JP2004124926A - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP2004124926A
JP2004124926A JP2002327594A JP2002327594A JP2004124926A JP 2004124926 A JP2004124926 A JP 2004124926A JP 2002327594 A JP2002327594 A JP 2002327594A JP 2002327594 A JP2002327594 A JP 2002327594A JP 2004124926 A JP2004124926 A JP 2004124926A
Authority
JP
Japan
Prior art keywords
duct
impeller
power generator
wind power
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002327594A
Other languages
Japanese (ja)
Inventor
Yoshimi Baba
馬場 芳美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002327594A priority Critical patent/JP2004124926A/en
Publication of JP2004124926A publication Critical patent/JP2004124926A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind power generator capable of further improving generating efficiency. <P>SOLUTION: The wind power generator comprises a generally cylindrical duct 1 that is generally blade-shaped in a side wall cross-section, a impeller 2 capable of rotating about an axis of the duct 1, and a nacelle 5 structuring a streamlined pencil element 3 with the impeller 2 and storing a generator 4 using rotating force of the impeller 2. The side wall cross-section of the duct 1 is the blade shape capable of generating a decompression area behind the duct 1 and suppressing the generation of a whirl behind the duct 1. A tip end portion of the pencil element 3 is inside of the duct 1, and a rear end portion is projected from a duct 1 rear end portion so as to close to a tip end portion of the decompression area generated behind the duct 1. Blades 21 of the impeller 2 are provided in the maximum wind speed range 13 inside of the duct 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、側壁断面形状が略翼形とされた略円筒状のダクトと、外方に突出する複数の羽根を有しダクト軸周りに回転可能な羽根車と、羽根車とともに流線型のペンシル体を構成し、羽根車の回転力を利用する発電機を収容するナセルとを備えた風力発電装置に関する。
【0002】
【従来の技術】
羽根車を効率よく回転させて発電効率を向上させる観点から、従来、前記風力発電装置に類似する風力発電装置がいくつか提案されている(実開昭56−74871号等参照)。
【0003】
【発明が解決しようとする課題】
しかし、本願発明者は風力発電装置の近傍における気流の研究により発電効率に改善の余地があることを知得した。
【0004】
そこで、本発明は、発電効率のさらなる向上を図り得る風力発電装置を提供することを解決課題とする。
【0005】
【課題を解決するための手段】
前記課題を解決するための本発明の風力発電装置は、ダクトの側壁断面形状がダクト後方で減圧域が発生し得るとともにダクト後方での渦流の発生を抑制し得る翼型とされ、ペンシル体がその先端部がダクト内部にあり、その後端部がダクト後方に発生する減圧域の先端部に近接するようにダクト後端部から突出して設けられ、羽根車の羽根がダクト内部において最大風速領域に設けられていることを特徴とする。
【0006】
本発明によれば、ダクトの前方から後方に向かう風が生じた場合、ダクト後方で渦流の発生を抑制しながら「減圧域」を生じさせることができる。これにより、ダクト前方からダクト内部への風の流れがダクト後方の渦流により妨げられる事態を解消しながら、減圧域の風の引き込みによるダクト内部の風速増大を図ることができる。
【0007】
一方、本願発明者の得た知見によれば、減圧域の先端部が先細で不安定でありダクトの径方向にふらつきやすく、近傍の風の向き等の変化により大きめにふらつくと減圧域が全体的に消滅してしまう。これではダクト内部の風速増大、ひいては発電効率の向上を図ることができない。
【0008】
しかるに、本発明のようにペンシル体の後端部が減圧域の先端部に近接するようにダクト後方から突出されることで、減圧域の先端部がペンシル体の後端部に引き付けられてふらつきが抑制される。これにより、ダクト前方から後方に向けて風が吹いている間、減圧域の先端部がふらついて減圧域が全体的に消滅する事態を抑制することができる。そして、ダクト後方の減圧域を定常的に維持し、ダクト内部の風速の増大を確保することができる。
【0009】
また、羽根車の羽根がダクト内部の最大風速領域に設けられることで、羽根車を最大限に回転させることができる。
【0010】
従って、本発明の風力発電装置によれば▲1▼ダクト後方での減圧域の発生によるダクト内部の風速増大、▲2▼減圧域の先端部のふらつき抑制による減圧域の定常維持、▲3▼ダクト内部の最大風速領域での羽根車の回転を通じ、発電効率のさらなる向上を図ることができる。
【0011】
また、本発明の風力発電装置は、ダクトの側壁断面の翼型における翼弦がダクト軸に対して所定角度だけ傾けられ、該所定角度に応じて変化する減圧域の先端部の位置に合わせてペンシル体の後端部のダクト後方からの突出長が調節されていることを特徴とする。
【0012】
本発明は、次のような本願発明者の得た知見に基づいている。
【0013】
即ち、ダクトの側壁断面の翼型における翼弦がダクト軸に対して傾けられることでダクト後方の減圧域の減圧度が変動する。従って、減圧域の減圧度が最大となるように当該傾きが調節されることで、ダクト前方からダクト内部に流れ込んだ風がダクト後方の減圧域によってさらに強く引き込まれ、ダクト内部の風速をさらに増速させることができる。
【0014】
また、当該傾きが大きくなるほどダクト後方に発生する減圧域の先端部の位置が前方にずれる。従って、当該傾きに応じてペンシル体の後端部が減圧域の先端部に到るようダクトからの突出長が調節されることで、減圧域の先端部のふらつき抑制を図ることができる。
【0015】
従って、本発明の風力発電装置によれば上記▲1▼〜▲3▼に加え、▲4▼ダクト後方での減圧域の減圧度の最大化によるダクト内部の風の最速化を通じ、発電効率の最大化を図ることができる。
【0016】
さらに本発明の風力発電装置は、前記所定角度が2°〜12°の範囲内とされ、ペンシル体のダクト後方からの突出長がダクト長の0.1〜0.4倍の範囲内に設定されていることを特徴とする。
【0017】
ここで「所定角度」は当該翼弦の翼前縁が翼後縁よりもダクト軸から離反するような傾斜角度を「正」として定義される。
【0018】
また、本発明の風力発電装置は、羽根車の羽根がダクトの最小内径部分を基準とし、前方にダクト長の0.07倍、且つ、後方にダクト長の0.18倍の範囲内に設けられていることを特徴とする。
【0019】
【発明の実施の形態】
本発明の風力発電装置の実施形態について図面を用いて説明する。図1は本実施形態の風力発電装置の側断面図であり、図2〜図4は本実施形態の風力発電装置の機能説明図である。
【0020】
図1に示す風力発電装置は略円筒状のダクト1と、外方に突出する複数の羽根22を有しダクト軸x周りに回転可能な羽根車2と、羽根車2とともに流線型のペンシル体3を構成し、回転軸24を介して伝達される羽根車2の回転力を利用する発電機4を収容するナセル5とを備えている。ナセル5はダクト1の内壁から突出する柱体6によりダクト1に対して固定されている。発電機4による発電エネルギーは、柱体6及びダクト1を貫通するリード42を介して外部に供給される。
【0021】
ダクト1の側壁断面形状は翼型とされている。これは、後述のようにダクト1後方で減圧域が発生し得るとともにダクト1後方での渦流の発生を抑制するためである。ダクト110の側壁断面形状としては公知の翼形であるNACA65−618(9−0.5)、NACA63−618、FA66−S−196V1等が採用される。
【0022】
また、ダクト1の側壁断面の翼型における翼弦11がダクト軸12に対し、所定角度θだけ傾けられている。所定角度θはダクト1の後端径に対する先端径の比が増大する方向を正として定義される。
【0023】
ペンシル体3はその先端部にあたる羽根車2の先端部がダクト1内部にあり、その後端部にあたるナセル4の後端部がダクト1の後端から突出するように設けられている。ペンシル体3の後端部のダクト1からの突出長Lはダクト長Lのc(>0)倍に設定されている。係数cは所定角度θを変数としてc(2°)=0.4、c(12°)=0.1という条件を満たす単調減少関数c(θ)として表される。これは、後述のようにペンシル体3の後端部をダクト1後方に発生する減圧域の先端部に近接させるためである。
【0024】
羽根車2の羽根21はダクト1内部において最大風速領域13、即ち、ダクト1の最小内径部分14を基準とし、前方にダクト長Lの0.07倍、且つ、後方にダクト長の0.18倍の範囲に設けられている。
【0025】
前記構成の風力発電装置の機能について図2〜図4を用いて説明する。
【0026】
本願発明者は、ダクト1前方から後方に向かい風が生じたとき、ダクト1の近傍における風の流れ及び風速をシミュレーションにより検討した。
【0027】
このシミュレーションは、K.Kuwaharaの論文“Unsteady Flow Simulation and Its Visualization”(アメリカ航空・航宙学会 AIAA99−3405)に記載されている方法に従って行われた。この方法によれば、まず、空間に仮想の格子系が構成され、その各格子点におけるナビエ−ストークス方程式(連続体の運動量保存則を表す方程式)が立てられる。この上で、一の格子点におけるナビエ−ストークス方程式の空間偏微分項に、その近傍にある他の格子点における流体の影響が繰り込まれた上でシミュレーション用の偏微分方程式が立てられる。そして、この偏微分方程式が解かれることにより各格子点における風速が求められる。
【0028】
また、このシミュレーションに際し、所定角度θを8.7°、ダクト長Lを5,000[mm]、ペンシル体3の後端突出長Lを1,000[mm](=0.20L)、ダクト1の最小内径を1,800[mm]、先端径を3,166[mm]とした。
【0029】
このシミュレーション結果から次のことが知見された。即ち、この風力発電装置によれば、ダクト1前方から後方に向かう風が生じた場合、図2に斜線で示すように減圧域50を生じさせることができる。また、図3に実線で表される風の流れを見ると、ダクト1後方で渦流の発生が抑制されている。従って、ダクト1前方からダクト1内への風の流れがダクト1後方の渦流により妨げられる事態を解消しながら、減圧域50の風の引き込みによるダクト1内部の風速増大を図ることができる。
【0030】
図2にダクト1前方における風速を1.0とした場合の増速度とともにダクト1内の等風速線を示す。図2から、ダクト1の最大風速領域13における増速度が2.6であること、即ち、当該領域13における風速が先端部の風速の2.6倍となることがわかる。風力エネルギーは、風速v、流体密度ρ、ダクト1の断面積SとしてρSv/2と表されるが、本実施形態ではダクト1の開口断面積は最小内径位置の断面積の約3.1倍なので、ダクト1の最大風速領域13における風力エネルギーは、ダクト1前方における風力エネルギーの2.6/3.1〜5.67倍に増幅され得る。
【0031】
また、図2に示すようにペンシル体3の後端部がダクト1後方から突出され、減圧域50の先端部51に到っている。これにより、減圧域50の先端部51がペンシル体3の後端部に引き付けられて安定し、そのふらつきが抑制される。これにより、ダクト1前方から後方に向け風が吹いている間、減圧域50の先端部51がふらついて減圧域50が全体的に消滅する事態を抑制することができる。そして、ダクト1後方の減圧域50を定常的に維持し、ダクト1内部の風速の増大を確保することができる。
【0032】
さらに羽根車2の羽根21がダクト1内部の最大風速領域13に設けられることで、羽根車2を最大限に回転させることができる。
【0033】
従って、本発明の風力発電装置によれば、▲1▼ダクト1後方での減圧域50の発生によるダクト1内部の風速増大、▲2▼減圧域50の先端部51のふらつき抑制による減圧域50の定常維持、▲3▼ダクト1内部の最大風速領域13での羽根車2の回転を通じ、発電効率のさらなる向上を図ることができる。
【0034】
また、図4に所定角度θを変化させ、これに応じてペンシル体3の後端突出長L(=c(θ)・L)を変化させたときのダクト1の最大風速領域13における増速度のシミュレーション結果を示す。図4から、所定角度θが2°以上12°以下に設定された場合、ダクト1内での風の増速度を最大(=2.6)にすることができる。即ち、所定角度θが2°以上12°以下に設定された場合、ダクト1後方の減圧域50の減圧度が最大となり、ダクト1前方からダクト1内部に流れ込んだ風がダクト1後方の減圧域50によってさらに強く引き込まれ、ダクト1内部の風速をさらに増速させることができる。
【0035】
従って、所定角度θを2°以上12°以下に設定し、これに応じてペンシル体3の後端突出長Lを調節することで、上記▲1▼〜▲3▼に加え、▲4▼ダクト後方での減圧域の減圧度の最大化によるダクト内部の風の最速化を通じ発電効率の最大化を図ることができる。
【図面の簡単な説明】
【図1】本実施形態の風力発電装置の側断面図
【図2】本実施形態の風力発電装置の機能説明図
【図3】本実施形態の風力発電装置の機能説明図
【図4】本実施形態の風力発電装置の機能説明図
【符号の説明】
1‥ダクト、11‥翼弦、12‥ダクト軸、13‥最大風速領域、14‥最小内径部、2‥羽根車、21‥羽根、22‥回転軸、3‥ペンシル体、4‥発電機、5‥ナセル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a substantially cylindrical duct having a substantially wing-shaped cross-section of a side wall, an impeller having a plurality of outwardly protruding blades and rotatable around a duct axis, and a streamlined pencil body together with the impeller. And a nacelle accommodating a generator utilizing the rotational force of the impeller.
[0002]
[Prior art]
In view of improving the power generation efficiency by efficiently rotating the impeller, some wind power generators similar to the wind power generator have been proposed (see Japanese Utility Model Application Laid-Open No. 56-74871).
[0003]
[Problems to be solved by the invention]
However, the inventor of the present application has found that there is room for improvement in power generation efficiency by studying the airflow near the wind power generator.
[0004]
Therefore, an object of the present invention is to provide a wind turbine generator capable of further improving the power generation efficiency.
[0005]
[Means for Solving the Problems]
The wind power generator of the present invention for solving the above-mentioned problems has an airfoil shape in which a side wall cross-sectional shape of the duct has an airfoil shape capable of generating a decompression region behind the duct and suppressing generation of a vortex behind the duct. The tip is inside the duct, the rear end is provided protruding from the rear end of the duct so as to be close to the tip of the decompression area generated behind the duct, and the impeller blades are in the maximum wind speed area inside the duct. It is characterized by being provided.
[0006]
ADVANTAGE OF THE INVENTION According to this invention, when the wind which goes to the back from the front of a duct arises, a "pressure reduction area" can be generated, suppressing generation of a vortex behind a duct. Thus, it is possible to increase the wind speed inside the duct due to the drawing of the wind in the decompression region, while eliminating the situation where the flow of the wind from the front of the duct to the inside of the duct is obstructed by the vortex behind the duct.
[0007]
On the other hand, according to the knowledge obtained by the inventor of the present application, the tip of the decompression region is tapered and unstable, and tends to fluctuate in the radial direction of the duct. Disappears. In this case, it is not possible to increase the wind speed inside the duct, and thus to improve the power generation efficiency.
[0008]
However, since the rear end of the pencil body protrudes from the rear of the duct so as to approach the front end of the decompression region as in the present invention, the front end of the decompression region is attracted to the rear end of the pencil body and wobble. Is suppressed. Thereby, while the wind is blowing from the front of the duct to the rear, it is possible to suppress a situation in which the front end of the decompression region fluctuates and the decompression region disappears entirely. Then, the decompression region behind the duct is constantly maintained, and an increase in the wind speed inside the duct can be ensured.
[0009]
Further, since the blades of the impeller are provided in the maximum wind speed region inside the duct, the impeller can be rotated to the maximum.
[0010]
Therefore, according to the wind turbine generator of the present invention, (1) the wind speed inside the duct increases due to the generation of the decompression region behind the duct, (2) the steady maintenance of the decompression region by suppressing the fluctuation of the tip of the decompression region, (3) The power generation efficiency can be further improved through rotation of the impeller in the maximum wind speed region inside the duct.
[0011]
Further, in the wind turbine generator of the present invention, the chord in the airfoil of the side wall cross section of the duct is inclined at a predetermined angle with respect to the duct axis, and is adjusted to the position of the tip of the decompression region that changes according to the predetermined angle. The projecting length of the rear end of the pencil body from the rear of the duct is adjusted.
[0012]
The present invention is based on the following findings obtained by the present inventors.
[0013]
That is, the chord in the airfoil of the side wall cross section of the duct is inclined with respect to the duct axis, so that the degree of decompression in the decompression region behind the duct varies. Therefore, by adjusting the inclination so that the degree of decompression in the decompression region is maximized, the wind flowing into the duct from the front of the duct is more strongly drawn by the decompression region behind the duct, and the wind speed inside the duct is further increased. Can be faster.
[0014]
Further, as the inclination increases, the position of the leading end of the decompression region generated behind the duct shifts forward. Therefore, the protrusion length from the duct is adjusted so that the rear end of the pencil body reaches the front end of the decompression region in accordance with the inclination, whereby it is possible to suppress the fluctuation of the front end of the decompression region.
[0015]
Therefore, according to the wind power generator of the present invention, in addition to the above (1) to (3), (4) the power generation efficiency can be improved by maximizing the degree of decompression in the decompression region behind the duct and maximizing the wind inside the duct. Maximization can be achieved.
[0016]
Further, in the wind turbine generator according to the present invention, the predetermined angle is set in a range of 2 ° to 12 °, and a protruding length of the pencil body from the rear of the duct is set in a range of 0.1 to 0.4 times the duct length. It is characterized by having been done.
[0017]
Here, the “predetermined angle” is defined as a “positive” angle of inclination such that the leading edge of the wing of the chord is further away from the duct axis than the trailing edge of the wing.
[0018]
In the wind turbine generator of the present invention, the impeller blades are provided within a range of 0.07 times the duct length in the front and 0.18 times the duct length in the rear based on the minimum inner diameter portion of the duct. It is characterized by having been done.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a wind turbine generator according to the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of the wind turbine generator of the present embodiment, and FIGS. 2 to 4 are functional explanatory diagrams of the wind turbine generator of the present embodiment.
[0020]
The wind turbine generator shown in FIG. 1 has a substantially cylindrical duct 1, an impeller 2 having a plurality of outwardly projecting blades 22 and rotatable around a duct axis x, and a streamlined pencil body 3 together with the impeller 2. And a nacelle 5 for accommodating the generator 4 that utilizes the rotational force of the impeller 2 transmitted via the rotating shaft 24. The nacelle 5 is fixed to the duct 1 by a column 6 projecting from the inner wall of the duct 1. Energy generated by the generator 4 is supplied to the outside via a lead 42 penetrating the column 6 and the duct 1.
[0021]
The cross-sectional shape of the side wall of the duct 1 is an airfoil. This is because a decompression region can be generated behind the duct 1 and the generation of a vortex behind the duct 1 can be suppressed as described later. The side wall cross-sectional shape of the duct 110 is a known airfoil NACA65 3 -618 (9-0.5), NACA63 3 -618, etc. FA66-S-196V1 is employed.
[0022]
The chord 11 of the airfoil having a side wall cross section of the duct 1 is inclined by a predetermined angle θ with respect to the duct axis 12. The predetermined angle θ is defined as positive in the direction in which the ratio of the front end diameter to the rear end diameter of the duct 1 increases.
[0023]
The pencil body 3 is provided such that the tip end of the impeller 2 corresponding to the tip end thereof is inside the duct 1, and the rear end of the nacelle 4 corresponding to the rear end protrudes from the rear end of the duct 1. Projection length L 2 from the duct 1 of the rear end of the pencil body 3 is set to c (> 0) times of the duct length L 1. The coefficient c is expressed as a monotonically decreasing function c (θ) that satisfies the conditions of c (2 °) = 0.4 and c (12 °) = 0.1 using the predetermined angle θ as a variable. This is to bring the rear end of the pencil body 3 close to the front end of the decompression region generated behind the duct 1 as described later.
[0024]
Maximum wind region 13 the blade 21 is inside the duct 1 of the impeller 2, i.e., 0 with respect to the minimum inner diameter portion 14 of the duct 1, 0.07 times the duct length L 1 in front and at the rear of the duct length. It is provided in a range of 18 times.
[0025]
The function of the wind power generator having the above configuration will be described with reference to FIGS.
[0026]
The inventor of the present application examined the flow and velocity of the wind near the duct 1 by simulation when a wind was generated from the front to the rear of the duct 1.
[0027]
This simulation is described in This was performed according to the method described in Kuwahara's dissertation, "Unsteady Flow Simulation and Its Visualization" (American Aviation and Space Society AIAA 99-3405). According to this method, first, a virtual lattice system is formed in space, and a Navier-Stokes equation (an equation representing the law of conservation of momentum of a continuum) is established at each lattice point. Then, the partial differential equation of the Navier-Stokes equation at one grid point is factored in with the influence of the fluid at other nearby grid points, and a partial differential equation for simulation is established. Then, by solving this partial differential equation, the wind speed at each grid point is obtained.
[0028]
Also, when this simulation, 8.7 ° a predetermined angle theta, the duct length L 1 5,000 [mm], the rear end projection length L 2 of the pencil body 3 1,000 [mm] (= 0.20L 1 ), The minimum inner diameter of the duct 1 was 1,800 [mm], and the tip diameter was 3,166 [mm].
[0029]
The following was found from the simulation results. That is, according to this wind power generator, when a wind from the front to the rear of the duct 1 is generated, the decompression region 50 can be generated as shown by the oblique lines in FIG. Looking at the flow of the wind represented by the solid line in FIG. 3, the generation of the vortex behind the duct 1 is suppressed. Therefore, it is possible to increase the wind speed inside the duct 1 due to the drawing of the wind in the decompression region 50 while eliminating the situation where the flow of the wind from the front of the duct 1 into the duct 1 is obstructed by the vortex behind the duct 1.
[0030]
FIG. 2 shows the constant wind speed line in the duct 1 together with the acceleration when the wind speed in front of the duct 1 is 1.0. From FIG. 2, it can be seen that the speed increase in the maximum wind speed region 13 of the duct 1 is 2.6, that is, the wind speed in the region 13 is 2.6 times the wind speed at the tip end. Wind energy, wind velocity v, about 3.1 of the cross-sectional area of the fluid density [rho, is represented as ρSv 3/2 as the cross-sectional area S of the duct 1, the opening cross-sectional area of the duct 1 in the present embodiment, the minimum inner diameter position As a result, the wind energy in the maximum wind speed region 13 of the duct 1 can be amplified to 2.6 3 /3.1 to 5.67 times the wind energy in front of the duct 1.
[0031]
Further, as shown in FIG. 2, the rear end of the pencil body 3 protrudes from the rear of the duct 1 and reaches the front end 51 of the decompression region 50. Thereby, the front end portion 51 of the decompression region 50 is attracted to the rear end portion of the pencil body 3 and is stabilized, and its fluctuation is suppressed. Thereby, while the wind is blowing from the front to the rear of the duct 1, it is possible to suppress a situation in which the distal end portion 51 of the decompression region 50 fluctuates and the decompression region 50 disappears as a whole. Then, the decompression region 50 behind the duct 1 is constantly maintained, and an increase in the wind speed inside the duct 1 can be secured.
[0032]
Further, since the blades 21 of the impeller 2 are provided in the maximum wind speed region 13 inside the duct 1, the impeller 2 can be rotated to the maximum.
[0033]
Therefore, according to the wind turbine generator of the present invention, (1) the increase of the wind speed inside the duct 1 due to the generation of the decompression region 50 behind the duct 1, and (2) the decompression region 50 due to the suppression of the fluctuation of the front end 51 of the decompression region 50. And (3) rotation of the impeller 2 in the maximum wind speed region 13 inside the duct 1 to further improve the power generation efficiency.
[0034]
In addition, in FIG. 4, when the predetermined angle θ is changed and the rear end protrusion length L 2 (= c (θ) · L 1 ) of the pencil body 3 is changed accordingly, the maximum wind speed region 13 of the duct 1 is changed. The simulation result of the acceleration is shown. From FIG. 4, when the predetermined angle θ is set to 2 ° or more and 12 ° or less, the speed increase of the wind in the duct 1 can be maximized (= 2.6). That is, when the predetermined angle θ is set to 2 ° or more and 12 ° or less, the degree of decompression of the decompression region 50 behind the duct 1 becomes maximum, and the wind flowing into the inside of the duct 1 from the front of the duct 1 is reduced. Due to the fact that it is drawn in more strongly by 50, the wind speed inside the duct 1 can be further increased.
[0035]
Accordingly, setting the predetermined angle θ to 12 ° or less 2 ° or more, by adjusting the rear end projection length L 2 of the pencil body 3 in accordance with this, the ▲ 1 ▼ ~ ▲ 3 ▼ was added, ▲ 4 ▼ Power generation efficiency can be maximized by maximizing the degree of decompression in the decompression region behind the duct and maximizing the wind inside the duct.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a wind power generator according to an embodiment of the present invention. FIG. 2 is a functional explanatory diagram of the wind power generator of the present embodiment. FIG. 3 is a functional explanatory diagram of a wind power generator of the present embodiment. Functional explanatory diagram of the wind turbine generator of the embodiment
1 ‥ duct, 11 ‥ chord, 12 ‥ duct shaft, 13 ‥ maximum wind speed region, 14 ‥ minimum inside diameter, 2 ‥ impeller, 21 ‥ blade, 22 ‥ rotary shaft, 3 ‥ pencil body, 4 ‥ generator, 5 ‥ nacelle

Claims (4)

略円筒状のダクトと、
外方に突出する複数の羽根を有しダクト軸周りに回転可能な羽根車と、
羽根車とともに流線型のペンシル体を構成し、羽根車の回転力を利用する発電機を収容するナセルとを備えた風力発電装置であって、
ダクトの側壁断面形状がダクト後方で減圧域が発生し得るとともにダクト後方での渦流の発生を抑制し得る翼型とされ、
ペンシル体がその先端部がダクト内部にあり、その後端部がダクト後方に発生する減圧域の先端部に近接するようにダクト後端部から突出して設けられ、羽根車の羽根がダクト内部において最大風速領域に設けられていることを特徴とする風力発電装置。
A substantially cylindrical duct;
An impeller having a plurality of blades protruding outward and rotatable around a duct axis;
A wind power generator comprising a streamlined pencil body together with the impeller, and a nacelle accommodating a generator utilizing the rotational force of the impeller,
The side wall cross section of the duct has an airfoil shape that can generate a decompression region behind the duct and suppress the occurrence of eddy current behind the duct,
A pencil body is provided with its tip part inside the duct, and its rear end protrudes from the rear end of the duct so as to be close to the front end of the decompression area generated behind the duct. A wind power generator provided in a wind speed region.
ダクトの側壁断面の翼型における翼弦がダクト軸に対して所定角度だけ傾けられ、該所定角度に応じて変化する減圧域の先端部の位置に合わせてペンシル体の後端部のダクト後方からの突出長が調節されていることを特徴とする請求項1記載の風力発電装置。The chord of the airfoil of the side wall cross section of the duct is inclined by a predetermined angle with respect to the duct axis, and the rear end of the pencil body is adjusted from the rear of the duct at the rear end of the pencil body in accordance with the position of the front end of the decompression region that changes according to the predetermined angle. The wind power generator according to claim 1, wherein the protrusion length of the wind power generator is adjusted. 前記所定角度が2°〜12°の範囲内とされ、ペンシル体のダクト後方からの突出長がダクト長の0.1〜0.4倍の範囲内に設定されていることを特徴とする請求項2記載の風力発電装置。The said predetermined angle is made into the range of 2 degrees-12 degrees, The protruding length of the pencil body from the duct back is set in the range of 0.1-0.4 times the duct length. Item 3. A wind power generator according to Item 2. 羽根車の羽根がダクトへの最小内径部分を基準とし、前方にダクト長の0.07倍、且つ、後方にダクト長の0.18倍の範囲内に設けられていることを特徴とする請求項1、2又は3記載の風力発電装置。The impeller blades are provided within a range of 0.07 times the duct length in the front and 0.18 times the duct length in the rear based on the minimum inner diameter portion to the duct. Item 4. The wind power generator according to item 1, 2 or 3.
JP2002327594A 2002-10-04 2002-10-04 Wind power generator Pending JP2004124926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327594A JP2004124926A (en) 2002-10-04 2002-10-04 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327594A JP2004124926A (en) 2002-10-04 2002-10-04 Wind power generator

Publications (1)

Publication Number Publication Date
JP2004124926A true JP2004124926A (en) 2004-04-22

Family

ID=32289990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327594A Pending JP2004124926A (en) 2002-10-04 2002-10-04 Wind power generator

Country Status (1)

Country Link
JP (1) JP2004124926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019760A2 (en) * 2011-07-29 2013-02-07 Fong Michael C Wind turbine power enhancements
CN109026547A (en) * 2018-09-19 2018-12-18 王明意 A kind of wind electricity generating system and its application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019760A2 (en) * 2011-07-29 2013-02-07 Fong Michael C Wind turbine power enhancements
WO2013019760A3 (en) * 2011-07-29 2013-04-11 Fong Michael C Wind turbine power enhancements
CN109026547A (en) * 2018-09-19 2018-12-18 王明意 A kind of wind electricity generating system and its application

Similar Documents

Publication Publication Date Title
JP4395869B2 (en) Wind power generator
US6756696B2 (en) Wind power generator
US7094018B2 (en) Wind power generator
JPWO2005116446A1 (en) Blades for vertical axis wind turbines and vertical axis wind turbines
JP2006037800A (en) Blower
US10400785B2 (en) High pitch stall resisting propeller
JP2016070089A (en) fan
JPWO2010125645A1 (en) Propeller fan
JP2006257886A (en) Three-dimensional propeller and horizontal-shaft windmill
JP2004084522A (en) Blade and wind power generator with it
JP2004124926A (en) Wind power generator
US20180100483A1 (en) Vertical Axis Wind Turbine
JP2017166324A (en) T-type leading end blade for turbine
KR100959522B1 (en) Wind power generator
JP2003028043A (en) Wind power generator
JP2009299650A (en) Straightening fluid wheel
KR20050096105A (en) Wind power generation device
JP2020033885A (en) Axial flow impeller and turbine
JPH06100193B2 (en) Blower
JP2022178342A (en) rotor blade
JP2005240681A (en) Axial flow fan
JP2013007288A (en) Wind power generator using duct exhaust air
JP2005016479A (en) Blade of rotating wheel, and rotating wheel
JP2022169117A (en) Exhaust-utilizing power generation device and rotor
Kainz et al. Near-field noise reduction of a ducted helicopter tail rotor due to a modified stator vane geometry