JP2004125453A - Method for analyzing organic acid - Google Patents

Method for analyzing organic acid Download PDF

Info

Publication number
JP2004125453A
JP2004125453A JP2002286433A JP2002286433A JP2004125453A JP 2004125453 A JP2004125453 A JP 2004125453A JP 2002286433 A JP2002286433 A JP 2002286433A JP 2002286433 A JP2002286433 A JP 2002286433A JP 2004125453 A JP2004125453 A JP 2004125453A
Authority
JP
Japan
Prior art keywords
column
organic acid
acid
organic solvent
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002286433A
Other languages
Japanese (ja)
Inventor
Manami Kobayashi
小林まなみ
Hiroyuki Murakita
村北宏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002286433A priority Critical patent/JP2004125453A/en
Publication of JP2004125453A publication Critical patent/JP2004125453A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method with high sensitivity for analyzing an organic acid, using a liquid chromatograph/mass spectrometer. <P>SOLUTION: In the method for analyzing organic acid, a sample containing the organic acid is separated by feeding it into a liquid chromatograph column, using acid aqueous solution as the mobile phase, and the separated / eluted liquid from the column is mixed with a base, organic solvent or both of the base and the organic solvent; and then a detection is carried out by using a mass spectrometer. Preferably, aqueous ammonia or alkylamine is used as the base, and methanol, acetonitrile, isopropanol or THF is used as the organic solvent. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、液体クロマトグラフ質量分析計による有機酸混合物の分析技術に関する。
【0002】
【従来の技術】
従来、有機酸の分離はイオン排除カラムを使用した高速液体クロマトグラフィにより行われている(例えば、特許文献1参照)。このイオン排除クロマトグラフィでは負に帯電した固定相と酸性水溶液からなる移動相を用い、分析対象の有機酸の分離が該有機酸陰イオンと上記固定相との静電気斥力の強さに基づいて行われる。この方法にて有機酸を分離した後、ポストカラムpH調製電気伝導度検出法や紫外可視(UV)吸光光度法で検出を行う。ポストカラムpH調整電気伝導度検出法では、カラムから溶出した移動相に緩衝液を添加してpHを中性付近に固定した後、有機酸が解離してイオンとなる成分の変化量を測定する。また、紫外可視(UV)吸光光度法では、有機酸のカルボキシル基に着目して205−210nmでの吸光度に基づいて検出する。
【0003】
【特許文献1】特開平8−201365号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記の従来検出法は検出感度が低い。上記ポストカラムpH調整電気伝導度法の検出感度は3×10−11〜5×10−11であり、分子量192であるクエン酸を例にとると、40pN×192/3=2560pgの感度となり、ナノグラムオーダーしかない。紫外可視(UV)吸光光度法の場合、検出感度はポストカラムpH調整電気伝導度法より低い。
【0005】
さらに、上記の従来検出法は選択性が低いために、多成分の有機酸を一斉分析する場合にはピークとピークが重ならないようにするために、2本のカラムをつなげて分析しなくてはならない。特に、紫外可視(UV)吸光光度法では、205−210nmでの吸光度を検出するために共存する吸光性の中性夾雑物質の受けやすく、選択性が悪く十分な分析ができない。
【0006】
一方、液体クロマトグラフィの検出方法として質量分析計を使用することが考えられる。質量分析計によれば、特に選択性の向上ができる。しかしながら、液体クロマトグラフ質量分析計に一般的に用いられているイオン化部である、エレクトロンスプレーイオン化法(ESI法)あるいは大気圧化学イオン化法(APCI法)では、分離カラムからの溶出液が酸性水溶液であるためにイオン化が抑制され、検出感度は低くなる。
本発明はこのような課題を解決するためになされたものであり、その主たる目的は、液体クロマトグラフ質量分析計による感度の高い有機酸分析法を提供することにある。
【0007】
【課題を解決するための手段】
上述のような問題点を解消するために、本発明は、有機酸を含有する試料を、酸性水溶液を移動相とした液体クロマトグラム用カラムに付して分離し、該カラムからの分離溶出液に、塩基もしくは有機溶媒、もしくは塩基および有機溶媒を添加混合した後、質量分析計にて検出を行うことを特徴とする有機酸分析方法を提供することを目的とする。
【0008】
本発明は、前記塩基が、アンモニア水、アルキルアミンである、請求項1に記載の有機酸分析方法である。
【0009】
本発明は、前記有機溶媒が、メタノール、アセトニトリル、イソプロパノール、THFである、請求項1に記載の有機酸分析方法である。
【0010】
ここで、液体クロマトグラフの分離カラムには、イオン排除カラム、イオン交換クロマトグラフカラムを使用する。イオン排除カラムは、負に帯電した固定相と酸性移動相とによる公知の組み合わせによるものを使用することができるが、この発明において固定相はスルホン基を有するイオン交換体を充填したカラムが、一方、酸性移動相としては、pH2〜3の強酸性のもので等量伝導度の低い酸、例えばp−トルエンスルホン酸、が好ましい。
【0011】
分離カラムの移動相としては、例えば、イオン排除カラムを用いる場合、ギ酸水、過塩素酸水、りん酸水、酢酸水などの酸性移動相を使用する。pHは2〜3の強酸性が好ましい。
【0012】
質量分析計のイオン化部には、例えばエレクトロンスプレーイオン化法もしくは大気圧化学イオン化法を使用することができるが、これらに限定されない。
【0013】
有機溶媒としては、例えばメタノール、アセトニトリル、イソプロパノール、THFを使用することができるが、これらに限定されない。濃度は10〜90%が好ましい。
【0014】
塩基としては、例えば、アンモニア水、アルキルアミンが使用できるが、これらに限定されない。最終pH6〜10であり、好ましくは、pH8〜12である。
【0015】
有機溶媒と塩基の混合溶媒を用いる場合の混合比は、有機溶媒:塩基=1:9〜9:1が好ましい。
【0016】
混合手段としては、T字管、反応コイル、ミキサーが使用できるが、これらに限定されない。
【0017】
なお、本発明で分析できる有機酸は、クエン酸、ピルビン酸、りんご酸、コハク酸、乳酸、フマル酸、酢酸が挙げられるが、これらに限定されない。
【0018】
有機酸分離に用いるイオン排除カラムは、有機酸の解離を抑えるために移動相には酸性水溶液を用いる。一方、有機酸の質量分析ではプロトン脱離分子([M−H])を検出するため、脱プロトンが起こり易い塩基性溶媒が適している。そこで、イオン排除カラム溶出後の移動相に塩基性溶液を添加・混合することにより、試料のpHを上昇させ、イオン化を促進し有機酸の検出感度を上げることができる。また、質量分析において多量の移動相溶媒が存在するとイオン化が抑制されるため、有機溶媒を添加することが望ましい。しかし、分離カラムには有機溶媒は導入不可能であるために、カラムによる分離が終了した時点で有機溶媒を添加・混合することで移動相溶媒の揮発性を高め、イオン化を促進し検出感度を上げることができる。
【0019】
さらに、質量分析計では、分子量が特定できるために、分子量が異なる物質については必ずしもピークを分離する必要がなく、1本のカラムで有機酸を分離するだけで有機酸の同定が可能である。また、従来検出法では、未知のピークに対して保持時間以外の情報は得られなかったが、質量分析法を用いることによって未知ピークの分子量が推定でき、有機酸の同定が可能となる。
【0020】
【実施例】
以下、本発明の実施例を図面を参照して説明するが、本発明はこれにより限定されるものではない。
図1にイオンクロマトグラフ質量分析計による有機酸分析システムの基本的な流路図を示す。図1中、1は移動相溜、2は移動相送液ポンプ、3はオートサンプラー、4は分離カラム、5は試薬(塩基または有機溶媒または有機溶媒混合塩基)溜、6は試薬送液ポンプ、7は混合部、8は質量分析計を各々示す。
【0021】
以上の構成において、移動相送液ポンプ2によって移動相溜1から移動相がオートサンプラー4に送られて試料と混合され、分離カラム5に送られる。カラムから溶出した試料は、ポストカラム法によって塩基または有機溶媒または有機溶媒混合塩基が混合部8において添加・混合された後、質量分析計9に導入されて検出される。
【0022】
次の条件にて本発明の有用性を調べた。
移動相として0.1%ギ酸水を流速0.2mL/minを使用し、400nMのクエン酸標準溶液を40μl分離カラムに注入した。分離カラムから溶出した試料(pH=2.6)に、T字管を用いて0.5%アンモニア水を添加混合し、試料のpHを8.9に上昇させた。その後、質量分析計に導入した。イオン化法はエレクトロンスプレーイオン化法とし、ネガティブイオンの測定を行った。
【0023】
なお、分析条件の詳細は以下の通りである。
<分析条件>
(株)島津製作所製液体クロマトグラフ質量分析計LCMS−2010Aにおいて、
カラム:Shim−pack SPR−H(株)島津製作所製(4.6mml.D. ×250mm,8μm)
移動相:0.1%ぎ酸水
移動相流量:0.2mL/min
カラム温度:45℃
試料注入量:50μL
ポストカラム
塩基:0.5%アンモニウム水
移動相流量:0.15mL/min
最終pH:pH8.9
質量分析計
イオン化モード:ESI(−)
霧化ガス流量:4.5L/min
印加電圧:−3.5kV
CDL温度:250℃
乾燥ガス流量:0.05Mpa
分析モード:SIM測定
分析範囲:m/z(−)190.85
取込時間:1.0sec/Ch
【0024】
<結果>
クエン酸の分子量は192であり、ESI法ではプロトンが脱離したネガティブイオンm/z191(=[M−H])がメインピークとして観測される。図2に、上述分析による、m/z191をターゲットイオンとして、クエン酸標準液(400nM)のSIM測定をしたマスクロマトグラムを示す。横軸はm/z比、縦軸は相対強度である。この時のクエン酸ピークはS/N=151(σ=3)である。よって、定量限界をS/N=10と考えると、400nM/151.01×10=26.49nMが定量限界となる。26.49nMを50μl注入して測定したので、26.46×10−9μg/μL×50μL×192=2.54×10−4μg=254μgのクエン酸を定量できることになる。これは、従来の検出法であるポストカラムpH調整電気伝導度検出法の感度より約10倍上昇した。
【0025】
なお、本発明に使用できる移動相の種類は、上記ギ酸水に限定されず、酸性であればTFA、過塩素酸水、りん酸水、酢酸水も使用することができる。
【0026】
また、塩基は、上記アンモニア水に限定されず、アルカリ性であればアルキルアミンも利用することができる。
【0027】
また、有機溶媒を添加することにより、移動相溶媒が揮発しやすくなることで、イオン化を促進させることができる。この場合の有機溶媒には、例えばメタノール、アセトニトリル、イソプロパノール、THFを使用することができる。
【0028】
【発明の効果】
本発明によれば、質量分析計で有機酸を選択的に感度良く分析可能となった。このことは、有機酸以外の未知物質が混合した試料の場合に未知物質と有機酸同定が容易になる。
【図面の簡単な説明】
【図1】本発明の有機酸分析方法の流路図
【図2】本発明によりクエン酸標準液をSIM測定した結果
【符号の説明】
1…移動相溜
2…移動相送液ポンプ
3…オートサンプラー
4…分離カラム
5…試薬溜
6…試薬送液ポンプ
7…混合部
8…質量分析計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for analyzing an organic acid mixture using a liquid chromatograph mass spectrometer.
[0002]
[Prior art]
Conventionally, organic acids are separated by high performance liquid chromatography using an ion exclusion column (for example, see Patent Document 1). In this ion exclusion chromatography, a mobile phase composed of a negatively charged stationary phase and an acidic aqueous solution is used, and the organic acid to be analyzed is separated based on the strength of electrostatic repulsion between the organic acid anion and the stationary phase. . After the organic acid is separated by this method, detection is performed by a post-column pH adjustment electric conductivity detection method or an ultraviolet-visible (UV) absorption spectrophotometry. In the post-column pH adjustment electrical conductivity detection method, a buffer solution is added to the mobile phase eluted from the column to fix the pH to around neutral, and then the amount of change in components that dissociate organic acids and become ions is measured. . In the ultraviolet-visible (UV) absorption spectrophotometry, the detection is performed based on the absorbance at 205 to 210 nm, focusing on the carboxyl group of the organic acid.
[0003]
[Patent Document 1] JP-A-8-201365
[Problems to be solved by the invention]
However, the above conventional detection methods have low detection sensitivity. The detection sensitivity of the above-mentioned post-column pH adjustment electric conductivity method is 3 × 10 −11 to 5 × 10 −11 , and taking citric acid having a molecular weight of 192 as an example, the sensitivity becomes 40 pN × 192/3 = 2560 pg, There is only nanogram order. In the case of UV-visible (UV) absorption spectroscopy, the detection sensitivity is lower than that of the post-column pH-adjusted conductivity method.
[0005]
Furthermore, since the conventional detection method described above has low selectivity, it is not necessary to connect two columns to perform analysis in order to prevent peaks from overlapping when performing simultaneous analysis of multiple organic acids. Not be. In particular, in the ultraviolet-visible (UV) absorption spectrophotometry, the absorbance at 205 to 210 nm is easily detected by the coexisting neutral contaminants that coexist, and the selectivity is poor, and sufficient analysis cannot be performed.
[0006]
On the other hand, it is conceivable to use a mass spectrometer as a detection method of liquid chromatography. According to the mass spectrometer, selectivity can be particularly improved. However, in an electron spray ionization method (ESI method) or an atmospheric pressure chemical ionization method (APCI method), which is an ionization unit generally used in a liquid chromatograph mass spectrometer, an eluate from a separation column is an acidic aqueous solution. Therefore, ionization is suppressed, and the detection sensitivity is lowered.
The present invention has been made to solve such a problem, and a main object of the present invention is to provide a highly sensitive organic acid analysis method using a liquid chromatograph mass spectrometer.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a method for separating a sample containing an organic acid by subjecting the sample to a liquid chromatogram column using an acidic aqueous solution as a mobile phase, and separating and eluted from the column. And adding a base or an organic solvent, or a base and an organic solvent to the mixture, and then performing detection with a mass spectrometer.
[0008]
The present invention is the method for analyzing an organic acid according to claim 1, wherein the base is aqueous ammonia or an alkylamine.
[0009]
The present invention is the method for analyzing an organic acid according to claim 1, wherein the organic solvent is methanol, acetonitrile, isopropanol, or THF.
[0010]
Here, an ion exclusion column and an ion exchange chromatography column are used as the separation column of the liquid chromatograph. The ion exclusion column may be a known combination of a negatively charged stationary phase and an acidic mobile phase.In the present invention, the stationary phase is a column packed with an ion exchanger having a sulfone group. As the acidic mobile phase, a strongly acidic acid having a pH of 2 to 3 and a low equivalent conductivity, for example, p-toluenesulfonic acid is preferable.
[0011]
As the mobile phase of the separation column, for example, when an ion exclusion column is used, an acidic mobile phase such as aqueous formic acid, aqueous perchloric acid, aqueous phosphoric acid, or aqueous acetic acid is used. The pH is preferably a strong acidity of 2-3.
[0012]
For the ionization section of the mass spectrometer, for example, an electron spray ionization method or an atmospheric pressure chemical ionization method can be used, but is not limited thereto.
[0013]
Examples of the organic solvent include, but are not limited to, methanol, acetonitrile, isopropanol, and THF. The concentration is preferably from 10 to 90%.
[0014]
Examples of the base include, but are not limited to, aqueous ammonia and alkylamine. The final pH is 6 to 10, preferably 8 to 12.
[0015]
When a mixed solvent of an organic solvent and a base is used, the mixing ratio of the organic solvent and the base is preferably 1: 9 to 9: 1.
[0016]
As a mixing means, a T-tube, a reaction coil, and a mixer can be used, but are not limited thereto.
[0017]
The organic acids that can be analyzed in the present invention include, but are not limited to, citric acid, pyruvic acid, malic acid, succinic acid, lactic acid, fumaric acid, and acetic acid.
[0018]
The ion exclusion column used for organic acid separation uses an acidic aqueous solution as a mobile phase in order to suppress the dissociation of organic acids. On the other hand, in the mass analysis of an organic acid, a proton-eliminating molecule ([MH] ) is detected, so that a basic solvent in which deprotonation easily occurs is suitable. Therefore, by adding and mixing a basic solution to the mobile phase after elution of the ion exclusion column, the pH of the sample can be increased, ionization can be promoted, and the detection sensitivity of organic acids can be increased. In addition, in mass spectrometry, when a large amount of a mobile phase solvent is present, ionization is suppressed. Therefore, it is desirable to add an organic solvent. However, since no organic solvent can be introduced into the separation column, the organic solvent is added and mixed at the end of the separation by the column to increase the volatility of the mobile phase solvent, promote ionization and improve detection sensitivity. Can be raised.
[0019]
Further, in the mass spectrometer, since the molecular weight can be specified, it is not always necessary to separate peaks for substances having different molecular weights, and it is possible to identify an organic acid simply by separating the organic acid with one column. Further, in the conventional detection method, information other than the retention time was not obtained for the unknown peak, but the molecular weight of the unknown peak can be estimated by using mass spectrometry, and the identification of the organic acid can be performed.
[0020]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 shows a basic flow chart of an organic acid analysis system using an ion chromatograph mass spectrometer. In FIG. 1, 1 is a mobile phase reservoir, 2 is a mobile phase liquid sending pump, 3 is an autosampler, 4 is a separation column, 5 is a reagent (base or organic solvent or mixed base of organic solvent) reservoir, and 6 is a reagent sending pump. , 7 indicate a mixing section, and 8 indicates a mass spectrometer.
[0021]
In the above configuration, the mobile phase from the mobile phase reservoir 1 is sent to the autosampler 4 by the mobile phase liquid sending pump 2, mixed with the sample, and sent to the separation column 5. The sample eluted from the column is added and mixed in the mixing section 8 with a base or an organic solvent or an organic solvent mixed base by the post-column method, and then introduced into the mass spectrometer 9 for detection.
[0022]
The usefulness of the present invention was examined under the following conditions.
Using a 0.1% formic acid aqueous solution as a mobile phase at a flow rate of 0.2 mL / min, a 40 μl citric acid standard solution was injected into a 40 μl separation column. To the sample (pH = 2.6) eluted from the separation column, 0.5% ammonia water was added and mixed using a T-tube to raise the pH of the sample to 8.9. Then, it was introduced into a mass spectrometer. The ionization method was an electron spray ionization method, and negative ions were measured.
[0023]
The details of the analysis conditions are as follows.
<Analysis conditions>
In a liquid chromatograph mass spectrometer LCMS-2010A manufactured by Shimadzu Corporation,
Column: Shim-pack SPR-H (manufactured by Shimadzu Corporation, 4.6 mm.D. × 250 mm, 8 μm)
Mobile phase: 0.1% formic acid aqueous solution Mobile phase flow rate: 0.2 mL / min
Column temperature: 45 ° C
Sample injection volume: 50 μL
Post column base: 0.5% ammonium water Mobile phase flow rate: 0.15 mL / min
Final pH: pH 8.9
Mass spectrometer ionization mode: ESI (-)
Atomizing gas flow rate: 4.5 L / min
Applied voltage: -3.5 kV
CDL temperature: 250 ° C
Dry gas flow rate: 0.05Mpa
Analysis mode: SIM measurement Analysis range: m / z (-) 190.85
Acquisition time: 1.0sec / Ch
[0024]
<Result>
The molecular weight of citric acid is 192, and a negative ion m / z 191 (= [MH] ) from which a proton has been eliminated is observed as a main peak in the ESI method. FIG. 2 shows a mass chromatogram obtained by performing SIM measurement of a citric acid standard solution (400 nM) using m / z 191 as a target ion according to the above analysis. The horizontal axis is the m / z ratio, and the vertical axis is the relative intensity. The citric acid peak at this time is S / N = 151 (σ = 3). Therefore, assuming that the limit of quantification is S / N = 10, the limit of quantification is 400 nM / 151.01 × 10 = 26.49 nM. Since measurement was performed by injecting 50 μl of 26.49 nM, 26.46 × 10 −9 μg / μL × 50 μL × 192 = 2.54 × 10 −4 μg = 254 μg of citric acid can be quantified. This was about 10 times higher than the sensitivity of the conventional detection method for post-column pH adjusted conductivity.
[0025]
The type of mobile phase that can be used in the present invention is not limited to the above-described formic acid aqueous solution, and TFA, aqueous perchloric acid, aqueous phosphoric acid, and aqueous acetic acid can be used as long as they are acidic.
[0026]
Further, the base is not limited to the above-mentioned aqueous ammonia, and an alkylamine can be used as long as it is alkaline.
[0027]
Further, by adding an organic solvent, the mobile phase solvent is easily volatilized, so that ionization can be promoted. As the organic solvent in this case, for example, methanol, acetonitrile, isopropanol, and THF can be used.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it became possible to analyze an organic acid selectively and with high sensitivity with a mass spectrometer. This facilitates identification of the unknown substance and the organic acid in the case of a sample in which an unknown substance other than the organic acid is mixed.
[Brief description of the drawings]
FIG. 1 is a flow chart of an organic acid analysis method of the present invention. FIG. 2 is a result of SIM measurement of a citric acid standard solution according to the present invention.
DESCRIPTION OF SYMBOLS 1 ... Mobile phase reservoir 2 ... Mobile phase liquid sending pump 3 ... Autosampler 4 ... Separation column 5 ... Reagent reservoir 6 ... Reagent sending pump 7 ... Mixing part 8 ... Mass spectrometer

Claims (3)

有機酸を含有する試料を、酸性水溶液を移動相とした液体クロマトグラフ用カラムに付して分離し、該カラムからの分離溶出液に、塩基もしくは有機溶媒、もしくは塩基と有機溶媒を添加混合した後、質量分析計にて検出を行うことを特徴とする有機酸分析方法。A sample containing an organic acid was separated by subjecting it to a liquid chromatography column using an acidic aqueous solution as a mobile phase, and the eluate separated from the column was mixed with a base or an organic solvent, or a base and an organic solvent. Thereafter, detection is carried out by a mass spectrometer. 前記塩基が、アンモニア水、アルキルアミンである、請求項1に記載の有機酸分析方法。The organic acid analysis method according to claim 1, wherein the base is aqueous ammonia or an alkylamine. 前記有機溶媒が、メタノール、アセトニトリル、イソプロパノール、THFである、請求項1に記載の有機酸分析方法。The organic acid analysis method according to claim 1, wherein the organic solvent is methanol, acetonitrile, isopropanol, or THF.
JP2002286433A 2002-09-30 2002-09-30 Method for analyzing organic acid Pending JP2004125453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286433A JP2004125453A (en) 2002-09-30 2002-09-30 Method for analyzing organic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286433A JP2004125453A (en) 2002-09-30 2002-09-30 Method for analyzing organic acid

Publications (1)

Publication Number Publication Date
JP2004125453A true JP2004125453A (en) 2004-04-22

Family

ID=32279487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286433A Pending JP2004125453A (en) 2002-09-30 2002-09-30 Method for analyzing organic acid

Country Status (1)

Country Link
JP (1) JP2004125453A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833760A (en) * 2015-05-25 2015-08-12 南京信息工程大学 Method for using high-performance liquid chromatography to measure greenhouse tomato soil low-molecular-weight organic acids
CN105021761A (en) * 2015-07-02 2015-11-04 华中农业大学 Method for determination of a variety of organic acids in grape juice and authenticity of grape juice
WO2015170516A1 (en) * 2014-05-08 2015-11-12 昭和電工株式会社 Method, column, and device for analyzing organic acid by mass spectrometry
EP3401945A1 (en) 2017-05-11 2018-11-14 Shimadzu Corporation Method for liquid chromatographic mass spectrometry and liquid chromatograph mass spectrometer
CN109580821A (en) * 2018-12-21 2019-04-05 山东铂源药业有限公司 The detection method of impurity succinic acid in a kind of S- benzyl succinic acid
CN109765309A (en) * 2018-12-27 2019-05-17 辽宁三生科技发展有限公司 A kind of method of effective component in separation detection citric acid disinfectant
US10309937B2 (en) 2016-02-03 2019-06-04 Samsung Electronics Co., Ltd. Method for detecting impurities in ammonium hydroxide
CN112763629A (en) * 2021-01-18 2021-05-07 上海美农生物科技股份有限公司 Method for simultaneously detecting 6 acidifiers in compound acidifier
CN113994205A (en) * 2019-06-07 2022-01-28 沃特世科技公司 Use of metal chelators as mobile phase additives to improve RPLC-based peptide mapping performance
CN114994194A (en) * 2022-05-09 2022-09-02 广东安纳检测技术有限公司 Method and device for measuring malonic acid in water
CN116879441A (en) * 2023-07-13 2023-10-13 合肥工业大学 Detection method for organic acid in food based on liquid chromatography-mass spectrometry

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170516A1 (en) * 2014-05-08 2015-11-12 昭和電工株式会社 Method, column, and device for analyzing organic acid by mass spectrometry
CN104833760A (en) * 2015-05-25 2015-08-12 南京信息工程大学 Method for using high-performance liquid chromatography to measure greenhouse tomato soil low-molecular-weight organic acids
CN105021761A (en) * 2015-07-02 2015-11-04 华中农业大学 Method for determination of a variety of organic acids in grape juice and authenticity of grape juice
US10309937B2 (en) 2016-02-03 2019-06-04 Samsung Electronics Co., Ltd. Method for detecting impurities in ammonium hydroxide
US11002715B2 (en) 2017-05-11 2021-05-11 Shimadzu Corporation Method for liquid chromatographic mass spectrometry and liquid chromatograph mass spectrometer
EP3401945A1 (en) 2017-05-11 2018-11-14 Shimadzu Corporation Method for liquid chromatographic mass spectrometry and liquid chromatograph mass spectrometer
JP2018189607A (en) * 2017-05-11 2018-11-29 株式会社島津製作所 Liquid chromatograph mass spectrometry method and liquid chromatograph mass spectrometry device
CN109580821A (en) * 2018-12-21 2019-04-05 山东铂源药业有限公司 The detection method of impurity succinic acid in a kind of S- benzyl succinic acid
CN109580821B (en) * 2018-12-21 2021-03-19 山东铂源药业有限公司 Method for detecting impurity succinic acid in S-benzylsuccinic acid
CN109765309A (en) * 2018-12-27 2019-05-17 辽宁三生科技发展有限公司 A kind of method of effective component in separation detection citric acid disinfectant
CN113994205A (en) * 2019-06-07 2022-01-28 沃特世科技公司 Use of metal chelators as mobile phase additives to improve RPLC-based peptide mapping performance
CN112763629A (en) * 2021-01-18 2021-05-07 上海美农生物科技股份有限公司 Method for simultaneously detecting 6 acidifiers in compound acidifier
CN114994194A (en) * 2022-05-09 2022-09-02 广东安纳检测技术有限公司 Method and device for measuring malonic acid in water
CN114994194B (en) * 2022-05-09 2024-04-09 广东安纳检测技术有限公司 Method and device for measuring malonic acid in water
CN116879441A (en) * 2023-07-13 2023-10-13 合肥工业大学 Detection method for organic acid in food based on liquid chromatography-mass spectrometry

Similar Documents

Publication Publication Date Title
Køppen et al. Determination of acidic herbicides using liquid chromatography with pneumatically assisted electrospray ionization mass spectrometric and tandem mass spectrometric detection
Miao et al. Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS)
Wu et al. Polypyrrole‐coated capillary in‐tube solid phase microextraction coupled with liquid chromatography–electrospray ionization mass spectrometry for the determination of β‐blockers in urine and serum samples
Petritis et al. Parameter optimization for the analysis of underivatized protein amino acids by liquid chromatography and ionspray tandem mass spectrometry
van Vyncht et al. Multiresidue determination of (fluoro) quinolone antibiotics in swine kidney using liquid chromatography–tandem mass spectrometry
KR100975774B1 (en) Determination of Antibiotics by High Performance Liquid Chromatography and Mass Spectrometry
Ohnesorge et al. Quantitation in capillary electrophoresis‐mass spectrometry
Smyth Recent applications of capillary electrophoresis‐electrospray ionisation‐mass spectrometry in drug analysis
US8563322B2 (en) Method for separation of molecules
Liu et al. Signal and charge enhancement for protein analysis by liquid chromatography–mass spectrometry with desorption electrospray ionization
Van Hout et al. Ion suppression in the determination of clenbuterol in urine by solid‐phase extraction atmospheric pressure chemical ionisation ion‐trap mass spectrometry
Bąchor et al. Sensitive detection of charge derivatized peptides at the attomole level using nano-LC-ESI–MRM analysis
CORR Measurement of molecular species of arsenic and tin using elemental and molecular dual mode analysis by ionspray mass spectrometry
Wang et al. Supercharging protein ions in native mass spectrometry using theta capillary nanoelectrospray ionization mass spectrometry and cyclic alkylcarbonates
JP2004125453A (en) Method for analyzing organic acid
Zheng et al. Development and applications of liquid sample desorption electrospray ionization mass spectrometry
Pelzing et al. Separation techniques hyphenated to electrospray‐tandem mass spectrometry in proteomics: Capillary electrophoresis versus nanoliquid chromatography
Lindemann et al. Selenium speciation by HPLC with tandem mass spectrometric detection
Giese Electron–capture mass spectrometry: recent advances
Chan et al. Mitigation of signal suppression caused by the use of trifluoroacetic acid in liquid chromatography mobile phases during liquid chromatography/mass spectrometry analysis via post‐column addition of ammonium hydroxide
Hoffmann et al. CE‐ESI‐MS/MS as a rapid screening tool for the comparison of protein–ligand interactions
CN108845063B (en) Detection reagent combination and detection method of aquatic product additive
CN106537139B (en) Pass through mass spectrum standard measure tamoxifen and its metabolin
WO2021180086A1 (en) Biomarkers and methods for non-invasive detection of hepatotoxic pyrrolizidine alkaloid exposure
Rosell-Melé et al. High-performance liquid chromatography-mass spectrometry of porphyrins by using an atmospheric pressure interface