JP2004124243A - Hollow high rigidity member - Google Patents

Hollow high rigidity member Download PDF

Info

Publication number
JP2004124243A
JP2004124243A JP2002321797A JP2002321797A JP2004124243A JP 2004124243 A JP2004124243 A JP 2004124243A JP 2002321797 A JP2002321797 A JP 2002321797A JP 2002321797 A JP2002321797 A JP 2002321797A JP 2004124243 A JP2004124243 A JP 2004124243A
Authority
JP
Japan
Prior art keywords
steel
sintered
core
hollow member
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002321797A
Other languages
Japanese (ja)
Inventor
Shigeki Yamada
山田 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2002321797A priority Critical patent/JP2004124243A/en
Publication of JP2004124243A publication Critical patent/JP2004124243A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a high rigidity hollow member which is made of composite sintered steel comprising hard grains such as carbides and borides. <P>SOLUTION: A powdery mixture 1 is compacted with a core 2, as a center core, which has a collar part 2a and is made of a material having satisfactory machinability such as soft steel, is sintered, is thereafter subjected to extrusion working, and is subsequently subjected to drilling and finish working, so that the hollow member of the composite sintered steel having stably high fatigue strength and rigidity can inexpensively be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は剛性を要求されるエンジン部品に関し、詳しくは、硬質粒子を分散させた複合焼結鋼の中空部材に関するものである。
【0002】
【従来の技術】
近時、内燃機関やモータ等においては、振動や騒音を低減するために可動部品の剛性を高めることが望まれている。特に、内燃機関に使用するピストンピンは、燃焼爆発の圧力をピストンの頂面を介して受けるため、高い剛性と疲労強度と軽量化が要求されている。その手段として、可動部品の材料を硬質粒子として硼化物や炭化物を含有し鉄もしくは鋼をマトリックスとした複合焼結鋼とすることが提案されている。しかし、この複合焼結鋼の中空形状をHIP(Hot Isostatic Pressing:高温等方圧加圧法)で焼結すると大きく変形し、製品形状に仕上げるために多くの取代を必要とする。
【0003】
そして、焼結の状態では微細な気孔が残存しており、疲労強度や剛性が材料組成から期待される値を発揮できないので、密度を高めるため押出し加工を行うが、中実形状では中心部は真密度になるが外周部は十分な密度にならない。そのため、その押出し材料の中心部を穴あけ加工を施して中空部材を作成しても、その疲労強度や剛性は十分なものにならない。また、複合焼結鋼は炭化物や硼化物等の硬質粒子を含有するため、切削や研削の被削性が悪く生産性が悪いことと、特殊な仕上げ加工を必要とし、加工費の増大を招く(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平11−207622号公報(第3頁、[実施例1]参照)
【0005】
次に、ピストンピンはピストンとの摺動面を大きく取るため、外径を極力大きく設定する。それによる質量増加を防ぐため中空構造を採用する。したがって、剛性の高い材料を採用することにより、外径を大きくし肉厚を薄くすることが望まれる。薄肉中空部材を焼結で形成すると軸方向の中央部分で中凹みに変形するため、所定の製品寸法を得ようとすると、変形量を見込んだ多大な取代が必要になり、高剛性のピストンピンの製造費用は極めて高価となる。
【0006】
【発明が解決しようとする課題】
以上のことを鑑み本発明が解決しようとする課題は、炭化物や硼化物などの硬質粒子を含有する複合焼結鋼からなり、高剛性な中空部材を安価に提供することを課題とするものである。
【0007】
【課題を解決するための手段】
前記課題の解決を目的としてなされた請求項1の発明は、硬質粒子として硼化物、炭化物、窒化物の内の少なくとも1種を含有した鉄もしくは鋼をマトリックスとする複合焼結鋼において、原料粉末を軟鋼などの被削性によい材料でできた鍔付き中子を芯にして成形し焼結した後、押出し加工を施し、その後、穴あけ加工および仕上げ加工を施したことを特徴とする。ここでいう硬質粒子とは金属の硼化物、炭化物、窒化物、珪化物の少なくとも何れか一種で、具体的にはMo、Ti、W、Ta、Nb、V、Zr、Cr、SiとB、C、Nとの組合せからなる硼化物、炭化物、窒化物である。
【0008】
【作用】
上述のように、請求項1の発明においては、軟鋼等の被削性によい材料の鍔付きの中子を入れて焼結を行う。これは、硼化物や炭化物などの硬質粒子を含有した複合焼結鋼では、ドリル摩耗が著しく穴あけ加工が非常に困難であるため、中空加工を容易にするためである。ドリルによる穴あけだけでなく冷間鍛造機などで打ち抜いてもよい。そして、原料粉末を中空形状に成形して焼結すると軸方向の中央部で中凹みに変形するため、所定の製品寸法を得ようとすると変形量を見込んだ多大な取代が必要になるが、中子を入れることによりこの中凹みを防止する作用もある。
【0009】
また、本発明の複合焼結鋼の疲労強度や剛性を高めるため焼結材に押出し加工を施す。その時、焼結材の中心部に中子があるため、焼結部は押出し型と中子に挟まれて押出しによる応力を受けた圧縮成形となり、密度が真密度まで高められる。この場合、押出し加工の押出し比は、経験から5以上が望ましい。5未満では微細な気孔が残存し、所定の疲労強度や剛性が得られない。なお、中子の直径は焼結体の外径の50%以上であるのが望ましい。50%未満では圧縮成形の効果が少なく真密度に達しない場合がある。また、押出し時に押出しきれない最終部分が押し残りとして焼結材の径で残り、この部分は切り落とされる。この押し残りの部分に中子の鍔部をあてがうことにより、切り捨てられる部分を高価な複合焼結鋼ではなく、安価な軟鋼にするためである。
【0010】
【発明の実施の形態】
本発明の望ましい実施形態について図面を参照して説明する。図1は本発明の一実施形態に係る中空部材を製造するための工程図である。図1(a)の第1工程において、SUS430ステンレス鋼粉末(−#330)と二硼素チタン(平均粒径4μm)とを、Fe−17Cr−4.3Ti−1.9Bという組成になるよう混合された混合粉末1を、ダイ4と軟鋼(例えば、S10C)でできた鍔部2aを有する直径36mmの中子2とで形成された空間に充填し、パンチ3を用いて加圧し、中子と一体になった粉末成形体5を製作する。
【0011】
次に、図1(b)の第2工程において、粉末成形体5を、1100℃で1時間かけて真空焼結を行い外径φ60mmの焼結体6を製作する。次に、図1(c)の第3工程において、焼結体6を1100℃に加熱し、押出し比9で押出し加工を実施する。この時に、押出しの押し残り2bが中子2の鍔部2aの部分で形成するようにする。この時、外径はφ20mm、中子の直径はφ12mmとなる。次に、図1(d)の第4工程において、押出し材を所定の長さに切断し、穴あけと機械加工を施し、穴1aを完成させる。
【0012】
次に、本発明品の中空部材と、前記第1工程で中子を使用せず中実形状の焼結材を押出しした後穴あけで外径φ20mm、内径φ12mmの中空部材に加工した比較例について密度を測定し、その結果を図2に示す。本発明品は真密度になっており所定の密度が得られたが、比較例の方は十分な密度になっていない。この結果から本発明品の優位性が明らかである。
【0013】
【発明の効果】
本発明は上述のように構成されているので以下の効果を奏する。すなわち、原料粉末を軟鋼などの被削性によい材料でできた鍔付き中子を芯にして成形し、焼結した後、押出し加工を施し、その後、穴あけ加工および仕上げ加工を施したので、安定した高い疲労強度と剛性を有する複合焼結鋼の中空部材が安価に得られる。
【図面の簡単な説明】
【図1】図1(a)は本発明の一実施形態に係る中空部材を製造するための第1工程図である。
図1(b)はその第2工程図である。
図1(c)はその第3工程図である。
図1(d)はその第4工程図である。
【図2】本発明品と比較例との密度の測定結果を示す一覧表である。
【符号の説明】
1  混合粉末
2  中子
2a 鍔部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an engine component requiring rigidity, and more particularly, to a hollow member of composite sintered steel in which hard particles are dispersed.
[0002]
[Prior art]
In recent years, in internal combustion engines and motors, it has been desired to increase the rigidity of movable parts in order to reduce vibration and noise. In particular, a piston pin used in an internal combustion engine receives the pressure of a combustion explosion via the top surface of the piston, and is required to have high rigidity, fatigue strength, and light weight. As a means therefor, it has been proposed to use a composite sintered steel containing boride or carbide as a material of the movable part as hard particles and containing iron or steel as a matrix. However, when the hollow shape of the composite sintered steel is sintered by HIP (Hot Isostatic Pressing), a large deformation is required, and a large amount of allowance is required to finish the product shape.
[0003]
In the sintered state, fine pores remain, and the fatigue strength and rigidity cannot be as expected from the material composition, so extrusion is performed to increase the density, but in the case of a solid shape, the central part is The density becomes true, but the outer peripheral portion does not have a sufficient density. For this reason, even if a hollow member is formed by making a hole in the center of the extruded material, the fatigue strength and rigidity thereof are not sufficient. In addition, since composite sintered steel contains hard particles such as carbides and borides, the machinability of cutting and grinding is poor and the productivity is poor, and special finishing is required, resulting in an increase in processing costs. (For example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-11-207622 (refer to page 3, [Example 1])
[0005]
Next, the outer diameter of the piston pin is set as large as possible in order to increase the sliding surface with the piston. A hollow structure is adopted to prevent an increase in mass due to this. Therefore, it is desired to increase the outer diameter and reduce the wall thickness by using a material having high rigidity. If a thin hollow member is formed by sintering, it will be deformed into a hollow at the center part in the axial direction, so when trying to obtain a predetermined product size, a large allowance for the amount of deformation is required, and a highly rigid piston pin Is extremely expensive to manufacture.
[0006]
[Problems to be solved by the invention]
In view of the above, the problem to be solved by the present invention is to provide a highly rigid hollow member made of composite sintered steel containing hard particles such as carbides and borides at low cost. is there.
[0007]
[Means for Solving the Problems]
An object of the present invention is to provide a composite sintered steel having a matrix of iron or steel containing at least one of boride, carbide and nitride as hard particles. Is formed using a core with a flange made of a material having good machinability such as mild steel as a core, sintered, extruded, and then drilled and finished. The hard particles referred to herein are at least one of a metal boride, carbide, nitride, and silicide, and specifically, Mo, Ti, W, Ta, Nb, V, Zr, Cr, Si, B, Borides, carbides, and nitrides in combination with C and N.
[0008]
[Action]
As described above, in the invention of claim 1, sintering is performed by inserting a flanged core made of a material having good machinability such as mild steel. This is because in a composite sintered steel containing hard particles such as boride and carbide, drill wear is remarkable and drilling is extremely difficult, so that hollow processing is facilitated. Not only drilling but also cold punching may be used. Then, when the raw material powder is formed into a hollow shape and sintered, it is deformed into a hollow at the center in the axial direction, so a large allowance for the amount of deformation is required to obtain a predetermined product size, Inserting the core also has the effect of preventing this hollow.
[0009]
The sintered material is extruded to increase the fatigue strength and rigidity of the composite sintered steel of the present invention. At that time, since the core is located at the center of the sintered material, the sintered portion is compressed and formed by being pressed between the extrusion die and the core and subjected to the stress caused by the extrusion, thereby increasing the density to the true density. In this case, the extrusion ratio of the extrusion is preferably 5 or more from experience. If it is less than 5, fine pores remain, and predetermined fatigue strength and rigidity cannot be obtained. The core preferably has a diameter of 50% or more of the outer diameter of the sintered body. If it is less than 50%, the effect of compression molding is so small that it may not reach the true density. Further, a final portion which cannot be completely extruded at the time of extrusion is left as an unpressed portion with a diameter of the sintered material, and this portion is cut off. By applying the flange of the core to the remaining portion, the portion to be cut off is made of inexpensive mild steel instead of expensive composite sintered steel.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram for manufacturing a hollow member according to one embodiment of the present invention. In the first step of FIG. 1A, SUS430 stainless steel powder (-# 330) and titanium diboron (average particle size: 4 μm) are mixed so as to have a composition of Fe-17Cr-4.3Ti-1.9B. The mixed powder 1 is filled in a space formed by a die 4 and a core 2 having a diameter of 36 mm and having a flange 2a made of mild steel (for example, S10C). Then, a powder compact 5 integrated with the above is manufactured.
[0011]
Next, in the second step of FIG. 1B, the powder compact 5 is vacuum-sintered at 1100 ° C. for 1 hour to produce a sintered compact 6 having an outer diameter of 60 mm. Next, in a third step of FIG. 1C, the sintered body 6 is heated to 1100 ° C. and extruded at an extrusion ratio of 9. At this time, the unpressed portion 2b of the extrusion is formed at the flange portion 2a of the core 2. At this time, the outer diameter is φ20 mm, and the core diameter is φ12 mm. Next, in the fourth step of FIG. 1D, the extruded material is cut into a predetermined length, and drilling and machining are performed to complete the hole 1a.
[0012]
Next, the hollow member of the present invention and a comparative example in which a solid-shaped sintered material was extruded without using a core in the first step, and then formed into a hollow member having an outer diameter of 20 mm and an inner diameter of 12 mm by drilling. The density was measured and the result is shown in FIG. The product of the present invention had a true density and a predetermined density was obtained, but the density of the comparative example was not sufficient. From these results, the superiority of the product of the present invention is apparent.
[0013]
【The invention's effect】
The present invention has the following effects because it is configured as described above. That is, since the raw material powder was molded with a flanged core made of a material having good machinability such as mild steel as a core, sintered, extruded, and then drilled and finished, A hollow member of composite sintered steel having stable high fatigue strength and rigidity can be obtained at low cost.
[Brief description of the drawings]
FIG. 1A is a first process chart for manufacturing a hollow member according to an embodiment of the present invention.
FIG. 1B is a second process diagram.
FIG. 1C is a third process diagram.
FIG. 1D is a fourth process diagram.
FIG. 2 is a list showing measurement results of densities of the product of the present invention and a comparative example.
[Explanation of symbols]
1 mixed powder 2 core 2a flange

Claims (1)

硬質粒子として硼化物、炭化物、窒化物の内の少なくとも1種を含有した鉄もしくは鋼をマトリックスとする複合焼結鋼において、原料粉末を軟鋼などの被削性によい材料でできた鍔付き中子を芯にして成形し焼結した後、押出し加工を施し、その後、穴あけ加工および仕上げ加工を施したことを特徴とする硬質粒子を分散させた複合焼結鋼の中空部材。In a composite sintered steel containing iron or steel as a matrix containing at least one of borides, carbides, and nitrides as hard particles, the raw material powder is made of a material having good machinability, such as mild steel, with a flange. A hollow member of composite sintered steel in which hard particles are dispersed, characterized by being formed and sintered with a child as a core, extruded, and then subjected to drilling and finishing.
JP2002321797A 2002-09-30 2002-09-30 Hollow high rigidity member Pending JP2004124243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321797A JP2004124243A (en) 2002-09-30 2002-09-30 Hollow high rigidity member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321797A JP2004124243A (en) 2002-09-30 2002-09-30 Hollow high rigidity member

Publications (1)

Publication Number Publication Date
JP2004124243A true JP2004124243A (en) 2004-04-22

Family

ID=32289764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321797A Pending JP2004124243A (en) 2002-09-30 2002-09-30 Hollow high rigidity member

Country Status (1)

Country Link
JP (1) JP2004124243A (en)

Similar Documents

Publication Publication Date Title
KR20050060024A (en) Cemented carbide tool and method of making the same
RU2364700C2 (en) Cutter plate or head of tool for application in mining industry and construction and method of their fabrication
JP2004160644A (en) Method of forming undercut on iron-based sintered molded part
US5406825A (en) Forging die
CN106715004A (en) Composite body and method for producing same
KR970064790A (en) Preforms for complexing, composite aluminum-based metal parts compounded therewith, and methods for manufacturing the same
JP6667264B2 (en) Manufacturing method of high-rigidity iron-based sintered alloy
JP2004124243A (en) Hollow high rigidity member
JP2004323939A (en) Method for manufacturing sintered part
JP2697941B2 (en) Shaft bearing unit
US20040265405A1 (en) Hot press tool
JP2002348601A (en) Powder metallurgy method, and sintered metallic compact
JP2003136177A (en) Mold for extrusion molding cylindrical member as well as method and apparatus for molding in the same
JP2009091661A (en) Composite material, manufacturing method of the composite material and slide member using the composite material
JP4493880B2 (en) Manufacturing method of composite material
JPH02167867A (en) Ceramic joined body
JP3763796B2 (en) Manufacturing method of sintered member with inner hole with excellent coaxiality accuracy
JPH05171212A (en) Production of movable scroll
JP2000283060A (en) Gear rotor, gear rotor set, and manufacture thereof
JP2006057138A (en) Composite material and sliding member obtained by using the composite material
JP2016084534A (en) High density iron-based sintered body and manufacturing method therefor
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
Liu et al. Green machining for conventional P/M processes
JP3164143B2 (en) Manufacturing method of sintered parts
JP2008290890A (en) Method of molding cemented carbide integrally with metallic material and integrally molded member