JP2004125628A - Method and apparatus for detecting leakage position in piping - Google Patents
Method and apparatus for detecting leakage position in piping Download PDFInfo
- Publication number
- JP2004125628A JP2004125628A JP2002290353A JP2002290353A JP2004125628A JP 2004125628 A JP2004125628 A JP 2004125628A JP 2002290353 A JP2002290353 A JP 2002290353A JP 2002290353 A JP2002290353 A JP 2002290353A JP 2004125628 A JP2004125628 A JP 2004125628A
- Authority
- JP
- Japan
- Prior art keywords
- noise
- pipe
- ground
- leak
- vibration sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Examining Or Testing Airtightness (AREA)
- Pipeline Systems (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、流体を輸送する地中埋設配管網から流体が漏洩した位置を検知する配管網の漏洩検知に関するものである。
【0002】
【従来技術】
水道管、ガス管などの地中埋設配管網における漏洩を早期に検知し、漏洩位置を特定して、その漏洩の継続を阻止することは、省資源あるいは重大災害防止の観点から極めて重要である。
【0003】
例えば、上水道における漏水を検知する方法としては、従来、音聴棒を用いる方法が一般的に使われてきた。これは作業者が音聴棒の一端を埋設された水道管に押し当てたり、消火栓など地上に露出している部分に接触させたりして、音聴棒から伝わる振動音を聞き取り、その音から漏水の有無を判断する方法である。しかし、この方法では作業者の感覚を主体に漏水の判断を行うため能率が悪く、また漏水個所を精度良く特定できないという問題があった。さらに、漏水音と他の雑音との区別が難しいため、熟練技術を要したり、雑音の少ない深夜の作業を強いられたりする問題もあった。
【0004】
これらの問題を解決するため、最近では振動センサを用いて配管を伝播してきた漏水音を検出し、その情報にある信号処理を施すことで、漏水の有無および発生位置を特定する方法が提案されており、漏水検知システムとして商品化もされている。
【0005】
図2は、上記の振動センサを用いて漏水音を検出し、その情報に信号処理を施すことで、漏水の有無および発生位置を特定する方法を説明する図である。
【0006】
配管1上の距離Lだけ離れた2点に振動センサ2aと2bを設置する。もしも漏水位置4で漏水が起こると漏水音が発生し、配管1を伝播して、振動センサ2aおよび2bで検出することができる。一般に漏水音は不規則な変化を示す雑音なので、振動センサ2aおよび2bで検出される信号の相互相関関数を求めれば、漏水位置4から振動センサ2aおよび2bに漏水音が到達するまでの時間差Δtを算出することができる。漏水音の伝播速度をνとし、振動センサ2aへの到達の方が早い(振動センサ2aの方が漏水位置4に近い)とすると、振動センサ2bから漏水位置4までの距離Lbは振動センサ2aから漏水位置4までの距離LaよりもνΔtだけ長いことになる。したがって、距離Laは次の(1)、(2)式により求めることができる。
【0007】
【数1】
【0008】
【数2】
【0009】
しかしながら、現実の配管網では、多くの場合、漏水音以外の様々な雑音も混入するため、相互相関関数処理によって得られるピークが明瞭でないことが多い。それゆえ、図4に示すような、振動センサ2aと2bからの信号を相互相関関数処理8によって相互相関関数処理する方法では、到達時間差Δtの正確な導出が困難となり、漏水位置4の特定ができないという問題があった。
【0010】
これに対し、相互相関関数処理の前処理として、振動センサによる検出信号にある特定の周波数特性を持ったバンドパスフィルタを通すことで、漏水音以外の雑音を除去し、漏水位置特定の可能性を高める方法が提案されている(例えば、特許文献1参照。)。
【0011】
【特許文献1】
特開平11−210999号公報
【0012】
【発明が解決しようとする課題】
しかし、このようなバンドパスフィルタによる雑音除去法は、漏水音と除去したい雑音との周波数帯域が異なる場合には有効だが、漏水音と除去したい雑音との周波数帯域が重なる場合には無力となる。
【0013】
本発明は、かかる事情を鑑みてなされたもので、水道管やガス管など流体を輸送する地中埋設配管網からの漏洩の位置を、配管に沿って設置した複数の振動センサにより検出した漏洩音の信号の相互相関関数処理によって特定する方法において、振動センサに漏洩音以外の雑音が混入する場合にも、その雑音を確実に除去することで、漏洩の有無および漏洩位置の特定を精度良く行うことができる配管の漏洩位置検知方法および装置を提供することを目的とするものである。
【0014】
【課題を解決するための手段】
上記目的を達成するために、まず本発明者らは振動センサに混入する漏洩音以外の雑音について調査することにした。調査は工場地域に埋設された水道管を対象に行った。
【0015】
意図的に漏水を発生させ、振動センサが捉える漏水音とそれ以外の雑音との大小関係や周波数帯域などを調べたところ、様々な設備から発生する雑音が漏水音のレベルよりも遥かに大きく、さらにその周波数帯が漏水音の周波数帯と重なる場合がかなり多いことが分かった。この場合は従来の相互相関関数法による漏水位置の特定ができないのはもちろんのこと、漏水有無の判断すら困難であった。さらに雑音の伝播経路を確かめるために、地盤にも振動センサを設置し、詳細調査を実施した。その結果、雑音の大部分は地盤を通じて配管にも伝播していることが分かった。そして、配管に設置した振動センサが捉えた信号と地盤に設置した振動センサが捉えた信号とのコヒーレンス(関連度関数)を算出してみると、雑音成分についてはコヒーレンスが大きな値をとり、配管で捉えた信号と地盤で捉えた信号との関連が強いが、漏水音についてはコヒーレンスが非常に小さく、関連がほとんどないことが分かった。これは様々な設備から発生する雑音は地盤にも配管にも伝播し、どちらに設置した振動センサでも捉えることができるが、漏水音は地盤を伝播しにくく、地盤に設置した振動センサでは十分に捉えられていないことを示している。
【0016】
本発明者らは、この現象を利用して雑音を除去することを思いついた。具体的には、適応デジタルフィルタを用いたノイズキャンセラにより雑音を除去しようとするもので、最小二乗法アルゴリズム(LSMアルゴリズム)を用いた以下のステップ1〜4((3)〜(5)式)による方法を適用することができる。
【0017】
ステップ1:適応デジタルフィルタ畳み込み演算
【0018】
【数3】
【0019】
ステップ2:誤差の計算
【0020】
【数4】
【0021】
ステップ3:適応デジタルフィルタ係数の逐次更新(LSMアルゴリズム)
【0022】
【数5】
【0023】
ステップ4:更新された適応デジタルフィルタを用いて再びステップ1へ
ここで
d:配管に設置した配管設置振動センサの信号(目標信号)
x:地盤に設置した地盤設置振動センサの信号(入力信号)
W:適応デジタルフィルタ係数
N:適応デジタルフィルタのタップ数
μ:ステップサイズパラメータ
y:適応デジタルフィルタ出力信号
ε:誤差信号
である。
【0024】
一般に適応デジタルフィルタ係数Wの逐次更新が進んで収束に近づくと、誤差信号εは小さくなっていく。つまりyがdに近づいていく。しかし近づいていくのはdの中でxと相関のある成分だけなので、仮にdが漏水音の成分sおよびこれと相関のない雑音成分n0とからなっている(d=s+n0)とし、xはn0と相関のある雑音成分n1のみからなっている(x=n1)とすると、yはn0にどんどん近づいていくことになる。すると結果的にε=d−y=(s+n0)−n0=sとなり、雑音成分が除去された漏水音成分だけを抽出できるのである。
【0025】
なお、ステップサイズパラメータμは大きいほど収束速度が高まるが、大きくしすぎると発散することがあるので、適切な値に設定する必要がある。
【0026】
以上より、前記の課題を解決するために、本発明は次のように構成されている。
【0027】
[1]流体を輸送する地中埋設配管網から流体が漏洩した位置を、振動センサによって検出された漏洩音の信号を用いて検知する漏洩位置検知方法であって、配管の一部に間隔をおいて複数の配管設置振動センサを設置し、地盤の振動を測定するために地表または地中に1個以上の地盤設置振動センサを設置し、前記配管設置振動センサが捉えた信号中に含まれる漏洩音以外の雑音を、前記地盤設置振動センサが捉えた信号を用いて除去し、得られた漏洩音の信号が前記複数の配管設置振動センサのそれぞれに到達する時間の差を算出し、その時間差から漏洩位置を特定することを特徴とする配管の漏洩位置検知方法。
【0028】
[2]前記配管設置振動センサが捉えた信号中に含まれる漏洩音以外の雑音を、前記地盤設置振動センサが捉えた信号を用いて除去する際に、適応デジタルフィルタを用いて除去することを特徴とする前記[1]に記載の配管の漏洩位置検知方法。
【0029】
[3]流体を輸送する地中埋設配管網から流体が漏洩した位置を、振動センサによって検出された漏洩音の信号を用いて検知するための漏洩位置検知装置であって、配管の一部に間隔をおいて設置した複数の配管設置振動センサと、地盤の振動を測定するために地表または地中に設置した1個以上の地盤設置振動センサと、前記配管設置振動センサが捉えた信号中に含まれる漏洩音以外の雑音を、前記地盤設置振動センサが捉えた信号を用いて除去する雑音除去手段と、得られた漏洩音の信号が前記複数の配管設置振動センサのそれぞれに到達する時間の差を算出し、その時間差から漏洩位置を特定する漏洩位置特定手段とを有することを特徴とする配管の漏洩位置検知装置。
【0030】
[4]前記雑音除去手段が適応デジタルフィルタを用いたものであることを特徴とする前記[3]に記載の配管の漏洩位置検知装置。
【0031】
なお、上記[1]〜[4]において、「配管の一部に」というのは、配管そのものだけでなく、消火栓などの配管と直結した部分も含んでいる。
【0032】
【発明の実施の形態】
本発明の一実施形態として、本発明に係る漏洩位置検知装置を地中埋設水道配管網に適用した場合について説明する。
【0033】
図1は、本発明の一実施形態における振動センサの設置を示す図である。(a)は平面図、(b)は断面図である。
【0034】
図1において、配管1の一部に間隔をおいて2つの配管設置振動センサ2aと2bが設置されている。地中埋設水道配管の場合、地中の配管に直接振動センサを設置するのは困難な場合もあるが、図1のように、通常は消火栓など配管1と直結した部分が、ある間隔をおいて地上に露出しているので、その部分に配管設置振動センサ2a、2bを設置すれば良い。
【0035】
また、配管設置振動センサ2a、2bとは別に、地盤上には地盤設置振動センサ3が設置されている。地盤の振動は、地表の材質(土かアスファルトかなど)によって測定しやすさが異なるが、図14のような地盤設置振動センサ用設置杭5を用意し、この杭に地盤設置振動センサ3をしっかりと設置することで、測定しやすくなり、良好なデータを取ることができる。
【0036】
図3は、本発明の一実施形態に係る漏洩位置検知装置のシステム構成を示している。
【0037】
図3において、本発明の一実施形態に係る漏洩位置検知装置は、2個の配管設置振動センサ2a、2bと、1個の地盤設置振動センサ3と、適応デジタルフィルタ6aからなるノイズキャンセラ7aと、適応デジタルフィルタ6bからなるノイズキャンセラ7bと、相互相関関数演算装置8とから構成されている。
【0038】
そして、配管設置振動センサ2aからの信号と地盤設置振動センサ3からの信号は、適応デジタルフィルタ6aからなるノイズキャンセラ7aで前述のLSMアルゴリズムにより処理され、配管設置振動センサ2aの信号から漏洩音以外の雑音が取り除かれる。同様に、配管設置振動センサ2bからの信号と地盤設置振動センサ3からの信号は、適応デジタルフィルタ6bからなるノイズキャンセラ7bで前述のLSMアルゴリズムにより処理され、配管設置振動センサ2bの信号から漏洩音以外の雑音が取り除かれる。その後、漏洩音以外の雑音が取り除かれた配管設置振動センサ2aの信号と配管設置振動センサ2bの信号に対して相互相関関数演算装置8によって相互相関関数演算が施され、漏水位置4から配管設置振動センサ2aおよび2bに漏水音が到達するまでの時間差Δtが算出され、漏洩位置が特定される。
【0039】
このように、この実施形態においては、地盤設置振動センサ3からの信号を用いて、適応デジタルフィルタ6a、6bからなるノイズキャンセラ7a、7bによって、漏洩音以外の雑音を除去してから相互相関関数演算を施すので、漏洩の有無および漏洩位置の特定を精度良く行うことができる。
【0040】
【実施例】
本発明の実施形態に係る漏洩位置検知方法と従来の漏洩位置検知方法とを比較することで、本発明の優位性を説明する。
【0041】
図5は、回転機械からの振動の影響が非常に大きい環境下において、図4に示す従来の雑音除去機能を備えていないシステムで漏水位置検知を試みた際に、配管設置振動センサ2aおよび2bが捉えた配管1の振動の時刻歴波形である。回転機械からの周期性雑音が支配的であるため、漏洩音による不規則振動は完全に埋もれてしまっている。したがって、これらの信号の相互相関関数を計算しても、図6のようなものしか得られず、漏洩音の伝播時間差を求めることはできない。
【0042】
図11は図5の時刻歴波形を周波数解析したものであるが、グラフの中央部分に見られる漏洩音の不規則振動成分に比べ、回転機械からの周期性雑音成分が大きいことが分かる。さらに、周期性雑音成分の一部は漏洩音の不規則成分と周波数帯が重なっているため、前述の特許文献1に示されているようなバンドパスフィルタによる除去でも困難である。
【0043】
これに対し、図7は図3に示す本発明の一実施形態の漏洩位置検知装置を用いて、配管設置振動センサ2aおよび2bが捉えた信号からノイズキャンセラ7a、7bによって回転機械の周期性雑音を除去した配管1の振動の時刻歴波形である。これらを周波数解析したものが図12であるが、回転機械からの周期性雑音成分はほぼ完全に除去されていることが分かる。したがって、図7の時刻歴波形の相互相関関数を計算すると、図8のように漏洩音の伝播時間差Δtを明確に求めることができる。
【0044】
ちなみに、図9は回転機械が停止している(周期性雑音が無い)状態において、配管設置振動センサ2aおよび2bが捉えた配管1の振動の時刻歴波形で、図10はそれらの相互相関関数である。この相互相関関数から求まる漏洩音の伝播時間差Δtは図8から求めたものと等しく、ノイズキャンセラ7a、7bによる回転機械の周期性雑音除去が良好に行われていることを示している。
【0045】
また、図13は図9の時刻歴波形を周波数分析したものだが、図12がこの図13に近いことからも本発明の漏洩位置検知方法の優位性が分かる。
【0046】
【発明の効果】
本発明によれば、水道管やガス管など流体を輸送する地中埋設配管網からの漏洩の位置を、振動センサにより検出された漏洩音の信号を用いて相互相関関数演算によって特定するに際して、地盤に設置した振動センサからの信号を用いて、配管に設置した振動センサの信号から漏洩音以外の雑音を確実に除去してから相互相関関数演算を施すので、周囲に雑音を発生する設備や機械が存在し、漏洩音がその雑音に埋もれてしまうような場合でも、漏洩の有無および漏洩位置の特定を精度良く行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における振動センサの配置を示す図である。
【図2】相互相関関数を用いた漏洩位置検知の方法を説明する図である。
【図3】本発明の一実施形態を示す図である。
【図4】従来の漏洩位置検知方法を示す図である。
【図5】回転機械の周期性雑音に埋もれた漏洩音振動の時刻歴波形を示す図である。
【図6】図5の時刻歴波形から求めた相互相関関数を示す図である。
【図7】本発明の一実施形態におけるノイズキャンセラを用いて、図5の時刻歴波形から回転機械の周期性雑音を除去した時刻歴波形を示す図である。
【図8】図7の時刻歴波形から求めた相互相関関数を示す図である。
【図9】回転機械が停止して周期性雑音の無い漏洩音振動の時刻歴波形を示す図である。
【図10】図9の時刻歴波形から求めた相互相関関数を示す図である。
【図11】図5の時刻歴波形を周波数分析したパワースペクトラムを示す図である。
【図12】図7の時刻歴波形を周波数分析したパワースペクトラムを示す図である。
【図13】図9の時刻歴波形を周波数分析したパワースペクトラムを示す図である。
【図14】地盤振動センサ用設置杭の一例を示す図である。
【符号の説明】
1:配管
2a、2b:配管設置振動センサ
3:地盤設置振動センサ
4:漏洩位置
5:地盤設置振動センサ用設置杭
6a、6b:適応デジタルフィルタ
7a、7b:ノイズキャンセラ
8:相互相関関数演算装置[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to leak detection of a piping network for detecting a position where a fluid leaks from an underground piping network for transporting a fluid.
[0002]
[Prior art]
Early detection of leaks in underground pipe networks such as water pipes and gas pipes, identification of the leak location, and prevention of the continuation of the leak are extremely important from the viewpoint of resource saving or prevention of serious disasters. .
[0003]
For example, as a method of detecting water leakage in a water supply system, a method using a sound stick has conventionally been generally used. In this method, a worker presses one end of a sound-listening rod against a buried water pipe or touches a fire hydrant or other exposed part of the ground to hear the vibration sound transmitted from the sound-listening rod, and This is a method to determine the presence or absence of water leakage. However, this method has a problem that the efficiency of the method is low because the leak is determined mainly based on the sense of the worker, and the leak location cannot be specified with high accuracy. Furthermore, since it is difficult to distinguish between water leakage noise and other noises, there has been a problem that skill is required and work at night with less noise is required.
[0004]
In order to solve these problems, a method has recently been proposed that uses a vibration sensor to detect water leaking sound that has propagated through the piping and performs signal processing on the information to identify the presence or absence of the water leak and the location where the water leak occurred. It has been commercialized as a water leak detection system.
[0005]
FIG. 2 is a diagram illustrating a method of detecting the water leak sound using the above-described vibration sensor and performing signal processing on the information to specify the presence / absence of the water leak and the position where the water leak has occurred.
[0006]
The
[0007]
(Equation 1)
[0008]
(Equation 2)
[0009]
However, in an actual piping network, in many cases, various noises other than the water leakage noise are mixed, so that the peak obtained by the cross-correlation function processing is often not clear. Therefore, in the method shown in FIG. 4 in which the signals from the
[0010]
On the other hand, as a pre-process of the cross-correlation function processing, by passing a signal detected by the vibration sensor through a band-pass filter having a specific frequency characteristic, it is possible to remove noise other than water leakage noise and identify the position of water leakage. Has been proposed (see, for example, Patent Document 1).
[0011]
[Patent Document 1]
JP-A-11-210999
[Problems to be solved by the invention]
However, such a noise removal method using a band-pass filter is effective when the frequency band of the water leakage sound and the noise to be removed are different, but is ineffective when the frequency band of the water leakage sound and the noise to be removed overlaps. .
[0013]
The present invention has been made in view of such circumstances, and has been developed based on a leak detected by a plurality of vibration sensors installed along a pipe to detect a leak position from an underground pipe network that transports a fluid such as a water pipe or a gas pipe. In the method of specifying by the cross-correlation function processing of the sound signal, even when noise other than leaked sound is mixed into the vibration sensor, by accurately removing the noise, it is possible to accurately specify whether or not there is a leak and the position of the leak. It is an object of the present invention to provide a method and an apparatus for detecting a leak position of a pipe which can be performed.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors first investigated noises other than leak sound mixed into the vibration sensor. The survey was conducted on water pipes buried in the factory area.
[0015]
Intentionally generated water leakage and investigated the magnitude relationship and frequency band between the water leakage noise captured by the vibration sensor and other noise, and the noise generated from various facilities was much larger than the level of the water leakage noise, Further, it was found that the frequency band overlaps with the frequency band of the water leakage sound quite often. In this case, it is not only impossible to specify the water leakage position by the conventional cross-correlation function method, but also it is difficult to judge the presence or absence of water leakage. In addition, a vibration sensor was installed on the ground to check the noise propagation path, and a detailed survey was conducted. As a result, it was found that most of the noise was transmitted to the pipe through the ground. When calculating the coherence (relevance function) between the signal captured by the vibration sensor installed on the pipe and the signal captured by the vibration sensor installed on the ground, the coherence of the noise component takes a large value, It was found that the signal captured by the above was strongly related to the signal captured by the ground, but the leaked sound had very little coherence and had little connection. This is because noise generated from various facilities propagates to the ground and piping, and can be captured by the vibration sensor installed on either side.However, water leakage noise is difficult to propagate through the ground, and the vibration sensor installed on the ground is sufficient. Indicates that it has not been caught.
[0016]
The present inventors have conceived of removing noise using this phenomenon. More specifically, the noise is to be removed by a noise canceller using an adaptive digital filter, and the
[0017]
Step 1: Adaptive digital filter convolution operation
[Equation 3]
[0019]
Step 2: Calculate the error
(Equation 4)
[0021]
Step 3: Sequential updating of adaptive digital filter coefficients (LSM algorithm)
[0022]
(Equation 5)
[0023]
Step 4: Using the updated adaptive digital filter, return to
x: Signal of ground-installed vibration sensor installed on the ground (input signal)
W: Adaptive digital filter coefficient N: Number of taps of adaptive digital filter μ: Step size parameter y: Adaptive digital filter output signal ε: Error signal.
[0024]
In general, as the update of the adaptive digital filter coefficient W progresses and approaches convergence, the error signal ε decreases. That is, y approaches d. Since, however approaching go is given only component correlated with x in d, if d is that made from the components s and this correlation without noise components n 0 Metropolitan of leak noise (d = s + n 0), x is assuming that consist of only the noise components n 1 having a correlation with n 0 (x = n 1) , y will be gradually getting closer to the n 0. As a result, ε = dy = (s + n 0 ) −n 0 = s, so that only the water leakage sound component from which the noise component has been removed can be extracted.
[0025]
Note that the larger the step size parameter μ, the higher the convergence speed. However, if the step size parameter μ is too large, the step size parameter μ may diverge.
[0026]
As described above, in order to solve the above-described problems, the present invention is configured as follows.
[0027]
[1] A leak position detecting method for detecting a position where a fluid leaks from an underground pipe network for transporting a fluid by using a signal of a leak sound detected by a vibration sensor, wherein a space is provided in a part of the pipe. A plurality of pipe-installed vibration sensors are installed, and one or more ground-installed vibration sensors are installed on the ground or in the ground to measure ground vibration, and are included in a signal captured by the pipe-installed vibration sensor. Noise other than the leak sound is removed using the signal captured by the ground-installed vibration sensor, and the difference between the time when the obtained leak sound signal reaches each of the plurality of pipe-installed vibration sensors is calculated. A method for detecting a leak position in a pipe, comprising specifying a leak position from a time difference.
[0028]
[2] When removing noise other than leak sound included in a signal captured by the pipe-installed vibration sensor using a signal captured by the ground-installed vibration sensor, using an adaptive digital filter to remove noise. The method for detecting a leak position of a pipe according to the above [1], which is characterized in that:
[0029]
[3] A leak position detecting device for detecting a position where a fluid leaks from an underground pipe network for transporting a fluid by using a signal of a leak sound detected by a vibration sensor, wherein a part of the pipe is provided. A plurality of pipe-installed vibration sensors installed at intervals, one or more ground-installed vibration sensors installed on the ground surface or underground to measure ground vibration, and a signal captured by the pipe-installed vibration sensor Noise removing means for removing noise other than the included leak sound using a signal captured by the ground-installed vibration sensor; and a time lapse when the obtained leak sound signal reaches each of the plurality of pipe-installed vibration sensors. A leak position detecting device that calculates a difference and specifies a leak position from the time difference.
[0030]
[4] The apparatus for detecting a leak position in a pipe according to [3], wherein the noise removing means uses an adaptive digital filter.
[0031]
In the above [1] to [4], "part of the pipe" includes not only the pipe itself but also a part directly connected to the pipe such as a fire hydrant.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
As an embodiment of the present invention, a case where the leak position detecting device according to the present invention is applied to an underground water supply pipe network will be described.
[0033]
FIG. 1 is a diagram illustrating installation of a vibration sensor according to an embodiment of the present invention. (A) is a plan view and (b) is a sectional view.
[0034]
In FIG. 1, two pipe
[0035]
In addition to the pipe
[0036]
FIG. 3 shows a system configuration of the leak position detecting device according to one embodiment of the present invention.
[0037]
In FIG. 3, the leak position detecting device according to one embodiment of the present invention includes two pipe-installed
[0038]
The signal from the pipe
[0039]
As described above, in this embodiment, the signals from the ground-installed
[0040]
【Example】
The superiority of the present invention will be described by comparing the leak position detecting method according to the embodiment of the present invention with a conventional leak position detecting method.
[0041]
FIG. 5 shows the pipe
[0042]
FIG. 11 is a frequency analysis of the time history waveform of FIG. 5, and it can be seen that the periodic noise component from the rotating machine is larger than the random vibration component of the leaked sound seen at the center of the graph. Further, since a part of the periodic noise component has a frequency band overlapping with the irregular component of the leaked sound, it is difficult to remove the periodic noise component even with a band-pass filter as disclosed in
[0043]
On the other hand, FIG. 7 shows that the periodic noise of the rotating machine is reduced by the noise cancellers 7a and 7b from the signals captured by the pipe
[0044]
FIG. 9 shows time history waveforms of the vibration of the
[0045]
FIG. 13 is a frequency analysis of the time history waveform of FIG. 9. FIG. 12 is close to FIG. 13, which shows the superiority of the leak position detection method of the present invention.
[0046]
【The invention's effect】
According to the present invention, when specifying the position of leakage from an underground piping network that transports fluid such as water pipes and gas pipes by calculating a cross-correlation function using a signal of leakage sound detected by a vibration sensor, Using the signal from the vibration sensor installed on the ground, the cross-correlation function calculation is performed after the noise other than the leaked sound is reliably removed from the signal of the vibration sensor installed on the piping, so equipment that generates noise around Even in the case where the machine is present and the leaked sound is buried in the noise, the presence or absence of the leak and the position of the leak can be specified with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing an arrangement of a vibration sensor according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a method of detecting a leakage position using a cross-correlation function.
FIG. 3 is a diagram showing one embodiment of the present invention.
FIG. 4 is a diagram showing a conventional leak position detection method.
FIG. 5 is a diagram showing a time history waveform of leakage sound vibration buried in periodic noise of a rotating machine.
FIG. 6 is a diagram showing a cross-correlation function obtained from the time history waveform of FIG.
FIG. 7 is a diagram showing a time history waveform obtained by removing the periodic noise of the rotating machine from the time history waveform of FIG. 5 using the noise canceller according to the embodiment of the present invention.
FIG. 8 is a diagram showing a cross-correlation function obtained from the time history waveform of FIG. 7;
FIG. 9 is a diagram showing a time history waveform of leaked sound vibration having no periodic noise when the rotating machine stops.
FIG. 10 is a diagram showing a cross-correlation function obtained from the time history waveform of FIG. 9;
FIG. 11 is a diagram showing a power spectrum obtained by frequency-analyzing the time history waveform of FIG. 5;
FIG. 12 is a diagram showing a power spectrum obtained by frequency-analyzing the time history waveform of FIG. 7;
FIG. 13 is a diagram illustrating a power spectrum obtained by frequency-analyzing the time history waveform of FIG. 9;
FIG. 14 is a diagram illustrating an example of an installation pile for a ground vibration sensor.
[Explanation of symbols]
1: Piping 2a, 2b: Piping installation vibration sensor 3: Ground installation vibration sensor 4: Leakage position 5:
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002290353A JP4172241B2 (en) | 2002-10-02 | 2002-10-02 | Piping leakage position detection method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002290353A JP4172241B2 (en) | 2002-10-02 | 2002-10-02 | Piping leakage position detection method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004125628A true JP2004125628A (en) | 2004-04-22 |
JP4172241B2 JP4172241B2 (en) | 2008-10-29 |
Family
ID=32282264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002290353A Expired - Fee Related JP4172241B2 (en) | 2002-10-02 | 2002-10-02 | Piping leakage position detection method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4172241B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006153835A (en) * | 2004-10-29 | 2006-06-15 | Kumamoto Univ | Method and apparatus for testing leakage |
JP2008051776A (en) * | 2006-08-28 | 2008-03-06 | Toshiba Corp | Apparatus and method for detecting water leakage |
CN102537668A (en) * | 2012-01-17 | 2012-07-04 | 天津大学 | Method for determining ground mark time of inner detector of pipeline |
CN103278851A (en) * | 2013-06-13 | 2013-09-04 | 天津大学 | Method for detecting burying condition of submarine pipeline |
WO2014051036A1 (en) * | 2012-09-28 | 2014-04-03 | 日本電気株式会社 | Leak detecting device, leak detecting method and program |
KR101388498B1 (en) | 2013-06-19 | 2014-04-23 | 한국가스공사 | Method for monitoring third-party damage impact on buried pipe considering ambient noise |
JP2015210225A (en) * | 2014-04-28 | 2015-11-24 | 株式会社東芝 | Water leakage monitoring system, water leakage monitoring method, water leakage monitoring device, and water leakage monitoring program |
JP2016166839A (en) * | 2015-03-10 | 2016-09-15 | 日本電気株式会社 | Detector and detection method |
WO2020050192A1 (en) | 2018-09-04 | 2020-03-12 | 日本電気株式会社 | Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium having fluid leakage diagnosing program stored thereon |
CN114593374A (en) * | 2022-03-21 | 2022-06-07 | 中国石油大学(北京) | Micro-leakage internal detection simulation system, method, device and detection method |
CN118009254A (en) * | 2024-02-04 | 2024-05-10 | 洛阳栾川钼业集团股份有限公司 | Tailing pipeline leakage detection system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6773026B2 (en) * | 2015-03-25 | 2020-10-21 | 日本電気株式会社 | Leakage detection device, leak detection system, leak detection method and computer readable recording medium |
CN105021277B (en) * | 2015-08-12 | 2019-03-26 | 黑龙江大学 | A kind of high-voltage circuitbreaker vibration signal characteristics extracting method based on the combination of wavelet packet correlation dimension |
CN106402667B (en) * | 2016-11-24 | 2018-08-14 | 南京西奥仪表测控有限公司 | A kind of online resistance formula leakage protective system |
RU2754244C1 (en) * | 2020-11-13 | 2021-08-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" | Method for localization of unauthorized loss of working medium in pipeline based on the amplitude-time analysis and correlation of vibroacoustic signals |
-
2002
- 2002-10-02 JP JP2002290353A patent/JP4172241B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006153835A (en) * | 2004-10-29 | 2006-06-15 | Kumamoto Univ | Method and apparatus for testing leakage |
JP4665163B2 (en) * | 2004-10-29 | 2011-04-06 | 国立大学法人 熊本大学 | Leak inspection method and leak inspection apparatus |
JP2008051776A (en) * | 2006-08-28 | 2008-03-06 | Toshiba Corp | Apparatus and method for detecting water leakage |
JP4745170B2 (en) * | 2006-08-28 | 2011-08-10 | 株式会社東芝 | Water leakage detection device and water leakage detection method |
CN102537668A (en) * | 2012-01-17 | 2012-07-04 | 天津大学 | Method for determining ground mark time of inner detector of pipeline |
CN102537668B (en) * | 2012-01-17 | 2013-05-29 | 天津大学 | Method for determining ground mark time of inner detector of pipeline |
US9759629B2 (en) | 2012-09-28 | 2017-09-12 | Nec Corporation | Leak detection device, leak detection method and program |
WO2014051036A1 (en) * | 2012-09-28 | 2014-04-03 | 日本電気株式会社 | Leak detecting device, leak detecting method and program |
JPWO2014051036A1 (en) * | 2012-09-28 | 2016-08-22 | 日本電気株式会社 | Leak detection device, leak detection method and program |
CN103278851B (en) * | 2013-06-13 | 2016-01-20 | 天津大学 | State testing method buried by a kind of submarine pipeline |
CN103278851A (en) * | 2013-06-13 | 2013-09-04 | 天津大学 | Method for detecting burying condition of submarine pipeline |
KR101388498B1 (en) | 2013-06-19 | 2014-04-23 | 한국가스공사 | Method for monitoring third-party damage impact on buried pipe considering ambient noise |
JP2015210225A (en) * | 2014-04-28 | 2015-11-24 | 株式会社東芝 | Water leakage monitoring system, water leakage monitoring method, water leakage monitoring device, and water leakage monitoring program |
JP2016166839A (en) * | 2015-03-10 | 2016-09-15 | 日本電気株式会社 | Detector and detection method |
WO2020050192A1 (en) | 2018-09-04 | 2020-03-12 | 日本電気株式会社 | Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium having fluid leakage diagnosing program stored thereon |
US20210325005A1 (en) * | 2018-09-04 | 2021-10-21 | Nec Corporation | Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium storing fluid leakage diagnosing program |
EP3848689A4 (en) * | 2018-09-04 | 2021-10-27 | NEC Corporation | Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium having fluid leakage diagnosing program stored thereon |
US11703189B2 (en) | 2018-09-04 | 2023-07-18 | Nec Corporation | Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium storing fluid leakage diagnosing program |
CN114593374A (en) * | 2022-03-21 | 2022-06-07 | 中国石油大学(北京) | Micro-leakage internal detection simulation system, method, device and detection method |
CN114593374B (en) * | 2022-03-21 | 2023-09-19 | 中国石油大学(北京) | Micro-leakage internal detection simulation system, method, device and detection method |
CN118009254A (en) * | 2024-02-04 | 2024-05-10 | 洛阳栾川钼业集团股份有限公司 | Tailing pipeline leakage detection system |
Also Published As
Publication number | Publication date |
---|---|
JP4172241B2 (en) | 2008-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004125628A (en) | Method and apparatus for detecting leakage position in piping | |
GB2421311A (en) | Assessing the size of a leak in a pipeline by detecting leak noise and pressure | |
JPH0472537A (en) | Abnormality monitor for piping | |
US10458878B2 (en) | Position determination device, leak detection system, position determination method, and computer-readable recording medium | |
JP4306409B2 (en) | Piping leakage position detection method and apparatus | |
KR102319722B1 (en) | Device and method for estimating leakage location of pipeline | |
JP3688400B2 (en) | Signal processing method in piping leak location identification method | |
JPH11201858A (en) | Method using correlation for measuring vibration of conduit system | |
KR101525329B1 (en) | Leak detection method for buried pipe using mode separation technique | |
WO2014157539A1 (en) | Defect analysis device, defect analysis method, and program | |
JPH11270800A (en) | Pip diagnostic method, pipeline diagnostic system, and pipeline-mounted equipment | |
JP3805084B2 (en) | Inundation state inspection method and inspection apparatus | |
KR100402685B1 (en) | The same time damage perception monitering system of buried pipes in underground by the other construction and the impact position calculation method of gas pipes | |
JPH11142280A (en) | Pipe-line inspecting method | |
JP2014219342A (en) | Leakage detection method and device of buried duct | |
JPS641734B2 (en) | ||
JP3262469B2 (en) | Water leak detection device | |
KR20210062253A (en) | Estimating system for water leakage location of pipeline | |
JP2006138638A (en) | Noise removal method in leak detection | |
JPH1019716A (en) | Method and apparatus for inspecting conduit | |
KR100332345B1 (en) | System for detecting a pipe under the ground using elastic wave | |
US20070005250A1 (en) | System and method for locating leaks in petroleum wells | |
JP4127976B2 (en) | Gas leak detection method | |
JP6349861B2 (en) | Leak detection device, leak detection system, leak detection method and program | |
Herbst | Non-destructive testing of sewer pipes by an acoustical method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050831 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080722 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080804 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |