to evaluate the quality.
[0024]
FIG. 1 is a schematic explanatory view of a rice-free rice quality evaluation device of the present invention. The evaluation device 1 includes a hopper 2 for storing an object to be measured, a tank 3 with a rotary valve 3a for taking out a predetermined amount of the object to be measured from the hopper 2, and an object to be measured from the tank 3 with the rotary valve. A vibrator feeder 4 to be transported; an object holding means 5 for aligning the object to be inspected from the vibrator feeder 4 and holding the object at a measurement position; and an object to be measured which is located above and below the object holding means 5. An excitation light source 6 (6A and 6B) for irradiating the object with excitation light, and a light receiving means 7 (7A and 7B) for acquiring the brightness of auto-fluorescence obtained from transmitted light or reflected light from the object to be measured are aligned. A removing unit 8 for shaving off the measured object from the measured object holding unit 5 for removal, a hopper 9 for receiving the measured object removed by the removing unit 8, and a receiving unit connected to the hopper 9 Those having a load cell 11 for weighing the object to be measured of pan 10 and the saucer 10.
[0025]
As shown in FIG. 2, an arithmetic control unit 13 is connected to the light receiving unit 7 via an image processing unit 12, and a display unit 14 is connected to the arithmetic control unit 13. Then, the arithmetic control means 13 calculates a quantitative ratio of each part of the outer skin layer, the aleurone layer and the endosperm layer adhering to the surface of the object to be measured from the obtained brightness of the autofluorescence. The display means 14 includes a display 15 for displaying the quality or taste value of the unwashed rice calculated by the calculation control means 13. The indicator 15 includes at least a component display portion 15A for displaying a ratio of each portion of the outer skin layer, the aleurone layer and the endosperm layer, and a quality evaluation display portion 15B for displaying the quality or taste value of the non-washed rice in a score or ranking. And In addition, a niacin component display section 15C, a soluble protein component display section 15D, a hardness display section 15E, and an aleurone wall remaining degree display section 15F may be provided as configurations that can be connected to other component measurement devices.
[0026]
Further, the configuration of the quality evaluation device 1 will be described in detail with reference to FIGS. The object-to-be-measured holding means 5 has a slide plate structure for moving the object to be measured between a supply position, a measurement position 19, and a discharge position in an A direction or a B direction by a motor (not shown) as appropriate. Further, it is formed of a transparent material that transmits light from the excitation light source 6, for example, a glass plate or an acrylic resin. Also, a plurality of rows of the groove portions 16 are provided so that the objects to be measured can be arranged in a plurality of rows in a single-layer state, so that the obtained image becomes clearer than those arranged in a random and irregular (arranged) manner.
[0027]
Reference numeral 17 denotes a filter provided between the light source 6 and the DUT holding means 5, and the excitation light source 6 is passed through the filter 17 to irradiate a wavelength in a green region around 560 to 570 nm as excitation light. It is possible to do. The filter 17 is rotatable by a motor 18 (see FIG. 3), and the use of various filters 17 can be selected.
[0028]
As the excitation light source 6, a general halogen lamp, a tungsten lamp, a xenon lamp, or the like is used, and the light is passed through a filter 17 to irradiate a wavelength in a green region around 560 to 570 nm as excitation light. However, such a lamp has a drawback that the life thereof is short and the power consumption is large and heat is generated. On the other hand, it is conceivable to obtain a clear image by using a laser beam having a large light amount as the excitation light source 6, but there is a disadvantage in that an additional device or the like is required and the cost becomes high. In consideration of the above, it is preferable to use a light emitting diode such as an LED having a long life and low power consumption as the excitation light source 6. The light emitting diode has a drawback that the light amount is small, but in order to solve this, in this embodiment, a ring-shaped light source composed of a plurality of elements is used (see FIG. 3). With such illumination, it is possible to irradiate the entire surface of the measured object holding means 5 without unevenness. When the light receiving means 7 is provided at the center of the LED ring type light source 6, a clear image can be obtained. The object holding means 5 is formed of a transparent material. For example, if the light source 6 and the light receiving means 7 are disposed on the upper side and the lower side, the back (front part) and the abdomen (back side) of the rice grain are provided. ) Can be measured, and the quality can be more accurately evaluated.
[0029]
As the light receiving means 7, since it is necessary to simultaneously identify each layer on the grain surface due to a difference in the brightness of the autofluorescence, a CCD line sensor (or area sensor) or a CMOS line sensor (or area sensor) capable of instantaneously grasping a wide area. Sensors).
[0030]
Hereinafter, the operation of the above configuration will be described. When non-washed rice, which is an object to be measured, is thrown in from the hopper 2, an amount of non-washed rice to be measured is taken out of the rotary valve 3a from the bottom of the tank 3 with the rotary valve 3a and the non-washed rice is transferred by the vibrator feeder 4, It is supplied while being aligned with the object-to-be-measured holding means 5. When the non-washed rice is supplied to the measured object holding means 5, the measured object holding means 5 is moved to the measurement position 19 and the measurement is started.
[0031]
Then, the light from the excitation light source 6 passes through the filter 17, and the wavelength in the green region around 560 to 570 nm is radiated as excitation light to the unwashed rice. Then, the light receiving unit 7 acquires a wavelength in the red region of about 590 nm or more from the transmitted light or the reflected light from the unwashed rice as autofluorescence.
[0032]
Since the light receiving means 7 receives the auto-fluorescence obtained by irradiating the object to be measured with the excitation light, the light receiving means 7 has a surface state of the object to be measured other than that in which only the reflected light or the transmitted light is used for measurement. The internal state can also be evaluated optically. For example, FIG. 4 is a diagram showing the relationship between the internal state of rice grains and luminance. From this, it can be seen that the luminance of autofluorescence varies depending on the depth from the rice grain surface. Referring to FIG. 4, the brightness of the pericarp layer and the seed coat layer (about 12 μm) is in the range of about 40 to 50, the brightness of the aleurone layer (about 12 to 25 μm) is in the range of about 15 to 25, and the endosperm It can be seen that the brightness of the layers (from about 25 μm) ranges from about 5 to 10.
[0033]
As described above, the quality is evaluated by grouping the non-washed rice to be measured based on the difference in luminance of each layer. For example, FIG. 5 shows the adhesion ratio of the outer skin layer. B. Lightly treated non-washed rice, which is more delicious if the product is washed about two or three times before cooking. B. Untreated washed rice, which is more delicious when the product is washed about once before cooking, C.I. The quality is evaluated by dividing into three groups of heavy-treatment non-washed rice, which can be cooked without washing the product before cooking.
[0034]
[Table 1]
Figure 2004125675
[0035]
Table 1 shows the relationship between the exposure ratio of the rice grain surface and the taste depending on the degree of treatment of the unwashed rice. Light treatment of non-washed rice means that the ratio of high brightness is high due to the large number of outer skin layers attached, and the ratio of low brightness is low because the endosperm layer has a low exposure ratio. . Conversely, the high degree of treatment of unwashed rice means that the ratio of high luminance is low because the outer skin layer is small, and the ratio of low luminance is high because the endosperm layer has a high exposure ratio.
[0036]
On the other hand, as for the degree of treatment of unwashed rice, the heavy treatment does not always have a better taste value. When the evaluation items such as appearance, aroma, taste, stickiness, and hardness of the rice grains in Table 1 were actually evaluated comprehensively by a sensory test, the milled rice, the non-washed rice medium treatment type, the non-washed rice heavy treatment type, and the It was found that the taste value was good in the order of the rice washing light treatment type.
[0037]
Therefore, from the high / low ratio of the luminance inputted to the arithmetic and control means 13 shown in FIG. 2, the degree of non-washing rice processing is grasped by associating the ratio of each component of the outer layer, the aleurone layer and the endosperm layer of the non-washed rice, It is necessary to correlate the correlation between the degree of the unwashed rice treatment and the taste value stored in advance by a sensory test or the like in order to analyze the taste evaluation of the unwashed rice in detail.
[0038]
The ratio of each component of the outer skin layer, the aleurone layer, and the endosperm layer of the unwashed rice calculated as described above is displayed in the component display section 15A of FIG. It is displayed on the quality evaluation display section 15B that displays the score or ranking.
[0039]
When the quality of the non-washed rice is displayed on the display means 14 and a series of measurements are completed, the non-washed rice is removed from the measured object holding means 5. That is, when the object-to-be-measured means 5 of FIG. 1 is moved in the direction A and returned to the direction B again, the protruding portion 8A of the removing means 8 is brought into contact with the object-to-be-measured means 5 and aligned by the projecting portion 8A The removed non-washed rice is removed by shaving off the measured object holding means 5. The non-washed rice removed by the removing means 8 is received by the tray 10 from the hopper 9, and the non-washed rice in the tray 10 is measured by the load cell 11. This weighed value may be input to the arithmetic and control unit 13 and used for statistics of the quality of the unwashed rice.
[0040]
Hereinafter, the present invention will be described more specifically with reference to Examples.
Example 1
Niigata Koshihikari was used as the test brown rice, and this was polished and milled, and the unwashed rice processed by the method of Company A, the unwashed rice processed by the method of Company B, the unwashed rice processed by the method of Company C, and the unprocessed rice processed by the method of Company D Using eight types of samples of washed rice, non-washed rice processed by the method manufactured by Company E, and unwashed rice processed by the method manufactured by Company F, the quality was evaluated under the conditions of an excitation wavelength of 560 nm and a fluorescence wavelength of 590 nm.
[Table 2]
Figure 2004125675
[0041]
As a result of the quality evaluation, the taste value was low in the outer skin layer and large in the endosperm layer. The non-washed rice manufactured by Company B ranked first, the non-washed rice manufactured by Company A ranked second, and the non-washed rice manufactured by Company C ranked third. became.
[0042]
Example 2
Using Hokkaido Hoshino Yume as the test brown rice, quality evaluation was performed under the same conditions as in Example 1.
[Table 3]
Figure 2004125675
[0043]
As a result of the quality evaluation, non-washed rice manufactured by Company B ranked first in the taste value because the outer skin layer was small and the endosperm layer was large, and non-washed rice manufactured by Company A and Company C ranked second at the same rate.
[0044]
In the example of FIG. 4, the brightness obtained by irradiating the test object (rice) with excitation light is about 40 to 50 μm for the epidermis layer, about 12 to 25 μm for the aleurone layer, and 5 to 10 μm for the endosperm layer. That was mentioned earlier. However, if the brightness of the aleurone layer and the brightness of the endosperm layer are close to each other (further than in the example shown in FIG. 4), the arithmetic means 13 shown in FIG. It is difficult to identify whether the luminance is the luminance of the endosperm layer or the luminance of the endosperm layer.
[0045]
Therefore, separately, the ratio of the aleurone layer on the rice surface is accurately measured using the following method, and the value (B), and further, the ratio (A) of the outer skin obtained by the calculating means 13 shown in FIG. The quality of rice may be evaluated from the ratio (C) of the endosperm layer obtained by the calculation of 100− (A + B) = C.
[0046]
[Measurement of Aleuron Layer]
1. Store rice in a metal net.
2. In a beaker containing an organic solvent such as alcohol or acetone, the rice is dipped together with the net for 5 seconds.
3. Remove the rice from the beaker and place on a Kimwipe to air dry. At this stage, the surface of the rice (oil inside the aleurone layer) is degreased by the organic solvent, and the aleurone layer is whitened. However, the outer skin layer and endosperm layer of rice keep the same color and are not whitened.
4. The rice is imaged with a color CCD camera, and image processing is performed. By measuring the area ratio of the whitened portion distributed on the rice surface, the component ratio B of the aleurone layer is obtained.
[0047]
As described above, according to the above-described method, by performing a degreasing operation with an organic solvent on the rice surface, only the aleurone layer can be whitened. That is, it is possible to distinguish the Aleuron layer from other layers. Then, by subjecting the area ratio to image processing, the component ratio of the aleurone layer can be obtained.
[0048]
【The invention's effect】
According to the present invention, there is provided a method for evaluating the quality of unwashed rice obtained by subjecting milled rice to non-washing treatment, wherein the brightness of autofluorescence obtained by irradiating the unwashed rice with excitation light is applied to the surface thereof. Obtaining the quantitative ratio of the outer skin layer to be adhered, imaging the unwashed rice after performing a degreasing operation with an organic solvent, and performing image processing to obtain the component ratio of the aleurone layer, the outer skin layer obtained above, aleurone Based on the quantitative ratio of the layer and the endosperm, the quality of the unwashed rice was evaluated.
[0049]
Thereby, for the non-washed rice product in which the milled rice after the milling has been subjected to the non-washing treatment, the quantitative ratio of each portion of the outer skin layer, the aleurone layer and the endosperm layer adhered to the surface thereof is simultaneously identified, and the measured object is obtained. Lightly treated non-washed rice, for example, it is better to wash the product about two or three times before cooking, and lightly treated non-washed rice. It can be divided into three groups of heavy-treatment non-washed rice that can be cooked without washing the product before washing and cooking, and the quality can be evaluated.
[0050]
Further, according to the above method, by performing a degreasing operation on the rice surface with an organic solvent, only the aleurone layer can be whitened. That is, it is possible to distinguish between the aleurone layer and the other layers. Therefore, the surface ratio of the whitened portion is measured by capturing the rice surface as a color image (or a black-and-white image) and performing image processing to determine the component ratio of the aleurone layer.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a washing-free rice quality evaluation device of the present invention.
FIG. 2 is a schematic diagram showing connection of a light receiving unit, an arithmetic control unit, and a display unit.
FIG. 3 is a schematic perspective view showing a particulate matter holding unit and a light receiving unit.
FIG. 4 is a diagram showing the relationship between the internal state of rice grains and luminance.
FIG. 5 is a diagram showing grouping of non-washed rice according to the adhesion ratio of a skin layer.
FIG. 6 is a vertical sectional view showing a schematic structure of a rice-free rice production apparatus.
FIG. 7 is a vertical sectional view showing a schematic structure of a rice-free rice production apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Quality evaluation apparatus 2 Hopper 3 Tank with rotary valve 4 Vibrator feeder 5 Object holding means 6 Light source 7 Light receiving means 8 Removing means 9 Hopper 10 Receiving tray 11 Load cell 12 Image processing unit 13 Operation control means 14 Display means 15 Display 16 Groove 17 Filter 18 Motor 19 Measurement position 101 Supply unit 102 Discharge unit 103 Communication unit 104 Centrifugal dewatering unit 105 Milling unit 106 Water addition means 107 Milling device 108 Conditioning device 109 Screw 110 Screw 111 Screw 112 Screw 113 Porous wall 114 Net 115 Rice discharging Mouth 200 Wet processing section 201 Granular material mixing section 202 Separation and drying section 203 Supply cylinder 204 Screw cylinder 205 Spray port 206 Supply screw blade 207 Stirring blade 208 Discharge port 209 Discharge cylinder 210 Screw cylinder 211 Supply screw blade 212 Stirring blade 213 Granular material supply hopper 214 Discharge cylinder 215 Screen cylinder 216 Supply screw blade 217 Stirring blade 218 Air supply port 219 Product discharge port

Claims (1)

搗精後の精白米を無洗化処理した無洗米の品質評価を行う方法であって、
上記無洗米に励起光を照射して得られる自家蛍光の輝度により、その表面に付着する外皮層の量的割合を求めること、
上記無洗米を有機溶媒による脱脂操作を施してから撮像し、画像処理することによって、アリューロン層の成分割合を求めること、
上記求めた外皮層、アリューロン層及び胚乳の量的割合に基づいて、無洗米の品質評価を行うこと、を含む
上記の方法。
A method for evaluating the quality of non-washed rice obtained by subjecting milled rice to non-washing processing,
By the brightness of the autofluorescence obtained by irradiating the unwashed rice with excitation light, to determine the quantitative ratio of the outer skin layer attached to the surface thereof,
The unwashed rice is imaged after performing a degreasing operation with an organic solvent, and image processing is performed to determine the component ratio of the aleurone layer,
Performing the quality evaluation of the unwashed rice based on the quantitative ratios of the outer coat layer, the aleurone layer and the endosperm determined above.
JP2002291761A 2002-10-04 2002-10-04 Method for evaluating quality of wash free rice Pending JP2004125675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291761A JP2004125675A (en) 2002-10-04 2002-10-04 Method for evaluating quality of wash free rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291761A JP2004125675A (en) 2002-10-04 2002-10-04 Method for evaluating quality of wash free rice

Publications (1)

Publication Number Publication Date
JP2004125675A true JP2004125675A (en) 2004-04-22

Family

ID=32283225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291761A Pending JP2004125675A (en) 2002-10-04 2002-10-04 Method for evaluating quality of wash free rice

Country Status (1)

Country Link
JP (1) JP2004125675A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072682A (en) * 2007-09-20 2009-04-09 Satake Corp Stone-removing rice polishing machine
KR101189600B1 (en) * 2012-04-13 2012-10-10 쌍용기계산업 주식회사 Automatic paddy and ingredient analyzer examiner
CN104871175A (en) * 2012-11-26 2015-08-26 福瑞托-雷北美有限公司 Method for scoring and controlling quality of food products in a dynamic production line
US9699447B2 (en) 2012-11-26 2017-07-04 Frito-Lay North America, Inc. Calibration of a dynamic digital imaging system for detecting defects in production stream
WO2017169758A1 (en) * 2016-03-31 2017-10-05 株式会社サタケ Method and device for evaluating degree of grain milling
KR102060368B1 (en) 2018-01-20 2019-12-30 한국식품연구원 Rice Whiteness Measuring Apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072682A (en) * 2007-09-20 2009-04-09 Satake Corp Stone-removing rice polishing machine
KR101189600B1 (en) * 2012-04-13 2012-10-10 쌍용기계산업 주식회사 Automatic paddy and ingredient analyzer examiner
CN104871175A (en) * 2012-11-26 2015-08-26 福瑞托-雷北美有限公司 Method for scoring and controlling quality of food products in a dynamic production line
JP2016504574A (en) * 2012-11-26 2016-02-12 フリト−レイ ノース アメリカ インコーポレイテッドFrito−Lay North America,Inc. Method and apparatus for scoring and controlling food quality
EP2923305A4 (en) * 2012-11-26 2016-08-17 Frito Lay North America Inc Method for scoring and controlling quality of food products in a dynamic production line
US9699447B2 (en) 2012-11-26 2017-07-04 Frito-Lay North America, Inc. Calibration of a dynamic digital imaging system for detecting defects in production stream
KR101936457B1 (en) 2012-11-26 2019-01-08 프리토-래이 노쓰 아메리카, 인코포레이티드 Calibration of a dynamic digital imaging system for detecting defects in production stream
WO2017169758A1 (en) * 2016-03-31 2017-10-05 株式会社サタケ Method and device for evaluating degree of grain milling
JPWO2017169758A1 (en) * 2016-03-31 2019-02-07 株式会社サタケ Grain cocoon accuracy evaluation method and apparatus
KR102060368B1 (en) 2018-01-20 2019-12-30 한국식품연구원 Rice Whiteness Measuring Apparatus

Similar Documents

Publication Publication Date Title
JP3735289B2 (en) Wash-free rice quality evaluation method and apparatus
Yadav et al. Monitoring milling quality of rice by image analysis
Gunasekaran et al. Evaluating quality factors of corn and soybeans using a computer vision system
US8031910B2 (en) Method and apparatus for analyzing quality traits of grain or seed
Gunasekaran Nondestructive food evaluation: Techniques to analyze properties and quality
JP2003106995A (en) Quality determining method for gel forming food
AU2006233232A1 (en) Diagnosing or determining parameters for an installation for detecting open defects in the surfaces of parts by sweating
JP2004125675A (en) Method for evaluating quality of wash free rice
JP3878782B2 (en) Food condition evaluation method and food condition evaluation apparatus
Nahal et al. Separation of shelled walnut particles using pneumatic method
Nielsen et al. Development of nondestructive screening methods for single kernel characterization of wheat
Delwiche et al. Analysis of grain quality at receival
TWI704334B (en) Method for evaluating polished rice degree of cereals and method for producing dyeing liquid
Valtuena et al. Investigating the role of natural phyto-oestrogens on bone health in postmenopausal women
Ogawa Quality evaluation of rice
JPH03201941A (en) Grain-classifying method in grain drying and processing facility and apparatus therefor
CN108885169B (en) Method and device for evaluating grain fineness
VanUtrecht et al. Soybean mechanical damage detection
JP7002057B2 (en) Wash-free grain manufacturing equipment and manufacturing method
JP2005172614A (en) Quality evaluation apparatus for grains
JP3944574B2 (en) Weight measuring device
JPH06288907A (en) Evaluation of quality of unhulled rice
JP2004033972A (en) Evaluation method of washing-free rice
Chowdhury Development of a colorimetric technique for measuring mechanical damage of grain
US4000975A (en) Method of measuring damage to grain