JP2004123974A - Synthetic resin emulsion for moisture-proof processing, resin composition for moisture-proof processing, and moisture-proofing material - Google Patents
Synthetic resin emulsion for moisture-proof processing, resin composition for moisture-proof processing, and moisture-proofing material Download PDFInfo
- Publication number
- JP2004123974A JP2004123974A JP2002292301A JP2002292301A JP2004123974A JP 2004123974 A JP2004123974 A JP 2004123974A JP 2002292301 A JP2002292301 A JP 2002292301A JP 2002292301 A JP2002292301 A JP 2002292301A JP 2004123974 A JP2004123974 A JP 2004123974A
- Authority
- JP
- Japan
- Prior art keywords
- moisture
- synthetic resin
- proof processing
- proof
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
- Paints Or Removers (AREA)
- Paper (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、防湿加工用合成樹脂エマルジョン、このエマルジョンを含有してなる防湿加工用樹脂組成物、および、この防湿加工用樹脂組成物を基材上に塗布してなる防湿材に関するものである。さらに詳しくは、紙、不織布、繊維基材、木材等に塗工または含浸することによって、防湿性の層を形成させる防湿加工用樹脂組成物、特に故紙や損紙の回収が容易な防湿加工用樹脂組成物と、これに用いる防湿加工用合成樹脂エマルジョンに関し、特に包装紙の分野に適用されるものであり、防湿材としては、特に防湿紙が挙げられる。
【0002】
【従来の技術】
従来から防湿紙としては、ポリエチレンラミネ−ト紙や原紙に塩化ビニリデン樹脂を塗工した防湿コ−ト紙などがあり、防湿性能の面で良好であるため包装紙分野に適用されている。
【0003】
しかしながら、近年、資源の有効利用および公害対策の面から故紙や損紙の回収に際して、紙に再生することが容易か否かという問題がある。この観点からポリエチレンラミネート紙の場合は、樹脂層と紙との解離が困難であり、故紙や損紙を回収しても再生し難いという問題があり、代替防湿紙の開発が強く要求されている。
【0004】
この代替技術として、アクリル系エマルジョンにワックスをブレンドしてダンボ−ルに塗工する技術が提案されている(例えば、特許文献1参照。)。また、アクリル系エマルジョンにワックス系エマルジョンおよび無機系顔料を含有する塗被層が紙基材表面に設けることで、耐ブロッキング性、防滑性を改良しているものもがある(例えば、特許文献2参照。)。また、ガラス転移温度が−70〜10℃の共重合体ラテックスの存在下で、ガラス転移温度が0〜50℃の範囲にあり、上記共重合体よりも高いガラス転移温度の共重合体を生成する単量体を乳化共重合させてなる異相構造ラテックスとワックスを含む防湿性ラテックス系塗工組成物も開示されている(例えば、特許文献3参照。)。
【0005】
【特許文献1】
特公平2−1671号公報(3−4頁)
【特許文献2】
特開平8−226096号公報(2−7頁)
【特許文献3】
特開2002−60675号公報(2−5頁)
【0006】
しかし、特許文献1に記載の技術で得られる防湿紙は、耐スベリ性は満足するものであるが、防湿性は、上記塩化ビニリデン樹脂塗工紙や、ポレエチレンラミネート紙に較べて劣っている。また、特許文献2に記載の技術で得られる防湿紙は離解性に優れるが、防湿性、とくに磨耗後の防湿性において十分満足のいく性能が得られない。また、特許文献3に記載の技術は、防湿性、耐ブロッキング性、離解性に一応のバランスはとれているものの、特に耐ブロッキング性においては不十分である。そのため、ポリエチレンラミネ−ト紙以上の防湿性を付与できると共に、故紙と損紙の回収再生が容易な、即ち、再生に際し樹脂層と紙との離解性に優れるエマルジョン系の防湿加工用樹脂組成物の開発が望まれている。
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、ポリエチレンラミネ−ト紙以上の高防湿性能(JIS Z−0208)を付与することができ、再生に際し樹脂層と紙との離解性に優れ、耐ブロッキング性、耐スベリ性がよく、ワックスの脱落のない防湿材が得られる塗工安定性に優れる防湿加工用樹脂組成物、この防湿加工用樹脂組成物に含有させる防湿加工用合成樹脂エマルジョン、この防湿加工用樹脂組成物を基材上に塗布してなる防湿材を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、上記の課題を解決すべく鋭意検討の結果、次の知見を得た。
▲1▼合成樹脂エマルジョンのエマルジョン粒子の外殻が硬質であると耐ブロッキング性に優れる。▲2▼アルキル基の炭素原子数が3〜10の(メタ)アクリル酸アルキルエステル系単量体を含む重合体が、軟質で、樹脂層と紙との離解性に優れる。▲3▼エマルジョン粒子が硬質の外殻と軟質の内核を有していることが、耐ブロッキング性と離解性に加えて、防湿性も向上する。▲4▼内核/外殻が化学的に結合している高分子量エマルジョンは、磨耗後の防湿性に優れる。▲5▼前記▲1▼〜▲4▼の性能を有する合成樹脂エマルジョンにワックスと疎水性粉末とを配合した樹脂組成物の保存安定性が良好である。▲6▼前記樹脂組成物を基材に塗工した際に、ワックスの脱落がない。
【0009】
本発明は、これらの知見を基になされたものである。すなわち、本発明は、脂肪族共役ジエン系単量体(a1)とエチレン系不飽和芳香族単量体および/または(メタ)アクリル酸メチル(a2)と前記(a2)以外のカルボキシル基含有ビニル系単量体(a3)とを含む重合性単量体類(x1)、及び、アルキル基の炭素原子数が3〜10の(メタ)アクリル酸アルキルエステル系単量体(a4)を含む重合性単量体類(x2)を重合して得られる酸価が25〜180mg/KOHの重合体(A)を含有する防湿加工用合成樹脂エマルジョンであって、重合体(A)が、前記重合性単量体混合物(x1)を乳化重合して重合体(A1)を得た後、該重合体(A1)の存在下で、前記重合性単量体類(x2)を重合してなるものであることを特徴とする防湿加工用合成樹脂エマルジョンを提供する。
【0010】
また、本発明は、前記防湿加工用合成樹脂エマルジョンと、ワックス(B)と、疎水性粉末(C)を含有することを特徴とする防湿加工用樹脂組成物をも提供する。
【0011】
また、本発明は、前記防湿加工用樹脂組成物が、固形分換算で10〜50g/m2 となる塗布量で基材上に塗布されていることを特徴とする防湿材をも提供する。
【0012】
【発明の実施の形態】
前記脂肪族共役ジエン系単量体(a1)の含有率は、最終的に得られる合成樹脂エマルジョンが高分子量化し防湿性が良好となることから、0.5重量%以上が好ましい。また、離解性が良好となることから20重量%以下が好ましい。これらの中でも、分子量を増大させ、耐ブロキッング性、防湿性を向上させると共に離解性を良好に維持できる点から脂肪族共役ジエン系単量体(a1)の含有率が2〜15重量%となることが特に好ましい。
【0013】
エチレン系不飽和芳香族単量体および/または(メタ)アクリル酸メチル(a2)の含有率は、耐ブロッキング性が良好となることから10重量%以上が好ましく、また、防湿性が良好となることから60重量%以下が好ましい。
【0014】
前記重合体(A)は、酸価が25〜180mg/KOHであることが必須であり、酸価が25mg/KOH未満の場合では成膜性および離解性が、また180mg/KOHを越える場合では防湿性が、それぞれ低下するため好ましくない。上記の酸価の範囲の中でも、成膜性、離解性と防湿性のバランスに優れるものとなる点から酸価が30〜170mg/KOHであることが特に好ましい。従って、カルボキシル基含有ビニル系単量体(a3)は、前記重合体の酸価が上記の範囲となるように調整して添加することが必要である。
【0015】
前記アルキル基の炭素原子数が3〜10の(メタ)アクリル酸エステル系単量体(a4)の含有率は、成膜性、離解性が良好となることから30重量%以上が好ましく、耐ブロッキング性が良好なことから80重量%以下が好ましい。
【0016】
更に、耐ブロッキング性、造膜性に起因する防湿性に優れる点で、脂肪族共役ジエン系単量体(a1)と、エチレン系不飽和芳香族単量体および/または(メタ)アクリル酸メチル(a2)と、前記(a2)以外のカルボキシル基含有ビニル系単量体(a3)とを含む重合性単量体類(x1)を乳化重合して得られる重合体(A1)のガラス転移温度が15〜100℃であり、さらに該重合体(A1)の存在下でアルキル基の炭素原子数が3〜10の(メタ)アクリル酸アルキルエステル系単量体(a4)を含む重合性単量体類(x2)を重合して得られる重合体(A)のガラス転移温度(Tg)が−10〜30℃であり、アルキル基の炭素原子数が3〜10の(メタ)アクリル酸アルキルエステル系単量体(a4)を含む重合性単量体類(x2)を重合して得られる重合体のガラス転移温度が−55℃〜−2℃である合成樹脂エマルジョンが特に好ましい。なお、ここでいうガラス転移温度とは、下記の式で計算されるガラス転移温度である。なお、下記式のガラス転移温度は絶対温度(°K)である。
Tg−1=ΣXi・Tgi−1
ここで重合体は、i=1〜nまでのn個のモノマー成分が共重合しているとする。Xiはi番目のモノマーの重量分率で、Tgiはi番目のモノマーの単独重合体のガラス転移温度である。モノマーの単独重合体のガラス転移温度は、Polymer Handbook(4th Edition)J.Brandrup,E.H.Immergut,E.A.Grulke著(Wiley Interscience)記載の値を使用した。
【0017】
前記重合体(A1)の重合率は、特に限定されないが、重合率80重量%以上であることが好ましい。
【0018】
得られた重合体(A1)を、例えば、後述の塩基性化合物を用いてpHを6.0〜8.0に中和した後、該重合体(A1)の存在下でのアルキル基の炭素原子数が3〜10の(メタ)アクリル酸アルキルエステル系単量体(a4)を含む重合性単量体類(x2)の重合率は、脂肪族共役ジエン系単量体(a1)の残存する二重結合を主体とした架橋反応により、先述の内核−外殻の化学的結合ができ、高分子量になることから、通常98重量%以上となるようにおこなうことが好ましい。
【0019】
脂肪族共役ジエン系単量体(a1)、エチレン系不飽和芳香族単量体および/または(メタ)アクリル酸メチル(a2)、前記(a2)以外のカルボキシル基含有ビニル系単量体(a3)とを含む重合性単量体類(x1)の重合においては、さらに、後述の共重合可能な他のビニル系単量体(a5)を共重合させることができる。また、重合性単量体類(x1)の重合においては、カルボキシル基含有ビニル系単量体(a3)が存在しないと乳化重合が不安定であり、このような重合方法では安定な重合体が得られにくく、塗工安定性の良くない防湿加工用樹脂組成物となる。
【0020】
また、重合体(A1)存在下での(メタ)アクリル酸アルキルエステル系単量体(a4)を含む単量体類(x2)の重合において、共重合可能な他のビニル系単量体(a5)を共重合させることもできる。また、前記(A1)存在下で、単量体類(x2)を重合する際に、カルボキシル基含有ビニル系単量体(a3)を共重合するのは、重合系を不安定化するので好ましくない。なお、1段目反応と2段目反応において、必要に応じ用いる共重合可能な他のビニル系単量体(a5)は、同一でも、異なっていてもよく、また、1段目反応と2段目反応のどちらか一方のみで、用いてもよい。
【0021】
前記脂肪族共役ジエン系単量体(a1)としては、例えば、1,2−ブタジェン、1,3−ブタジェン、イソプレン、クロロプレン等が挙げられ、なかでも1,2−ブタジェン、1,3−ブタジェンが好ましい。
【0022】
前記エチレン系不飽和芳香族単量体および/または(メタ)アクリル酸メチル(a2)としては、スチレン、α−メチルスチレン、ビニルトルエン、クロルスチレン、2,4−ジブロモスチレン、メタクリル酸メチル、アクリル酸メチル等が挙げられ、これらの中でもスチレン、メタクリル酸メチルが特に好ましい。
【0023】
また、前記(a2)以外のカルボキシル基含有ビニル系単量体(a3)としては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸およびその無水物、フマル酸、イタコン酸、不飽和ジカルボン酸モノアルキルエステル(例えば、マレイン酸モノメチル、フマル酸モノエチル、イタコン酸モノノルマルブチル)等が挙げられる。
【0024】
更に、アルキル基の炭素原子数が3〜10の(メタ)アクリル酸アルキルエステル系単量体(a4)としては、例えば、(メタ)アクリル酸プロピル、(メタ)アルリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸オクタデシル等が挙げられ、なかでもアルキル基の炭素原子数が4〜8の(メタ)アクリル酸アルキルエステル系単量体が好ましく、高い防湿性能と離解性が得られる点から、アクリル酸−2−エチルヘキシルが特に好ましい。
【0025】
更にまた、必要に応じて併用する共重合可能な他のビニル系単量体(a5)としては、例えば、(メタ)アクリル酸エチル、(メタ)アクリロニトリル等の不飽和ニトリル;酢酸ビニル、プロピオン酸ビニル等の如きビニルエステル;塩化ビニリデン臭化ビニリデン等のビニリデンハライド;(メタ)アクリル酸−2−ヒドロキシエチレル、(メタ)アクリル酸−2−ヒドロキシプロピル等のエチレン性不飽和カルボン酸のヒドロキシアルキルエステル;(メタ)アクリル酸グリシジル等のエチレン性不飽和カルボン酸のグリシジルエステル;(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、ブトキシメチル(メタ)アクリルアミド、ジアセトンアクリルミド等が挙げられる。
【0026】
上記乳化重合をおこなう際に使用する乳化剤としては、各種の陰イオン性界面活性剤、非イオン界面活性剤、陽イオン界面活性剤、両イオン界面活性剤などを使用することができるが、これらのうちでも、防湿性をより高めるためには反応性乳化剤を用いることが好ましい。この反応性乳化剤を用いることによりソープフリー型の合成樹脂エマルジョンが得られる。
【0027】
上記反応性乳化剤としては、例えば、スチレンスルホン酸ソーダ、ビニルスルホン酸ソーダ、ビニルスルホン酸ソ−ダ、各種エチレン性不飽和基を有する乳化剤などを挙げることができる。
【0028】
また、本発明の防湿加工用合成樹脂エマルジョンとしては、後記するワックス(B)のエマルジョンとの相溶性が良好な点から、乳化剤のイオン性、非イオン性を該ワックス(B)のエマルジョンと一致させることが好ましい。例えば、ワックス(B)のエマルジョンに陰イオン性界面活性剤を使用すれば合成樹脂エマルジョンも陰イオン性界面活性剤を使用したものが好ましい。
【0029】
乳化剤の使用量としては、高い防湿性を発現させることができる点から、合成樹脂エマルジョンの固形分換算で100重量部に対して、乳化剤の有効成分が0.1〜3重量部の範囲が好ましい。
【0030】
本発明の防湿加工用合成樹脂エマルジョンを製造するに際しては、前記した単量体混合物、あるいは前記した重合体および単量体混合物を、フリ−ラジカル発生触媒、例えば過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素等の水性触媒、tert−ブチルハイドロパ−オキサイド、クメンハイドロパ−オキサイド等の油性触媒の存在下で乳化重合を行なえばよい。
【0031】
また、ラジカル重合に通常用いられる添加剤、例えば、連鎖移動剤、エチレンジアミン四酢酸(塩)、pH調整のためのアルカリ物質等を必要に応じて使用することができる。
【0032】
合成樹脂エマルジョンの最低造膜温度(MFT)としては、特に制限はないが、皮膜形成性を考慮すれば50℃以下が好ましい。
【0033】
本発明の重合体(A1)および合成樹脂エマルジョン(A)の重合反応は、重合性単量体を、それぞれの反応段階で反応容器に全量仕込んで行ってもよく、また滴下してもよい。さらに一部を仕込んだ後、残量を滴下してもよい。本発明の防湿加工用合成樹脂エマルジョンは、重合反応終了後に未中和の酸基を塩基性化合物により中和して、pHを6.0〜9.0に調整することにより安定化することができる。中和に用いる塩基性化合物は、例えば、アンモニア、トリメチルアミン、トリエチルアミン、ブチルアミン等のアルキルアミン類;ジメチルアミノエタノール、ジエタノールアミン、アミノメチプロパノール等のアルコールアミン類;モルホリン、またエチレンジアミン、ジエチレントリアミン等の多価アミン類、水酸化リチウム、水酸化カリウム、水酸化ナトリウム等の無機塩基性化合物が使用できる。本発明の合成樹脂エマルジョンは、未反応モノマーの臭気を低減する等のため、例えば、ストリッピング等の方法によって、必要とされる固形分含量に濃縮されて使用することが好ましい。
【0034】
また、重合にあたって、シード重合法をとることもでき、シード用エマルジョンの組成等は限定されるものではない。
【0035】
本発明の防湿加工用樹脂組成物は、前記防湿加工用合成樹脂エマルジョンと、ワックス(B)と、疎水性粉末(C)とを含有する樹脂組成物である。
【0036】
ここで用いるワックス(B)としては、各種のワックスが使用でき、例えば、パラフィンワックス、ポリエチレンワックス、モンタンワックス、マイクロクリスタリンワックス、カルナバワックス等が挙げられるが、なかでもパラフィンワックスが好ましい。
【0037】
上記パラフィンワックスは、石油から分離され、精製された結晶性パラフィンであり、主としてノルマルパラフィン、イソパラフィン、シクロパラフィン等の構造のものがあるが、これらのなかでもノルマルパラフィンを90重量%以上含むもの、例えば、ノルマルパラフィンを90重量%以上含み、イソパラフィンとシクロパラフィンは10重量%未満となっているものが、防湿性に優れる点で好ましい。また、パラフィンワックスの炭素原子数は、特に制限はないが、20〜35のものが好ましい。パラフィンワックスの融点は、通常40〜70℃の範囲で変化するが、本発明の防湿加工用樹脂組成物を基材に塗布した後の乾燥工程において基材にしみ込まず、ワックスが塗膜の表面にブリードし高い防湿性を発揮するためには、融点が45〜65℃であることが好ましい。さらに、パラフィンワックスの分子量は、特に制限がないが、数平均分子量で330〜480あることが防湿性を発揮する上で好ましい。
【0038】
パラフィンワックスの形態としては、固形状またはこの固形状のものを乳化分散したエマルジョン状のものが挙げられ、いずれの形態も使用することができるが、合成樹脂エマルジョン等との相溶性の点でエマルジョン状のものが好ましい。
【0039】
パラフィンワックスの市販品としては、例えば、115、120、125、130、135、140、150〔以上、日本精蝋(株)製〕等の固形状パラフィンワックス;EMUSTER 0135、0136、0384〔以上、日本精蝋(株)製〕、ハリックス WE200〔ハリマ化成(株)製〕、セロゾール 428、B−460、B−608、B−982、686〔以上、中京油脂(株)製〕等のエマルジョン状パラフィンワックスなどが挙げられる。
【0040】
上記パラフィンワックスの使用量は、合成樹脂エマルジョンの樹脂固形分100重量部に対して0.3〜10重量部の範囲が好ましいが、なかでも、融点が45〜65℃のパラフィンワックスを、合成樹脂エマルジョン(A)の樹脂固形分100重量部に対して0.3〜10重量部の範囲で用いることが、防湿性、耐スベリ性に優れる点で好ましい。
【0041】
本発明の防湿加工用樹脂組成物で用いる疎水性粉末(C)としては、各種の疎水性粉末が使用でき、例えば、無機系物質としては、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、タルク、カオリン、雲母、酸化チタン、酸化亜鉛、シリカ等の無機粉末が、有機系物質としては、ポリオレフィン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアミド樹脂、石油系ロジン、ロジンエステル等の無機粉末が、それぞれ挙げられる。なかでも、耐ブロッキング性、造膜性、防湿性に優れ、表面状態の良好な防湿材が得られる点から、平均粒子径が0.5〜50μmであるものが好ましい。これらの中でも、炭酸カルシウム粉末、水酸化アルミニウム粉末、前記有機系粉末がとくに好ましい。また、これらは互いに併用してもよい。
【0042】
また、疎水性粉末(C)の使用量は、耐ブロッキング性、皮膜形成性に優れる点から合成樹脂エマルジョンの樹脂固形分100重量部に対して5〜100重量部の範囲が好ましい。
【0043】
防湿加工用合成樹脂エマルジョンと、ワックス(B)と、疎水性粉末(C)とを組み合わせて本発明の防湿加工用樹脂組成物を得る方法としては、特に限定はなく、例えば、合成樹脂エマルジョンにワックス(B)と疎水性粉末(C)とを混合してもよいし、ワックス(B)および/または疎水性粉末(C)の存在下で防湿加工用合成樹脂エマルジョンを乳化重合してもよい。
【0044】
本発明の防湿加工用樹脂組成物は、必要に応じて、上記各成分の他に、界面活性剤、多価アルコ−ル、増粘剤等を添加することができる。
【0045】
界面活性剤および多価アルコールは、防湿紙を再生する場合の離解性を向上させるために使用するものである。
【0046】
前記界面活性剤としては、例えば、市販品として、エマルゲン105、108、109P、120、123P、705、707、709、エマ−ル、エマ−ル2F、ネオペレックスF25〔以上、花王(株)製〕、ノイゲンEA−80、120、140、142、160、170、190D、ネオコ−ルYSK、P〔以上、第一工業製薬(株)製〕等が挙げられる。
【0047】
また、多価アルコ−ルとしては、例えば、エチレングリコ−ル、ジエチレングリコ−ル、プロピレングリコ−ル、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
【0048】
増粘剤としては、例えば、ポリビニ−ルアルコ−ル、ポリアクリル酸ソ−ダ塩、及びアンモニウム塩、ポリエチレンオキサイド系増粘剤等が挙げられる。
【0049】
本発明の防湿加工用樹脂組成物を、基材に塗布又は含浸させることにより、防湿材が得られる。
【0050】
基材としては、紙、不織布、繊維基材、木材などが挙げられる。
基材に塗布し又は含浸する方法としては、各種コ−タ−による塗工、含浸機による含浸加工、サイズプレスによる加工等、多種多様な加工方法を用いることができる。
【0051】
基材への塗工量としては、乾燥性や高い防湿性を得る点で、固形分換算で10〜50g/m2となるよう塗工するのが好ましく、より好ましい塗工量は20〜30g/m2である。
【0052】
【実施例】
以下に実施例および比較例を挙げて本発明を具体的に説明する。なお、例中の部および%はすべて重量基準である。
【0053】
実施例1
攪拌装置を備えた耐圧重合容器に、水90部、反応性乳化剤S−180〔花王(株)製不飽和アルキル硫酸塩〕0.7部、エチレンジアミン四酢酸アンモニウム塩0.05部、ブタジエン5部、スチレン10部およびメタアクリル酸15部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.06部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なった。この時点での重合率は91.6%であった。この重合体のガラス転移温度は、87℃である。ついで、水56部を加え、25%アンモニア水でpHを7.7に調整した後、S−180を0.8部、エチレンジアミン四酢酸アンモニウム塩0.11部、スチレン17部およびアクリル酸2−エチルヘキシル53部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.14部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なって合成樹脂エマルジョンを得た。得られた合成樹脂エマルジョンは、重合率99.2%であった。次いで、25%アンモニア水でpHを9.0に調整し、その後水蒸気蒸留によって固形分44.5%の合成樹脂エマルジョン(以下、Em−Aという)を得た。Em−Aのガラス転移温度は、0℃、酸価は100mg/KOHであり、スチレン17部およびアクリル酸2−エチルヘキシル53部の重合体のガラス転移温度は、−26℃である。
【0054】
実施例2
攪拌装置を備えた耐圧重合容器に、水84部、S−180を1部、エチレンジアミン四酢酸アンモニウム塩0.06部、ブタジエン5部、スチレン30部およびメタクリル酸7部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.08部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なった。この時点での重合率は94.1%であった。この重合体のガラス転移温度は74℃である。ついで、水47部を加え、25%アンモニア水でpHを8.0に調整した後、ニューコール271Aを0.7部、エチレンジアミン四酢酸0.09部、スチレン23部およびアクリル酸2−エチルヘキシル35部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.12部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なって合成樹脂エマルジョンを得た。得られた合成樹脂エマルジョンは、重合率95.4%であった。次いで、25%アンモニア水でpHを9.0に調整し、その後水蒸気蒸留によって固形分44.7%の合成樹脂エマルジョン(以下、Em−Bという)を得た。Em−Bのガラス転移温度は22℃、酸価は47mg/KOHであり、スチレン17部およびアクリル酸2−エチルヘキシル53部の重合体のガラス転移温度は、−8℃である。
【0055】
実施例3
攪拌装置を備えた耐圧重合容器に、水105部、S−180を1部、エチレンジアミン四酢酸アンモニウム塩0.06部、ブタジエン12部、メタアクリル酸メチル20部およびアクリル酸10部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.08部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なった。この時点での重合率は94.8%であった。この重合体のガラス転移温度は18℃である。ついで、水41部を加え、25%アンモニアでpHを7.8に調整した後、ニューコール271A0.7部、エチレンジアミン四酢酸アンモニウム塩0.09部、メタアクリル酸メチル24部およびアクリル酸−2−エチルヘキシル34部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.12部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なって合成樹脂エマルジョンを得た。得られた合成樹脂エマルジョンは、重合率99.1%であった。次いで、25%アンモニア水でpHを9.0に調整し、その後水蒸気蒸留によって固形分44.3%の合成樹脂エマルジョン(以下、Em−Cという)を得た。Em−Cのガラス転移温度は6℃、酸価は78mg/KOHであり、メタアクリル酸メチル24部およびアクリル酸−2−エチルヘキシル34部の重合体のガラス転移温度は、−4℃である。
【0056】
実施例4
攪拌装置を備えた耐圧重合容器に、水140部、S−180を1.2部、エチレンジアミン四酢酸アンモニウム塩0.08部、ブタジエン7部、メタアクリル酸メチル23部およびメタアクリル酸20部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.1部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なった。この時点での重合率は93.7%であった。この重合体のガラス転移温度は89℃である。ついで、水27部を加え、25%アンモニアでpHを7.7に調整した後、ニューコール271Aを0.6部、エチレンジアミン四酢酸アンモニウム塩0.0.08部、アクリル酸2−エチルヘキシル50部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.1部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なって合成樹脂エマルジョンを得た。得られた合成樹脂エマルジョンは、重合率99.1%であった。次いで、25%アンモニア水でpHを9.0に調整し、その後水蒸気蒸留によって固形分44.3%の合成樹脂エマルジョン(以下、Em−Dという)を得た。Em−Dのガラス転移温度は3℃、酸価は134mg/KOHであり、アクリル酸−2−エチルヘキシル50部の重合体のガラス転移温度は、−50℃である。
【0057】
比較例1
実施例1と同じ組成で、1段で反応をおこなった。すなわち、攪拌装置を備えた耐圧重合容器に、水146部、反応性乳化剤S−180〔花王(株)製不飽和アルキル硫酸塩〕1.5部、エチレンジアミン四酢酸0.17部、ブタジエン5部、スチレン27部、アクリル酸−2−エチルヘキシル53部、およびメタアクリル酸15部を仕込み、攪拌を開始、反応温度を70℃に昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.18部を添加して反応を開始させた。8時間後80℃に昇温し、5時間後、冷却を行なって合成樹脂エマルジョンを得た。得られた合成樹脂エマルジョンは、重合率98.6%であった。次いで、25%アンモニア水でpHを9.0に調整し、その後水蒸気蒸留によって固形分50.1%の合成樹脂エマルジョン(以下、Em−eという)を得た。Em−eのガラス転移温度は0℃、酸価は100mg−KOH/gである。
【0058】
比較例2
攪拌装置を備えた耐圧重合容器に、水180部、S−180を1.7部、エチレンジアミン四酢酸アンモニウム塩0.11部、ブタジエン12部、スチレン29部およびメタアクリル酸30部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.14部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なった。この時点での重合率は97.1%であった。この重合体のガラス転移温度は48℃である。ついで、水41部を加え、25%アンモニアでpHを7.8に調整した後、ニューコール271A0.3部、エチレンジアミン四酢酸アンモニウム塩0.04部、アクリル酸−2−エチルヘキシル29部を仕込み、攪拌を開始し、昇温し、重合容器内温度が70℃に達したとき、過硫酸カリウム0.06部を添加して反応を開始させた。8時間後に80℃に昇温し、5時間後冷却を行なって合成樹脂エマルジョンを得た。得られた合成樹脂エマルジョンは、重合率99.1%であった。次いで、25%アンモニア水でpHを9.0に調整し、その後水蒸気蒸留によって固形分44.3%の合成樹脂エマルジョン(以下、Em−fという)を得た。Em−fのガラス転移温度は12℃、酸価は200mg/KOHであり、アクリル酸−2−エチルヘキシル29部の重合体のガラス転移温度は、−50℃である。
【0059】
比較例3
攪拌装置を備えた耐圧重合容器に、水72部、シード粒子の水分散体(固形分)0.45部、乳化剤エマール2Fペースト〔花王(株)製ラウリル硫酸ソ−ダ塩〕1部を仕込み、80℃に昇温し、t−ドデシルメルカプタン0.2部、α―メチルスチレンダイマー0.1部、ブタジエン29部、スチレン11部の混合物を2時間で添加し、同時に水21部、エマール2Fペースト1部、水酸化ナトリウム0.1部、過硫酸カリウム0.7部の混合物を6時間で添加し、さらに1時間反応を継続した。この重合体のガラス転移温度は−55℃である。ついで、スチレン35部、アクリル酸2−エチルヘキシル23部およびアクリル酸2部の混合物を2時間かけて添加し、さらに2時間反応を継続した。ついで、水酸化ナトリウム5%でpHを8.0に調整し、その後水蒸気蒸留によって固形分48%の合成樹脂エマルジョン(以下、Em−gという)を得た。Em−gのガラス転移温度は、−14℃、酸価は16であり。スチレン35部、アクリル酸2−エチルヘキシル23部およびアクリル酸2部の重合体のガラス転移温度は、24℃である。
【0060】
実施例5〜15および比較例4〜7
攪拌装置を備えた容器に、合成樹脂エマルジョンEm−A、Em−B、Em−C、Em−D、Em−e、Em−fまたはEm−g、パラフィンワックスエマルジョン、水酸化アルミニウムB103、B153、B303またはB53、炭酸カルシウムSS30を、それぞれが第1表〜第3表に示す固形分重量になるように配合して、本発明と比較対照用の防湿加工用組成物を得た。但し比較例7は、ポリエチレンラミネ−ト紙を用いた。
【0061】
【表1】
【0062】
【表2】
【0063】
(第1表〜第2表の脚注)
・パラフィンワックスエマルジョン;日本精蝋(株)製E−0136(軟化点61℃のパラフィンワックス含有、固形分含有率40%)
・水酸化アルミニウムB103;日本軽金属(株)製水酸化アルミニウム粉末、平均粒子径8μm。
・水酸化アルミニウムB153;日本軽金属(株)製水酸化アルミニウム粉末、平均粒子径15μm。
・水酸化アルミニウムB303;日本軽金属(株)製水酸化アルミニウム粉末、平均粒子径30μm。
・水酸化アルミニウムB53 ;日本軽金属(株)製水酸化アルミニウム粉末、平均粒子径50μm。
・炭酸カルシウムSS30;日東粉化(株)製炭酸カルシウム粉末、平均粒子径7.4μm。
【0064】
得られた本発明と比較対照用の防湿加工用樹脂組成物を、それぞれ市販の上質紙(坪量70g/m2 )に対して、マイヤ−ロットにより固形分の塗工量が25g/m2 程度となるように塗工し、熱風乾燥機にて120℃、1分間乾燥し、本発明と比較対照用の防湿塗工紙を得た。
【0065】
このようにして得られた本発明と比較対照用の防湿塗工紙と、市販ポリエチレンラミネ−ト紙について、下記の方法により、塗工量、透湿度、磨耗後の透湿度、摩擦係数、離解性、ブロッキング性を評価した。その結果を第3表〜第5表に測定の結果を示す。
【0066】
この第3表〜第4表の結果から、比較例6の防湿加工紙は、透湿度が低く、実施例5〜12の防湿加工紙の透湿度に近いが、特に耐ブロッキング性に劣る。また、比較例4および5の防湿加工紙は、透湿度が実施例5〜12の防湿加工紙の値よりいずれも高く、防湿性の点でポリエチレンラミネ−ト紙(以下、「ポリラミ紙」と略記する。)の代替防湿紙にはなり得ないことがわかる。
【0067】
第3表〜第4表の各物性は、以下の試験方法により測定して評価した。
<評価方法>
・塗工量;防湿加工紙と防湿加工用樹脂組成物の塗工前の上質紙の、1m2 当たりの重量差を求め、塗工量とした。
【0068】
・透湿度(g/m2・24hr);JIS Z−0208に準じた恒温恒湿条件下、40℃、90%RHでのカップ法で測定した。
・磨耗後の透湿度(g/m2・24hr);防湿塗工紙の塗工面と非塗工面を合わせ、荷重10kgをかけ、振盪機を用いて2分間左右に振盪を行って塗工面を磨耗した後、透湿度を上記と同じくJIS Z−0208に準じて測定した。
【0069】
・摩擦係数;摩擦係数試験法 JIS P−8147(水平法)に準じて測定した。
・離解性;50℃の温水500mlと3cm角にカットした塗工紙10gを家庭用ミキサ−ポット中に入れ、5分間攪拌して、樹脂と紙の離解性を下記の基準で目視により判定した。
○:離解性あり、 △:離解性一部なし、 ×:離解性なし。
【0070】
・ブロッキング性;防湿塗工紙の塗工面とA2コート紙を合わせ、温度35℃、湿度60%RHで1時間、40kg/cm2 にてプレスを行い、状態を下記の基準で目視により判定した。
○:ブロッキングなし、 △:ブロッキングややあり、 ×:ブロッキングあり。
【0071】
【表3】
【0072】
【表4】
【0073】
【発明の効果】
本発明の防湿加工用合成樹脂エマルジョンをワックスおよび疎水性粉末と共に含有してなる防湿加工用樹脂組成物を用いて得られる防湿材、特に防湿紙は、ポリエチレンラミネ−ト紙以上の高防湿性能(JIS Z−0208)を付与することができ、従来のポリマ−を用いた防湿塗工紙に比べて、防湿性、耐ブロキング性、耐スベリ性に優れ、摩耗後ワックスの脱落が少なく、また、樹脂と紙との離解性が良好で再パルプ化が容易である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a synthetic resin emulsion for moisture-proof processing, a resin composition for moisture-proof processing containing the emulsion, and a moisture-proof material obtained by applying the resin composition for moisture-proof processing on a substrate. More specifically, a resin composition for moisture-proof processing, which forms a moisture-proof layer by coating or impregnating paper, non-woven fabric, fiber base material, wood, etc., particularly for moisture-proof processing in which collection of waste paper and waste paper is easy. The resin composition and the synthetic resin emulsion for moisture-proof processing used therefor are applied particularly to the field of wrapping paper, and examples of the moisture-proof material include moisture-proof paper.
[0002]
[Prior art]
Conventionally, as moisture-proof paper, there are polyethylene-laminated paper and moisture-proof coated paper obtained by coating vinylidene chloride resin on base paper, and have been applied to the wrapping paper field because of their good moisture-proof performance.
[0003]
However, in recent years, from the viewpoint of effective use of resources and measures against pollution, there is a problem as to whether or not it is easy to recycle paper when collecting waste paper or waste paper. From this viewpoint, in the case of polyethylene laminated paper, there is a problem that the resin layer and the paper are difficult to dissociate, and there is a problem that it is difficult to recycle even if the waste paper or the waste paper is collected, and the development of an alternative moisture-proof paper is strongly demanded. .
[0004]
As an alternative technique, a technique has been proposed in which wax is blended with an acrylic emulsion and applied to a cardboard (see, for example, Patent Document 1). In addition, there is an acrylic emulsion in which a coating layer containing a wax emulsion and an inorganic pigment is provided on the surface of a paper base material to improve blocking resistance and slip resistance (for example, Patent Document 2). reference.). Further, in the presence of a copolymer latex having a glass transition temperature of -70 to 10 ° C, a glass transition temperature is in the range of 0 to 50 ° C, and a copolymer having a glass transition temperature higher than that of the above copolymer is produced. There is also disclosed a moisture-proof latex-based coating composition containing a latex having a heterophasic structure obtained by emulsion-copolymerizing a monomer to be formed and a wax (for example, see Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent Publication No. 2-1671 (page 3-4)
[Patent Document 2]
JP-A-8-226096 (pages 2-7)
[Patent Document 3]
JP-A-2002-60675 (pages 2-5)
[0006]
However, although the moisture-proof paper obtained by the technique described in Patent Document 1 has satisfactory slip resistance, the moisture-proof property is inferior to the vinylidene chloride resin-coated paper and the polyethylene laminated paper. . Further, the moisture-proof paper obtained by the technique described in Patent Document 2 has excellent disintegration properties, but does not provide sufficiently satisfactory performance in moisture-proof properties, particularly in moisture-proof properties after abrasion. Further, the technique described in Patent Document 3 has a tentative balance between moisture resistance, blocking resistance, and defibration, but is insufficient particularly in blocking resistance. Therefore, it is possible to provide moisture-proofing properties higher than polyethylene-laminated paper, and it is easy to collect and recycle waste paper and waste paper, that is, an emulsion-based resin composition for moisture-proof processing that is excellent in disintegration properties between the resin layer and paper during recycling. The development of is desired.
[0007]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide high moisture-proof performance (JIS Z-0208) higher than that of polyethylene-laminated paper, excellent disintegration between the resin layer and paper during regeneration, and blocking resistance, A resin composition for moisture-proof processing, which has excellent slip resistance and is excellent in coating stability to obtain a moisture-proof material with no wax falling off, a synthetic resin emulsion for moisture-proof processing to be contained in the resin composition for moisture-proof processing, An object of the present invention is to provide a moisture-proof material obtained by applying a resin composition on a substrate.
[0008]
[Means for Solving the Problems]
The present inventors have earnestly studied to solve the above-mentioned problems, and have obtained the following findings.
{Circle around (1)} When the outer shell of the emulsion particles of the synthetic resin emulsion is hard, the blocking resistance is excellent. (2) A polymer containing an alkyl ester (meth) acrylate monomer having an alkyl group having 3 to 10 carbon atoms is soft and has excellent disintegration properties between the resin layer and paper. {Circle around (3)} The fact that the emulsion particles have a hard outer shell and a soft inner core improves moisture resistance as well as blocking resistance and disintegration. {Circle around (4)} A high molecular weight emulsion in which the inner core / outer shell is chemically bonded is excellent in moisture resistance after abrasion. (5) The storage stability of a resin composition obtained by blending a wax and a hydrophobic powder with a synthetic resin emulsion having the performances of (1) to (4) above is excellent. {Circle around (6)} When the resin composition is applied to a base material, there is no wax falling off.
[0009]
The present invention has been made based on these findings. That is, the present invention provides an aliphatic conjugated diene monomer (a1), an ethylenically unsaturated aromatic monomer and / or methyl (meth) acrylate (a2) and a carboxyl group-containing vinyl other than the above (a2). Polymerizable monomer (x1) containing a monomer (a3) and a (meth) acrylic acid alkyl ester monomer (a4) having an alkyl group having 3 to 10 carbon atoms A moisture-proof synthetic resin emulsion containing a polymer (A) having an acid value of 25 to 180 mg / KOH obtained by polymerizing a water-soluble monomer (x2), wherein the polymer (A) is a polymer having the above-mentioned polymerizability. A polymer (A1) is obtained by emulsion-polymerizing the polymerizable monomer mixture (x1) and then polymerizing the polymerizable monomer (x2) in the presence of the polymer (A1). To provide a synthetic resin emulsion for moisture-proof processing, .
[0010]
The present invention also provides a resin composition for moisture-proof processing, comprising the synthetic resin emulsion for moisture-proof processing, a wax (B), and a hydrophobic powder (C).
[0011]
Further, in the present invention, the resin composition for moisture-proof processing preferably has a solid content of 10 to 50 g / m2.2The present invention also provides a moisture-proof material characterized in that the material is applied on a substrate at an application amount of.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The content of the aliphatic conjugated diene-based monomer (a1) is preferably 0.5% by weight or more from the viewpoint that the finally obtained synthetic resin emulsion has a high molecular weight and good moisture-proof property. Further, the content is preferably 20% by weight or less because the disintegration becomes good. Among these, the content of the aliphatic conjugated diene-based monomer (a1) is 2 to 15% by weight from the viewpoint that the molecular weight is increased, the blocking resistance and the moisture resistance are improved, and the disintegration property can be maintained favorably. Is particularly preferred.
[0013]
The content of the ethylenically unsaturated aromatic monomer and / or methyl (meth) acrylate (a2) is preferably 10% by weight or more because the blocking resistance is good, and the moisture resistance is good. Therefore, the content is preferably 60% by weight or less.
[0014]
It is essential that the polymer (A) has an acid value of 25 to 180 mg / KOH. When the acid value is less than 25 mg / KOH, the film formability and the disintegration property are obtained. It is not preferable because the moisture resistance decreases. Among the acid value ranges described above, it is particularly preferable that the acid value is 30 to 170 mg / KOH from the viewpoint of achieving an excellent balance between the film formability, the disintegration property, and the moisture resistance. Therefore, it is necessary to add the carboxyl group-containing vinyl monomer (a3) so that the acid value of the polymer falls within the above range.
[0015]
The content of the (meth) acrylate monomer (a4) having 3 to 10 carbon atoms in the alkyl group is preferably 30% by weight or more because the film formability and the disintegration property are improved. 80% by weight or less is preferable because of good blocking properties.
[0016]
Furthermore, the aliphatic conjugated diene monomer (a1) and the ethylenically unsaturated aromatic monomer and / or methyl (meth) acrylate are excellent in moisture resistance due to blocking resistance and film forming property. Glass transition temperature of polymer (A1) obtained by emulsion polymerization of polymerizable monomers (x1) containing (a2) and carboxyl group-containing vinyl monomer (a3) other than (a2) Is 15 to 100 ° C., and further contains a polymerizable monomer containing an alkyl (meth) acrylate monomer (a4) having 3 to 10 carbon atoms in the alkyl group in the presence of the polymer (A1). The polymer (A) obtained by polymerizing the derivative (x2) has a glass transition temperature (Tg) of −10 to 30 ° C., and the alkyl group has 3 to 10 carbon atoms. Polymerizable monomers containing the system monomer (a4) ( The glass transition temperature of the polymer obtained by polymerizing 2) is -55 ° C. ~-2 ° C. synthetic resin emulsion is particularly preferred. In addition, the glass transition temperature here is a glass transition temperature calculated by the following equation. The glass transition temperature in the following equation is an absolute temperature (° K).
Tg-1= ΣXi · Tgi-1
Here, it is assumed that the polymer has n monomer components of i = 1 to n copolymerized. Xi is the weight fraction of the i-th monomer, and Tgi is the glass transition temperature of the homopolymer of the i-th monomer. The glass transition temperature of the homopolymer of the monomer is determined by Polymer @ Handbook (4th{Edition) J. Brandrup, E .; H. Immergut, E .; A. The values described by Gulke (Wiley @ Interscience) were used.
[0017]
The polymerization rate of the polymer (A1) is not particularly limited, but is preferably 80% by weight or more.
[0018]
The obtained polymer (A1) is neutralized to a pH of 6.0 to 8.0 using, for example, a basic compound described below, and then carbonized with an alkyl group in the presence of the polymer (A1). The polymerization rate of the polymerizable monomer (x2) containing the (meth) acrylic acid alkyl ester monomer (a4) having 3 to 10 atoms is determined by the residual amount of the aliphatic conjugated diene monomer (a1). Since the above-mentioned inner core-outer shell chemical bond is formed by the cross-linking reaction mainly involving the double bond, and the molecular weight becomes high, it is usually preferable that the amount is 98% by weight or more.
[0019]
Aliphatic conjugated diene monomer (a1), ethylenically unsaturated aromatic monomer and / or methyl (meth) acrylate (a2), and carboxyl group-containing vinyl monomer other than (a2) (a3 In the polymerization of the polymerizable monomers (x1) containing (b), another copolymerizable vinyl monomer (a5) described below can be further copolymerized. In addition, in the polymerization of the polymerizable monomers (x1), emulsion polymerization is unstable unless the carboxyl group-containing vinyl monomer (a3) is present, and a stable polymer can be obtained by such a polymerization method. A resin composition for moisture-proof processing that is difficult to obtain and has poor coating stability.
[0020]
Further, in the polymerization of the monomers (x2) containing the alkyl (meth) acrylate-based monomer (a4) in the presence of the polymer (A1), another vinyl-based monomer that can be copolymerized ( a5) can also be copolymerized. Further, when the monomer (x2) is polymerized in the presence of the (A1), it is preferable to copolymerize the carboxyl group-containing vinyl monomer (a3) because the polymerization system becomes unstable. Absent. In the first-stage reaction and the second-stage reaction, other copolymerizable vinyl monomers (a5) used as necessary may be the same or different. Only one of the stage reactions may be used.
[0021]
Examples of the aliphatic conjugated diene monomer (a1) include 1,2-butadiene, 1,3-butadiene, isoprene, chloroprene, and the like. Is preferred.
[0022]
Examples of the ethylenically unsaturated aromatic monomer and / or methyl (meth) acrylate (a2) include styrene, α-methylstyrene, vinyltoluene, chlorostyrene, 2,4-dibromostyrene, methyl methacrylate, and acryl. And styrene and methyl methacrylate are particularly preferable.
[0023]
Examples of the carboxyl group-containing vinyl monomer (a3) other than (a2) include acrylic acid, methacrylic acid, crotonic acid, maleic acid and anhydrides thereof, fumaric acid, itaconic acid, and unsaturated dicarboxylic acid. Monoalkyl esters (for example, monomethyl maleate, monoethyl fumarate, mono-n-butyl itaconate) and the like can be mentioned.
[0024]
Further, examples of the (meth) acrylic acid alkyl ester-based monomer (a4) having an alkyl group having 3 to 10 carbon atoms include propyl (meth) acrylate, butyl (meth) aryl acrylate, and (meth) acrylic acid. Hexyl acid, heptyl (meth) acrylate, octyl (meth) acrylate, octadecyl (meth) acrylate, and the like. Among them, alkyl (meth) acrylates having 4 to 8 carbon atoms in the alkyl group are preferred. 2-ethylhexyl acrylate is particularly preferred from the viewpoint of obtaining high moisture-proof performance and disaggregation properties.
[0025]
Further, other copolymerizable vinyl monomers (a5) used in combination as needed include, for example, unsaturated nitriles such as ethyl (meth) acrylate and (meth) acrylonitrile; vinyl acetate, propionic acid Vinyl esters such as vinyl; vinylidene halides such as vinylidene chloride and vinylidene bromide; hydroxyalkyls of ethylenically unsaturated carboxylic acids such as (meth) acrylic acid-2-hydroxyethyler and (meth) acrylic acid-2-hydroxypropyl Esters; glycidyl esters of ethylenically unsaturated carboxylic acids such as glycidyl (meth) acrylate; (meth) acrylamide, N-methylol (meth) acrylamide, butoxymethyl (meth) acrylamide, diacetone acrylamide and the like.
[0026]
As the emulsifier used when performing the emulsion polymerization, various anionic surfactants, nonionic surfactants, cationic surfactants, zwitterionic surfactants and the like can be used. Among them, it is preferable to use a reactive emulsifier in order to further improve the moisture resistance. By using this reactive emulsifier, a soap-free type synthetic resin emulsion can be obtained.
[0027]
Examples of the reactive emulsifier include sodium styrene sulfonate, sodium vinyl sulfonate, sodium vinyl sulfonate, and emulsifiers having various ethylenically unsaturated groups.
[0028]
Further, the synthetic resin emulsion for moisture-proof processing of the present invention has the same ionic and nonionic emulsifiers as the emulsion of the wax (B) from the viewpoint of good compatibility with the wax (B) emulsion described later. Preferably. For example, if an anionic surfactant is used in the emulsion of the wax (B), the synthetic resin emulsion also preferably uses an anionic surfactant.
[0029]
The amount of the emulsifier used is preferably in the range of 0.1 to 3 parts by weight of the effective ingredient of the emulsifier, based on 100 parts by weight in terms of the solid content of the synthetic resin emulsion, from the viewpoint of exhibiting high moisture resistance. .
[0030]
In producing the synthetic resin emulsion for moisture-proof processing of the present invention, the above-mentioned monomer mixture, or the above-mentioned polymer and monomer mixture is subjected to a free radical generating catalyst such as potassium persulfate, sodium persulfate, Emulsion polymerization may be performed in the presence of an aqueous catalyst such as ammonium sulfate and hydrogen peroxide, and an oily catalyst such as tert-butyl hydroperoxide and cumene hydroperoxide.
[0031]
In addition, additives usually used for radical polymerization, for example, a chain transfer agent, ethylenediaminetetraacetic acid (salt), an alkali substance for adjusting pH, and the like can be used as needed.
[0032]
The minimum film forming temperature (MFT) of the synthetic resin emulsion is not particularly limited, but is preferably 50 ° C. or lower in consideration of film forming properties.
[0033]
The polymerization reaction of the polymer (A1) of the present invention and the synthetic resin emulsion (A) may be carried out by charging the polymerizable monomer in its entirety in a reaction vessel in each reaction step, or may be dropped. After further charging a portion, the remaining amount may be dropped. The synthetic resin emulsion for moisture-proof processing of the present invention can be stabilized by neutralizing an unneutralized acid group with a basic compound after the completion of the polymerization reaction and adjusting the pH to 6.0 to 9.0. it can. Basic compounds used for neutralization include, for example, alkylamines such as ammonia, trimethylamine, triethylamine, and butylamine; alcohol amines such as dimethylaminoethanol, diethanolamine and aminomethipropanol; morpholine, and polyamines such as ethylenediamine and diethylenetriamine. And inorganic basic compounds such as lithium hydroxide, potassium hydroxide and sodium hydroxide. The synthetic resin emulsion of the present invention is preferably used after being concentrated to a required solid content by a method such as stripping, for example, in order to reduce the odor of the unreacted monomer.
[0034]
In the polymerization, a seed polymerization method can be used, and the composition of the emulsion for seeds is not limited.
[0035]
The resin composition for moisture-proof processing of the present invention is a resin composition containing the synthetic resin emulsion for moisture-proof processing, a wax (B), and a hydrophobic powder (C).
[0036]
As the wax (B) used here, various waxes can be used, and examples thereof include paraffin wax, polyethylene wax, montan wax, microcrystalline wax, carnauba wax and the like, with paraffin wax being preferred.
[0037]
The paraffin wax is a crystalline paraffin separated and refined from petroleum, mainly having a structure of normal paraffin, isoparaffin, cycloparaffin, etc. Among them, those containing 90% by weight or more of normal paraffin, For example, those containing 90% by weight or more of normal paraffin and less than 10% by weight of isoparaffin and cycloparaffin are preferable in terms of excellent moisture-proof property. The number of carbon atoms in the paraffin wax is not particularly limited, but is preferably 20 to 35. The melting point of paraffin wax usually varies in the range of 40 to 70 ° C., but the wax does not permeate the substrate in the drying step after applying the resin composition for moisture-proof processing of the present invention to the substrate, and the wax is coated on the surface of the coating film. In order to bleed and exhibit high moisture resistance, the melting point is preferably 45 to 65 ° C. Further, the molecular weight of the paraffin wax is not particularly limited, but is preferably from 330 to 480 in terms of the number average molecular weight in order to exhibit moisture-proof properties.
[0038]
Examples of the form of the paraffin wax include a solid form and an emulsion form in which the solid form is emulsified and dispersed, and any form can be used. Is preferred.
[0039]
Commercially available paraffin waxes include, for example, solid paraffin waxes such as 115, 120, 125, 130, 135, 140, and 150 (manufactured by Nippon Seiro Co., Ltd.); EMUSTER # 0135, 0136, 0384 [and more; Emulsion such as Nippon Seiro Co., Ltd.), HARIX WE200 [Harima Chemical Co., Ltd.], CEROLOL 428, B-460, B-608, B-982, 686 [all manufactured by Chukyo Yushi Co., Ltd.] And paraffin wax.
[0040]
The amount of the paraffin wax to be used is preferably in the range of 0.3 to 10 parts by weight based on 100 parts by weight of the resin solid content of the synthetic resin emulsion. It is preferable to use the emulsion (A) in the range of 0.3 to 10 parts by weight with respect to 100 parts by weight of the resin solid content in terms of excellent moisture resistance and slip resistance.
[0041]
Various hydrophobic powders can be used as the hydrophobic powder (C) used in the moisture-proofing resin composition of the present invention. For example, as the inorganic substance, calcium carbonate, magnesium carbonate, aluminum hydroxide, talc, kaolin , Mica, titanium oxide, zinc oxide, inorganic powders such as silica, as organic substances, polyolefin resin, acrylic resin, polystyrene resin, polyester resin, polyamide resin, petroleum rosin, rosin ester and other inorganic powders, respectively. No. Among them, those having an average particle diameter of 0.5 to 50 μm are preferred from the viewpoint that a moisture-proof material having excellent blocking resistance, film-forming properties, and moisture-proof properties and a good surface condition can be obtained. Among these, calcium carbonate powder, aluminum hydroxide powder, and the above-mentioned organic powder are particularly preferable. These may be used together.
[0042]
The amount of the hydrophobic powder (C) used is preferably in the range of 5 to 100 parts by weight based on 100 parts by weight of the resin solid content of the synthetic resin emulsion from the viewpoint of excellent blocking resistance and film-forming properties.
[0043]
The method for obtaining the resin composition for moisture-proof processing of the present invention by combining the synthetic resin emulsion for moisture-proof processing, the wax (B) and the hydrophobic powder (C) is not particularly limited. The wax (B) and the hydrophobic powder (C) may be mixed, or the synthetic resin emulsion for moisture-proof processing may be emulsion-polymerized in the presence of the wax (B) and / or the hydrophobic powder (C). .
[0044]
The moisture-proof resin composition of the present invention may contain, if necessary, a surfactant, a polyhydric alcohol, a thickener, and the like, in addition to the above components.
[0045]
The surfactant and the polyhydric alcohol are used for improving the disintegration when the moisture-proof paper is regenerated.
[0046]
Examples of the surfactant include commercially available products such as Emulgen 105, 108, 109P, 120, 123P, 705, 707, 709, Emal, Emal 2F, and Neoperex F25 [all manufactured by Kao Corporation] Neugen EA-80, 120, 140, 142, 160, 170, 190D, Neocoll YSK, P [all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.] and the like.
[0047]
Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, and polypropylene glycol.
[0048]
Examples of the thickener include polyvinyl alcohol, sodium polyacrylate, ammonium salts, and polyethylene oxide thickeners.
[0049]
By applying or impregnating the substrate with the resin composition for moisture-proof processing of the present invention, a moisture-proof material is obtained.
[0050]
Examples of the substrate include paper, nonwoven fabric, fiber substrate, and wood.
As a method of applying or impregnating the substrate, various processing methods such as coating with various coaters, impregnation with an impregnation machine, and processing with a size press can be used.
[0051]
The amount of coating on the substrate is from 10 to 50 g / m in terms of solid content in terms of obtaining dryness and high moisture resistance.2It is preferable to apply so that the coating amount is more preferably 20 to 30 g / m2It is.
[0052]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. All parts and percentages in the examples are on a weight basis.
[0053]
Example 1
In a pressure-resistant polymerization vessel equipped with a stirrer, 90 parts of water, 0.7 part of reactive emulsifier S-180 (unsaturated alkyl sulfate manufactured by Kao Corporation), 0.05 part of ammonium ethylenediaminetetraacetate, 5 parts of butadiene , 10 parts of styrene and 15 parts of methacrylic acid were charged, stirring was started, and the temperature was raised. When the temperature in the polymerization vessel reached 70 ° C., 0.06 part of potassium persulfate was added to start the reaction. . After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed. At this point, the polymerization rate was 91.6%. The glass transition temperature of this polymer is 87 ° C. Then, 56 parts of water was added, and the pH was adjusted to 7.7 with 25% aqueous ammonia. Then, 0.8 part of S-180, 0.11 part of ammonium ethylenediaminetetraacetate, 17 parts of styrene and 17 parts of acrylic acid 2- 53 parts of ethylhexyl was charged, stirring was started, and the temperature was raised. When the temperature in the polymerization vessel reached 70 ° C., 0.14 parts of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed to obtain a synthetic resin emulsion. The resulting synthetic resin emulsion had a polymerization rate of 99.2%. Next, the pH was adjusted to 9.0 with 25% aqueous ammonia, and then a synthetic resin emulsion (hereinafter referred to as Em-A) having a solid content of 44.5% was obtained by steam distillation. Em-A has a glass transition temperature of 0 ° C. and an acid value of 100 mg / KOH, and a polymer of 17 parts of styrene and 53 parts of 2-ethylhexyl acrylate has a glass transition temperature of −26 ° C.
[0054]
Example 2
In a pressure-resistant polymerization vessel equipped with a stirrer, 84 parts of water, 1 part of S-180, 0.06 part of ethylenediaminetetraacetic acid ammonium salt, 5 parts of butadiene, 30 parts of styrene and 7 parts of methacrylic acid were charged, and stirring was started. When the temperature in the polymerization vessel reached 70 ° C., 0.08 parts of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed. At this point, the polymerization rate was 94.1%. The glass transition temperature of this polymer is 74 ° C. Then, 47 parts of water was added, and the pH was adjusted to 8.0 with 25% aqueous ammonia. Then, 0.7 parts of Newcol 271A, 0.09 parts of ethylenediaminetetraacetic acid, 23 parts of styrene and 35 parts of 2-ethylhexyl acrylate were added. Then, stirring was started, the temperature was raised, and when the temperature in the polymerization vessel reached 70 ° C., 0.12 part of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed to obtain a synthetic resin emulsion. The resulting synthetic resin emulsion had a polymerization rate of 95.4%. Next, the pH was adjusted to 9.0 with 25% aqueous ammonia, and thereafter, a synthetic resin emulsion (hereinafter, referred to as Em-B) having a solid content of 44.7% was obtained by steam distillation. The glass transition temperature of Em-B is 22 ° C., the acid value is 47 mg / KOH, and the glass transition temperature of a polymer of 17 parts of styrene and 53 parts of 2-ethylhexyl acrylate is −8 ° C.
[0055]
Example 3
105 parts of water, 1 part of S-180, 0.06 parts of ammonium ethylenediaminetetraacetate, 12 parts of butadiene, 20 parts of methyl methacrylate and 10 parts of acrylic acid were charged into a pressure-resistant polymerization vessel equipped with a stirrer, and stirred. And when the temperature in the polymerization vessel reached 70 ° C., 0.08 part of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed. At this point, the polymerization rate was 94.8%. The glass transition temperature of this polymer is 18 ° C. Then, 41 parts of water was added, and the pH was adjusted to 7.8 with 25% ammonia. Then, 0.7 parts of Newcol 271A, 0.09 part of ethylenediaminetetraacetic acid ammonium salt, 24 parts of methyl methacrylate, and acrylic acid-2 were added. -Ethylhexyl (34 parts) was charged, stirring was started, and the temperature was raised. When the temperature in the polymerization vessel reached 70 ° C, 0.12 parts of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed to obtain a synthetic resin emulsion. The resulting synthetic resin emulsion had a polymerization rate of 99.1%. Next, the pH was adjusted to 9.0 with 25% aqueous ammonia, and thereafter, a synthetic resin emulsion (hereinafter referred to as Em-C) having a solid content of 44.3% was obtained by steam distillation. The glass transition temperature of Em-C is 6 ° C., the acid value is 78 mg / KOH, and the glass transition temperature of a polymer of 24 parts of methyl methacrylate and 34 parts of 2-ethylhexyl acrylate is −4 ° C.
[0056]
Example 4
In a pressure-resistant polymerization vessel equipped with a stirrer, 140 parts of water, 1.2 parts of S-180, 0.08 part of ethylenediaminetetraacetic acid ammonium salt, 7 parts of butadiene, 23 parts of methyl methacrylate and 20 parts of methacrylic acid were placed. Charge and stirring were started, and the temperature was raised. When the temperature in the polymerization vessel reached 70 ° C., 0.1 part of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed. At this point, the polymerization rate was 93.7%. The glass transition temperature of this polymer is 89 ° C. Then, 27 parts of water was added, and the pH was adjusted to 7.7 with 25% ammonia. Was charged, stirring was started, and the temperature was raised. When the temperature in the polymerization vessel reached 70 ° C., 0.1 part of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed to obtain a synthetic resin emulsion. The resulting synthetic resin emulsion had a polymerization rate of 99.1%. Next, the pH was adjusted to 9.0 with 25% aqueous ammonia, and thereafter, a synthetic resin emulsion (hereinafter referred to as Em-D) having a solid content of 44.3% was obtained by steam distillation. The glass transition temperature of Em-D is 3 ° C., the acid value is 134 mg / KOH, and the glass transition temperature of a polymer of 50 parts of 2-ethylhexyl acrylate is −50 ° C.
[0057]
Comparative Example 1
The reaction was performed in one stage with the same composition as in Example 1. That is, 146 parts of water, 1.5 parts of reactive emulsifier S-180 (unsaturated alkyl sulfate manufactured by Kao Corporation), 0.17 parts of ethylenediaminetetraacetic acid, 5 parts of butadiene were placed in a pressure-resistant polymerization vessel equipped with a stirrer. , 27 parts of styrene, 53 parts of 2-ethylhexyl acrylate, and 15 parts of methacrylic acid, stirring was started, the reaction temperature was raised to 70 ° C, and when the temperature in the polymerization vessel reached 70 ° C, The reaction was started by adding 0.18 parts of potassium sulfate. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed to obtain a synthetic resin emulsion. The resulting synthetic resin emulsion had a polymerization rate of 98.6%. Next, the pH was adjusted to 9.0 with 25% aqueous ammonia, and then a synthetic resin emulsion having a solid content of 50.1% (hereinafter referred to as Em-e) was obtained by steam distillation. Em-e has a glass transition temperature of 0 ° C. and an acid value of 100 mg-KOH / g.
[0058]
Comparative Example 2
In a pressure-resistant polymerization vessel equipped with a stirrer, 180 parts of water, 1.7 parts of S-180, 0.11 part of ammonium ethylenediaminetetraacetate, 12 parts of butadiene, 29 parts of styrene and 30 parts of methacrylic acid are charged and stirred. Was started and the temperature was raised. When the temperature in the polymerization vessel reached 70 ° C., 0.14 parts of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed. At this point, the polymerization rate was 97.1%. The glass transition temperature of this polymer is 48 ° C. Then, 41 parts of water was added, and the pH was adjusted to 7.8 with 25% ammonia. Then, 0.3 parts of Newcol 271A, 0.04 part of ammonium ethylenediaminetetraacetate, and 29 parts of 2-ethylhexyl acrylate were charged. Stirring was started and the temperature was raised. When the temperature in the polymerization vessel reached 70 ° C., 0.06 parts of potassium persulfate was added to start the reaction. After 8 hours, the temperature was raised to 80 ° C., and after 5 hours, cooling was performed to obtain a synthetic resin emulsion. The resulting synthetic resin emulsion had a polymerization rate of 99.1%. Next, the pH was adjusted to 9.0 with 25% aqueous ammonia, and thereafter, a synthetic resin emulsion (hereinafter referred to as Em-f) having a solid content of 44.3% was obtained by steam distillation. The glass transition temperature of Em-f is 12 ° C., the acid value is 200 mg / KOH, and the polymer of 29 parts of 2-ethylhexyl acrylate has a glass transition temperature of −50 ° C.
[0059]
Comparative Example 3
A pressure-resistant polymerization vessel equipped with a stirrer is charged with 72 parts of water, 0.45 part of an aqueous dispersion (solid content) of seed particles, and 1 part of emulsifier Emal 2F paste (sodium lauryl sulfate manufactured by Kao Corporation). Then, a mixture of 0.2 part of t-dodecylmercaptan, 0.1 part of α-methylstyrene dimer, 29 parts of butadiene and 11 parts of styrene was added over 2 hours, and simultaneously 21 parts of water and 2 parts of Emal 2F were added. A mixture of 1 part of paste, 0.1 part of sodium hydroxide, and 0.7 part of potassium persulfate was added in 6 hours, and the reaction was further continued for 1 hour. The glass transition temperature of this polymer is -55C. Then, a mixture of 35 parts of styrene, 23 parts of 2-ethylhexyl acrylate and 2 parts of acrylic acid was added over 2 hours, and the reaction was continued for another 2 hours. Subsequently, the pH was adjusted to 8.0 with 5% sodium hydroxide, and then a synthetic resin emulsion (hereinafter referred to as Em-g) having a solid content of 48% was obtained by steam distillation. Em-g had a glass transition temperature of -14 ° C and an acid value of 16. The glass transition temperature of a polymer of 35 parts of styrene, 23 parts of 2-ethylhexyl acrylate and 2 parts of acrylic acid is 24 ° C.
[0060]
Examples 5 to 15 and Comparative Examples 4 to 7
In a container equipped with a stirrer, a synthetic resin emulsion Em-A, Em-B, Em-C, Em-D, Em-e, Em-f or Em-g, paraffin wax emulsion, aluminum hydroxide B103, B153, B303 or B53 and calcium carbonate SS30 were blended so as to have the solid content weights shown in Tables 1 to 3, respectively, to obtain a moisture-proof composition for the present invention and a comparative control. However, in Comparative Example 7, polyethylene laminated paper was used.
[0061]
[Table 1]
[0062]
[Table 2]
[0063]
(Tables 1 and 2 footnotes)
-Paraffin wax emulsion; E-0136 manufactured by Nippon Seiro Co., Ltd. (containing paraffin wax having a softening point of 61 ° C, solid content of 40%)
Aluminum hydroxide B103: Aluminum hydroxide powder manufactured by Nippon Light Metal Co., Ltd., average particle diameter 8 μm.
-Aluminum hydroxide B153: Aluminum hydroxide powder manufactured by Nippon Light Metal Co., Ltd., average particle diameter 15 µm.
-Aluminum hydroxide B303: Aluminum hydroxide powder manufactured by Nippon Light Metal Co., Ltd., average particle diameter 30 µm.
-Aluminum hydroxide B53 #: Aluminum hydroxide powder manufactured by Nippon Light Metal Co., Ltd., average particle diameter 50 m.
-Calcium carbonate SS30: Calcium carbonate powder manufactured by Nitto Powder Co., Ltd., average particle diameter 7.4 µm.
[0064]
Each of the obtained resin composition for moisture-proof processing of the present invention and the control for comparison was coated with a commercially available high-quality paper (basis weight: 70 g / m2).2Iv), the coating amount of solid content is 25 g / m2, And dried with a hot air drier at 120 ° C. for 1 minute to obtain a moisture-proof coated paper for comparison with the present invention.
[0065]
The moisture-proof coated paper for comparison with the present invention thus obtained and the commercially available polyethylene-laminated paper were coated according to the following methods, by the following methods: coating amount, moisture permeability, moisture permeability after abrasion, friction coefficient, disaggregation. The properties and the blocking properties were evaluated. The results are shown in Tables 3 to 5.
[0066]
From the results shown in Tables 3 and 4, the moisture-proof paper of Comparative Example 6 has a low moisture permeability and is close to the moisture permeability of the moisture-proof papers of Examples 5 to 12, but is particularly inferior in blocking resistance. Further, the moisture-proof papers of Comparative Examples 4 and 5 have higher moisture permeability than the values of the moisture-proof papers of Examples 5 to 12, and are polyethylene laminate paper (hereinafter referred to as “poly-laminate paper”) in terms of moisture resistance. It can be seen that it cannot be used as an alternative moisture-proof paper.
[0067]
Each physical property in Tables 3 and 4 was measured and evaluated by the following test methods.
<Evaluation method>
・ Coating amount: 1 m of high-quality paper before coating with moisture-proof paper and resin composition for moisture-proof processing2The difference in weight per square was determined, and the result was taken as the coating amount.
[0068]
・ Moisture permeability (g / m2・ 24 hr): Measured by a cup method at 40 ° C. and 90% RH under a constant temperature and humidity condition according to JIS Z-0208.
・ Moisture permeability after wear (g / m224 hr); The coated surface and the non-coated surface of the moisture-proof coated paper were combined, a load of 10 kg was applied, and the coated surface was shaken for 2 minutes with a shaker to the left and right, and then the moisture permeability was measured in the same manner as described above. It measured according to Z-0208.
[0069]
-Coefficient of friction: Measured according to the friction coefficient test method JIS P-8147 (horizontal method).
Disintegration: 500 ml of 50 ° C warm water and 10 g of coated paper cut into 3 cm squares were placed in a household mixer pot, stirred for 5 minutes, and the disintegration of the resin and paper was visually determined according to the following criteria. .
:: Disintegrating, Δ: Partially disintegrating, Δ ×: No disintegrating.
[0070]
-Blocking property: 40 kg / cm for 1 hour at a temperature of 35 ° C and a humidity of 60% RH by combining the coated surface of the moisture-proof coated paper and the A2 coated paper.2Pressing was performed in, and the state was visually determined based on the following criteria.
:: no blocking, △: slightly blocking,: blocking.
[0071]
[Table 3]
[0072]
[Table 4]
[0073]
【The invention's effect】
The moisture-proof material obtained by using the moisture-proof resin composition containing the moisture-proof synthetic resin emulsion of the present invention together with a wax and a hydrophobic powder, particularly a moisture-proof paper, has a higher moisture-proof performance than polyethylene-laminated paper ( JIS (Z-0208), which is superior in moisture resistance, blocking resistance, and slip resistance as compared with a moisture-proof coated paper using a conventional polymer, and has less loss of wax after abrasion. Good disintegration between resin and paper and easy repulping.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002292301A JP4171971B2 (en) | 2002-10-04 | 2002-10-04 | Synthetic resin emulsion for moisture-proof processing, resin composition for moisture-proof processing and moisture-proof material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002292301A JP4171971B2 (en) | 2002-10-04 | 2002-10-04 | Synthetic resin emulsion for moisture-proof processing, resin composition for moisture-proof processing and moisture-proof material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004123974A true JP2004123974A (en) | 2004-04-22 |
JP4171971B2 JP4171971B2 (en) | 2008-10-29 |
Family
ID=32283599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002292301A Expired - Fee Related JP4171971B2 (en) | 2002-10-04 | 2002-10-04 | Synthetic resin emulsion for moisture-proof processing, resin composition for moisture-proof processing and moisture-proof material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4171971B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114316117A (en) * | 2020-09-30 | 2022-04-12 | 四川赛华睿科技有限责任公司 | Fluorine-free treating agent and oil-resistant paper product |
-
2002
- 2002-10-04 JP JP2002292301A patent/JP4171971B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114316117A (en) * | 2020-09-30 | 2022-04-12 | 四川赛华睿科技有限责任公司 | Fluorine-free treating agent and oil-resistant paper product |
CN114316117B (en) * | 2020-09-30 | 2023-09-26 | 四川赛华睿科技有限责任公司 | Fluorine-free treating agent and oil-proof paper product |
Also Published As
Publication number | Publication date |
---|---|
JP4171971B2 (en) | 2008-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4507043B2 (en) | Antifouling coating composition for wallpaper | |
JP4222085B2 (en) | Synthetic resin emulsion for moisture-proof processing, resin composition for moisture-proof processing and moisture-proof material | |
JP2004123974A (en) | Synthetic resin emulsion for moisture-proof processing, resin composition for moisture-proof processing, and moisture-proofing material | |
JPH11217409A (en) | Copolymer latex | |
JP4636296B2 (en) | Moisture-proof resin composition and moisture-proof material | |
JP2003049398A (en) | Synthetic resin emulsion for dampproofing, resin composition for dampproofing, and dampproofing material | |
JP4859022B2 (en) | Diene copolymer latex composition for corrugated cardboard adhesive | |
JP2004300273A (en) | Synthetic resin emulsion for moistureproofing use, resin composition for moistureproofing use, and moistureproof material | |
JP2002294561A (en) | Synthetic resin emulsion for antifouling finish of nonwoven fabric wall paper, antifouling finishing agent for nonwoven fabric wall paper, and nonwoven fabric wall paper | |
JP3700037B2 (en) | Moisture-proof composition | |
JP2008175888A (en) | Electrophotographic sheet and electrophotographic pressure-sensitive adhesive sheet | |
JP2000087012A (en) | Moistureproofing resin composition and moistureproof material | |
JP2001254296A (en) | Resin composition for moisture-proofing treatment and moisture-proofing material | |
JP3475571B2 (en) | Method of producing copolymer latex for coated paper for offset printing | |
JPH1053996A (en) | Coating composition for moisture proofing coat and coated paper by using the same | |
JP5457923B2 (en) | Copolymer latex composition, paper coating composition and coated paper | |
JP4038707B2 (en) | Antifouling agent | |
JP2003082288A (en) | Stain-resistant coating material composition for wall paper | |
JP4501184B2 (en) | Moisture-proof resin composition and moisture-proof material | |
JP2933984B2 (en) | Method for producing diene-based copolymer latex | |
JP2005213669A (en) | Moisture-proof paper | |
JP3803780B2 (en) | Moisture-proof resin composition | |
JP3144874B2 (en) | Copolymer latex | |
JP4633350B2 (en) | High moisture-proof coating composition | |
JP2846411B2 (en) | Production method of new copolymer latex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Effective date: 20050705 Free format text: JAPANESE INTERMEDIATE CODE: A7421 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070712 |
|
A521 | Written amendment |
Effective date: 20070906 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080620 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20080730 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20110822 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20110822 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20110822 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20110822 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20110822 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |