JP2004123920A - Composition for heat-shrinkable plastic material, heat-shrinkable film and heat-shrinkable tube - Google Patents

Composition for heat-shrinkable plastic material, heat-shrinkable film and heat-shrinkable tube Download PDF

Info

Publication number
JP2004123920A
JP2004123920A JP2002290393A JP2002290393A JP2004123920A JP 2004123920 A JP2004123920 A JP 2004123920A JP 2002290393 A JP2002290393 A JP 2002290393A JP 2002290393 A JP2002290393 A JP 2002290393A JP 2004123920 A JP2004123920 A JP 2004123920A
Authority
JP
Japan
Prior art keywords
heat
melting point
shrinkable
plastic material
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002290393A
Other languages
Japanese (ja)
Inventor
Takanobu Suzuki
鈴木 隆信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2002290393A priority Critical patent/JP2004123920A/en
Publication of JP2004123920A publication Critical patent/JP2004123920A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition comprising a fluororesin, which makes it possible to manufacture a heat-shrinkable plastic material excellent particularly in moldability and recyclability, and a heat-shrinkable film or tube manufactured by using the composition. <P>SOLUTION: The composition for a heat-shrinkable plastic material contains at least one fluororesin having a melting point as low as 120°C or lower, and at least one fluororesin having a melting point as high as 150°C or higher. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電線・ケーブル、コンデンサー、電子部品、薬品容器・栓、壁、ドア、フレーム用パイプ等の被覆材に用いられる熱収縮性プラスチック材料用組成物に関するものであり、特に成形性とリサイクル性に優れた含フッ素樹脂エラストマーからなる熱収縮性フィルムまたは熱収縮性チューブに関するものである。
【0002】
【従来の技術】
フッ素系樹脂は、耐熱性、耐油性、耐薬品性、電気絶縁性および難燃性に優れていることから、各種熱収縮性フィルムまたはチューブの材料として使用されている。熱収縮性フィルムまたはチューブは、電線・ケーブル、コンデンサー、電子部品、薬品容器・栓、壁、ドア、フレーム用パイプ等の被覆材として用いられるものであり、熱を加えることにより簡単に被覆加工ができるものである。
【0003】
上述のように、フッ素系樹脂は、熱収縮性フィルムまたはチューブに最適な材料であるが、これらのフッ素系樹脂の中でも融点が高いものを用いると、強靭性は高いが、熱収縮時の温度が高くなるため使い勝手が悪く、製造効率にも劣るという問題があり、また、融点が低いものを用いると、使い勝手や製造効率は改善されるが、逆に強靭性や耐寒性が低下するという問題があった。このため、フッ素系樹脂を2種類以上をブレンドして用いたり、改質や架橋を施すことにより、これらの課題を総合的に解決しようとする試みがなされてきた。
【0004】
例えば、特許文献1には、テトラフルオロエチレン−プロピレン系共重合体に、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体と、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレンをブレンドし、これに所定量の架橋助剤を加えてなる熱収縮性チューブ用組成物が提供されている。特許文献1によれば、この熱収縮性チューブ用組成物を用いることにより、強靭性と耐寒性に優れ、かつ収縮温度が低く作業性の良好な熱収縮チューブを得ることが可能となる。
【0005】
しかしながら、特許文献1に開示された技術は、所定量の架橋助剤を添加してフッ素系樹脂の架橋反応性を高めることにより熱収縮性チューブの強靭性や延伸性を良好なものとすることができるが、その一方で、架橋度が上がることにより柔軟性に劣る場合やリサイクル性が損なわれやすいという問題があった。
【0006】
なお、本発明においてリサイクル性というときは、被覆加工を施した後の被覆材を基材から剥離したものを原料として、配合混練、成形、延伸を行うことにより、再度同様の作用・効果を有する熱収縮性プラスチック材料を製造できることをいうものとする。
【0007】
また、成形性というときは、製造工程において溶融押出成形、延伸成形のやり易さをいう。
【0008】
このように、従来のフッ素系樹脂を用いた熱収縮性プラスチック材料用組成物では、硬度が高いために柔軟性に劣る場合や、高温で加工する必要があるためフィルムやチューブの製造において製造効率が低下する場合や、収縮被覆温度が高いため加工方法や被覆基材を制限される場合や、引き裂き強度が低いために改質を施したり、耐熱性・延伸性を改良するために架橋を施すことによりリサイクル性が損なわれる場合があり、これらの総合的な解決が切に望まれていた。
【特許文献1】
特開平9−31285号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたものであり、特に成形性とリサイクル性に優れた熱収縮性プラスチック材料を製造することのできる、フッ素系樹脂からなる熱収縮性プラスチック材料用組成物を提供すること、およびこれを用いて製造される熱収縮性フィルムまたはチューブを提供することを主目的とする。
【0010】
【課題が解決するための手段】
上記目的を達するために、本発明は、請求項1に記載するように、融点が120℃以下の低融点フッ素系樹脂を少なくとも1種類と、融点が150℃以上の高フッ素系樹脂を少なくとも1種類有することを特徴とする熱収縮性プラスチック材料用組成物を提供する。
【0011】
融点が120℃以下の低融点フッ素系樹脂と、融点が150℃以上の高融点フッ素系樹脂をそれぞれ少なくとも1種類ずつブレンドすることにより、成形温度や延伸温度を適度なものとすることができるので、熱収縮性プラスチック材料の製造効率が良好なものとなる。また、延伸温度領域の弾性率の温度依存性を低くすることができるので、延伸成形性にも優れたものとなる。さらには、得られる熱収縮性プラスチック材料を基材に被覆する際の収縮加工性やリサイクル性にも優れたものとなる。
【0012】
上記請求項1に記載の発明においては、請求項2に記載するように、上記低融点フッ素系樹脂および上記高融点フッ素系樹脂がそれぞれ、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、ビニリデンフルオリド重合体、テトラフルオロエチレン−ビニリデンフルオリド共重合体、ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体、およびテトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体からなる群から選ばれるフッ素系樹脂であることが好ましい。低融点フッ素系樹脂と、高融点フッ素系樹脂とをそれぞれ、上記列挙したフッ素系樹脂の中から選択することにより、熱収縮性プラスチック材料の製造効率および延伸成形性がより優れたものとなるからである。また、得られる熱収縮性プラスチック材料を基材に被覆する際の収縮加工性やリサイクル性がより優れたものとなるからである。
【0013】
上記請求項1または請求項2に記載の発明においては、請求項3に記載するように、上記低融点フッ素系樹脂の配合量が60重量%〜95重量%の範囲内であり、上記高融点フッ素系樹脂の配合量が5重量%〜40重量%の範囲内であることが好ましい。このように低融点フッ素系樹脂と、高融点フッ素系樹脂の配合量比を調整することにより、延伸成形性がさらに優れたものとなるからである。
【0014】
本発明は、請求項4に記載するように、請求項1から請求項3までのいずれかの請求項に記載の熱収縮性プラスチック材料用組成物をフィルム状に成形し、延伸し、冷却固定してなる熱収縮性フィルムを提供する。このような熱収縮性フィルムは収縮被覆温度が適度なものとなるため、加工方法や被覆基材を制限されることなく使用することができる。また、このような熱収縮性フィルムは収縮加工性に優れたものとなるので、基材に被覆する際には、厚さ不良や収縮むらの発生が抑制された密着性に優れた被覆膜を形成することができる。また、このような熱収縮性フィルムは、架橋度を高めるなどの処理がなされていないので、リサイクル性にも優れたものとなる。
【0015】
本発明は、請求項5に記載するように、請求項1から請求項3までのいずれかの請求項に記載の熱収縮性プラスチック材料用組成物をチューブ状に成形し、延伸し、冷却固定してなる熱収縮性チューブを提供する。このような熱収縮性チューブは収縮被覆温度が適度なものとなるため、加工方法や被覆基材を制限されることなく使用することができる。また、このような熱収縮性チューブは収縮加工性に優れたものとなるので、基材に被覆する際には、厚さ不良や収縮むらの発生が抑制された密着性に優れた被覆膜を形成することができる。また、このような熱収縮性チューブは、架橋度を高めるなどの処理がなされていないので、リサイクル性にも優れたものとなる。
【0016】
【発明の実施の形態】
本発明は、熱収縮性プラスチック材料用組成物、熱収縮性フィルムおよび熱収縮性チューブを含むものである。以下、それぞれについて説明する。
【0017】
A.熱収縮性プラスチック材料用組成物
本発明の熱収縮性プラスチック材料用組成物は、融点が120℃以下の低融点フッ素系樹脂を少なくとも1種類と、融点が150℃以上の高融点フッ素系樹脂を少なくとも1種類有することを特徴とするものである。
【0018】
ここで本発明において、フッ素系樹脂の融点は、DSC(示差走査熱分析)による測定により得られた値を用いる。
【0019】
本発明の熱収縮性プラスチック材料用組成物は、使用するフッ素系樹脂の融点を上記の範囲内にすることにより、成形温度や延伸温度を適度なものとすることができるので、熱収縮性プラスチック材料の製造効率を良好なものとすることができるという利点を有する。また、延伸温度領域の弾性率の温度依存性を低くすることができるので、延伸成形性にも優れたものとすることができるという利点を有する。さらには、得られる熱収縮性プラスチック材料を基材に被覆する際の収縮加工性やリサイクル性にも優れたものとすることができるという利点を有する。
【0020】
以下、このような本発明の熱収縮性プラスチック材料用組成物について、原料、製造条件、および得られる熱収縮性プラスチック材料用組成物に分けて、それぞれ詳細に説明する。
【0021】
(1)原料
本発明の熱収縮性プラスチック材料用組成物の原料は、融点が120℃以下の低融点フッ素系樹脂、融点が150℃以上の高融点フッ素系樹脂および添加剤を含むものである。以下、それぞれについて説明する。
【0022】
a.低融点フッ素系樹脂
本発明に用いられる低融点フッ素系樹脂は、上述したように融点が120℃以下のものであれば用いることができるが、中でも60℃〜120℃の範囲内のものを用いることが好ましい。
【0023】
このような熱収縮性プラスチック材料用組成物の原料として用いられる低融点フッ素系樹脂は、フッ素含有モノマーを1種類以上含有するポリマーであり、上記範囲内の融点を有するものであれば特に限定されるものではない。
【0024】
しかしながら、熱収縮性フィルムまたはチューブなどの熱収縮性プラスチック材料を製造する際の製造効率、延伸成形性、および熱収縮性プラスチック材料を基材に被覆する際の収縮加工性やリサイクル性の点からは、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、ビニリデンフルオリド重合体、テトラフルオロエチレン−ビニリデンフルオリド共重合体、ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体、およびテトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体からなる群から選ばれるフッ素系樹脂であることが好ましい。
【0025】
上記例示したフッ素系樹脂が複数のモノマーの共重合体である場合には、各モノマーの共重合比は特に限定されるものではなく、融点が上述した範囲のものであれば、いかなる共重合比のものであってもよい。
【0026】
本発明の熱収縮性プラスチック材料用組成物においては、このような低融点フッ素系樹脂を少なくとも1種類配合したものであるが、2種類以上を配合する場合には、それらのフッ素系樹脂の組み合わせや配合量比は特に限定されるものではなく、上記列挙した中から選択される2種類以上のフッ素系樹脂の組み合わせたものでもよく、上記列挙した中から選ばれる少なくとも1種類とその他のフッ素系樹脂とを組み合わせたものでもよく、適宜選択して配合することができる。
【0027】
b.高融点フッ素系樹脂
本発明において熱収縮性プラスチック材料用組成物の原料として用いられる高融点フッ素系樹脂は、融点が150℃以上のフッ素系樹脂であれば用いることができるが、中でも160℃〜280℃の範囲内のものが好適に用いられる。
【0028】
本発明におけるこのような高融点フッ素系樹脂は、フッ素含有モノマーを1種類以上含有するポリマーであり、上記範囲の融点を有するものであれば特に限定されるものではないが、上述した低融点フッ素系樹脂で列挙したフッ素系樹脂群の中から選ばれるものが好適に用いられる。
【0029】
本発明の熱収縮性プラスチック材料用組成物においては、このような高融点フッ素系樹脂を少なくとも1種類配合したものであるが、2種類以上を配合する場合には、それらのフッ素系樹脂の組み合わせや配合量比は特に限定されるものではなく、上記列挙した中から選択される2種類以上のフッ素系樹脂の組み合わせたものでもよく、上記列挙した中から選ばれる少なくとも1種類とその他のフッ素系樹脂とを組み合わせたものでもよく、適宜選択して配合することができる。
【0030】
c.添加剤
本発明の熱収縮性プラスチック材料用組成物においては、柔軟性や延伸成形性を損なわない範囲内で、各種添加剤を適宜配合してもよい。本発明に用いることのできる添加剤としては、例えば、耐候性安定剤、耐熱安定剤、帯電防止剤、アンチブロッキング剤、滑剤、核剤、可塑剤、架橋剤、老化防止剤、塩酸吸収剤、酸化防止剤、目やに防止剤等が挙げられる。
【0031】
(2)製造条件
a.原料の配合量比
本発明において、原料の配合量比は特に限定されるものではなく、得られる熱収縮性プラスチック材料の用途等により適宜選択することができるが、延伸成形性がさらに優れたものとなることから、低融点フッ素系樹脂の配合量が60重量%〜95重量%であり、高融点フッ素系樹脂の配合量が5重量%〜40重量%であることが好ましい。
【0032】
低融点フッ素系樹脂の配合量が60重量%未満であると、延伸応力が大きくなって、延伸倍率を上げにくくなるため延伸性が低下する点で好ましくなく、また95重量%を超えると、延伸応力が小さくなり過ぎ、延伸倍率が不安定となり延伸性が低下する点で好ましくないからである。
【0033】
また、高融点フッ素系樹脂の配合量が5重量%未満であると、収縮加工時や収縮加工後の使用時の耐熱性が低下し、熱変形しやすい点で好ましくなく、また40重量%を超えると、延伸応力が過大となる点で好ましくないからである。
【0034】
b.配合混練
本発明においては、上記低融点フッ素系樹脂、高融点フッ素系樹脂、および各種添加剤を配合混練して熱収縮性プラスチック材料用組成物を製造する。配合混練は、例えば、押出成形法やカレンダー成形法など、公知の方法により行うことができる。
【0035】
配合混練する際の温度条件としては、本発明に用いられるフッ素系樹脂のうち最も融点が高いものの該融点以上で行うのが好ましい。これより低くなると、原料の混練が均一になりにくい場合があるからである。
【0036】
押出成形法を用いる際の押出機は、1軸押出機または2軸押出機のいずれを用いることもできる。
【0037】
(3)熱収縮性プラスチック材料用組成物
本発明の熱収縮性プラスチック材料用組成物は、このように低融点フッ素系樹脂と、高融点フッ素系樹脂とを配合するものである。本発明においては、低温側の融点を有する低融点フッ素系樹脂の該融点が120℃以下であることにより、熱収縮性プラスチック材料の成形温度や延伸温度を適度な範囲にすることができるので製造効率が良好となり、また、熱収縮性プラスチック材料を使用する際の収縮被覆温度が適度なものとなるので、加工方法や被覆基材を制限されることなく使用することができる。
【0038】
また、高温側の融点を有する高融点フッ素系樹脂の該融点が150℃未満とすると、延伸温度領域における低温側の融点を有するフッ素系樹脂の該融点と高温側の融点を有するフッ素系樹脂の該融点間の弾性率が低くなったり、弾性率の温度依存性が大きくなって温度分布による延伸が不安定化するため、厚さ不良や収縮むらが発生しやすくなる場合があるが、本発明においては、高温側の融点を有する高融点フッ素系樹脂の該融点を150℃以上とすることにより、延伸成形性を良好なものとすることができるという利点を有する。
【0039】
(4)熱収縮性プラスチック材料
本発明の熱収縮性プラスチック材料用組成物を、成形し、延伸し、冷却固定して熱収縮性プラスチック材料を製造する方法としては公知の方法を使用できる。以下、それぞれの工程について述べる。
【0040】
a.成形
成形は、上述のようにして押出機やカレンダーにより配合混練した後、Tダイやチューブダイなどを用いて押出法によりフィルム状またはチューブ状などに成形することができる。
【0041】
b.延伸
延伸は、上述のようにしてフィルム状またはチューブ状などに成形した後、チューブラー法やテンター法などにより行うことができる。延伸倍率は、1.1倍〜4倍の範囲内であることが好ましい。この範囲内で延伸することにより、安定した延伸加工を行うことができ、必要な収縮特性を得ることができる。
また、延伸は1軸延伸または2軸延伸のいずれで行うことも可能である。延伸後の熱収縮性プラスチック材料の膜厚は、用いる用途に応じて適宜設定されるものではあるが、一般的には0.02mm〜1mmの範囲内とされる。
【0042】
なお、成形、延伸は、低温側の融点を有する低融点フッ素系樹脂の該融点以上、高温側の融点を有する高融点フッ素系樹脂の該融点未満の温度で行うことが好ましい。
【0043】
c.冷却固定
本発明の熱収縮性プラスチック材料用組成物は、上述のようにして延伸した後直ちに、低融点フッ素系樹脂の融点未満においてアニールし、冷却固定することにより、熱収縮性プラスチック材料を得ることができる。
【0044】
このようにして得られる熱収縮性プラスチック材料は、収縮被覆温度が適度な範囲のものとなり、また収縮加工性にも優れているため、加工方法や被覆基材を制限されることなく、厚さ不良や収縮むらが抑制された密着性に優れた被覆膜を形成することができる。
【0045】
B.熱収縮性フィルム
本発明の熱収縮性フィルムは、上述のようにして、本発明の熱収縮性プラスチック材料用組成物をフィルム状に成形し、延伸し、冷却固定してなるものである。
【0046】
このようにして製造される熱収縮性フィルムは、収縮被覆温度が適度な範囲のものとなり、収縮加工性にも優れたものであるので、本発明の熱収縮性フィルムを使用する際には、加工方法や被覆基材を制限されることなく、いかなる基材に対しても簡便な方法で、厚さ不良や収縮むらの抑制された密着性に優れた被覆膜を形成することができる。
【0047】
本発明の熱収縮性フィルムの膜厚は、一般的には0.02mm〜1mmの範囲内、好ましくは0.05mm〜0.5mmの範囲内とされる。
【0048】
このような本発明の熱収縮性フィルムは、被覆基材に被せた後、フィルム表面が高融点フッ素系樹脂の融点以下、低融点フッ素系樹脂の融点以上の温度になるように加熱炉の温度、加熱時間を設定して加熱することにより、被覆加工することができる。
【0049】
C.熱収縮性チューブ
本発明の熱収縮性チューブは、上述のようにして、本発明の熱収縮性プラスチック材料用組成物をチューブ状に成形し、延伸し、冷却固定してなるものである。
【0050】
このようにして製造される熱収縮性チューブは、上記熱収縮性フィルムと同様に、加工方法や被覆基材を制限されることなく、いかなる基材に対しても簡便な方法で、密着性に優れた被覆膜を形成することができる。
【0051】
本発明の熱収縮性チューブの膜厚は、一般的には、0.02mm〜1mmの範囲内、好ましくは0.05mm〜0.5mmの範囲内とされる。
【0052】
本発明の熱収縮性チューブもまた、上記熱収縮性フィルムと同様の方法で被覆基材に被覆加工することができる。
【0053】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0054】
【実施例】
以下に実施例を示して、本発明をさらに具体的に説明する。
【0055】
(実施例1)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に40/20/40重量%で融点が115℃のフッ素系樹脂50重量%と、エチレン−テトラフルオロエチレンの交互共重合体に、融点が260℃のフッ素系樹脂50重量%とを2軸押出機にて配合混練し、ヘッドに取り付けた300℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて125℃のクリップ式テンターで加熱した後、該シートの流れ方向の直行方向に2倍延伸を試みたところ連続して1時間安定して行うことができ、続いて冷却後巻き取り、150μmの収縮性フィルムを得た。
【0056】
該フィルムを用いて円周方向が延伸方向となるよう筒状に溶断ヒートシールし、径の大きさが0.7倍のアルミニウム製コンデンサーに被せ、200℃の加熱炉を20秒間通過させ、フィルムの被覆状態を観察したところ、コンデンサー表面に密着してきれいに被覆されていた。一方、該フィルムを細かく粉砕したものが全体の30重量%となるようにして上記同様の成形条件にて同様のフィルムの採取を試みたところ、安定して外観上大差ないフィルムが得られた。なお、各々延伸成形性、収縮加工性、リサイクル性を3段階評価(良○、ほぼ良△、悪×)とすると順に△○○であった。なお、延伸成形性、収縮加工性、リサイクル性の評価は、以下のようにして行った。
【0057】
<延伸成形性>
○  安定して加工できる。
△  不安定ではあるが加工できる。
×  加工できない。
【0058】
<収縮加工性>
○  全体として美しく被覆できる。
△  端部のうき、しわがわずかに見られる。
×  端部のうき、しわが著しいまたは肩はずれが生じる。
【0059】
<リサイクル性>
○  安定して押出加工、延伸加工できる。
△  不安定ながら押出加工、延伸加工できる。
×  加工できない。
【0060】
なお、上記収縮加工性の評価は、円柱状の被包装物に包装した際の端部の包装状態を目視により観察したものである。
【0061】
(実施例2)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に40/20/40重量%で融点が115℃のフッ素系樹脂50重量%と、ビニリデンフルオリド重合体で融点が180℃のフッ素系樹脂50重量%とを2軸押出機にて配合混練し、ヘッドに取り付けた260℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて実施例1と同様に延伸を試みたところ2時間の安定操業を確認し、同様の熱収縮性フィルムを得た。該フィルムを用いて実施例1と同様の収縮加工性、リサイクル性を評価したところ同様の状況で、各項目3段階評価は順に○○○であった。
【0062】
(実施例3)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に40/20/40重量%で融点が115℃のフッ素系樹脂50重量%と、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に60/20/20重量%で融点が165℃のフッ素系樹脂50重量%とを2軸押出機にて配合混練し、ヘッドに取り付けた260℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて実施例1と同様に延伸を試みたところ2時間の安定操業を確認し、同様の熱収縮性フィルムを得た。該フィルムを用いて実施例1と同様の収縮加工性、リサイクル性を評価したところ同様の状況で、各項目3段階評価は順に○○○であった。
【0063】
(実施例4)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に30/20/50重量%で融点が85℃のフッ素系樹脂50重量%と、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に60/20/20重量%で融点が165℃のフッ素系樹脂50重量%とを2軸押出機にて配合混練し、ヘッドに取り付けた260℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて実施例1と同様の延伸を試みたところ2時間の安定操業を確認し、同様の熱収縮性フィルムを得た。該フィルムを用いて実施例1と同様の収縮加工性、リサイクル性を評価したところ、同様の状況で、各項目3段階評価は順に○○○であった。
【0064】
(実施例5)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に40/20/40重量%で融点が115℃のフッ素系樹脂50重量%と、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に60/20/20重量%で融点が165℃のフッ素系樹脂35重量%と、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体の共重合比が順に、85/15重量%で融点が270℃のフッ素系樹脂15重量%とを2軸押出機にて配合混練しヘッドに取り付けた310℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて実施例1と同様に延伸を試みたところ同様に1時間の安定操業を確認し、同様の熱収縮性フィルムを得た。該フィルムを用いて実施例1と同様の収縮加工性、リサイクル性を評価したところ、同様の状況で各項目3段階評価は順に△○○であった。
【0065】
(実施例6)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に40/20/40重量%で融点が115℃のフッ素系樹脂85重量%とテトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に60/20/20重量%で融点が165℃のフッ素系樹脂15重量%を2軸押出機にて配合混練し、ヘッドに取り付けた260℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて実施例1と同様に延伸を試みたところ3時間超の安定操業を確認し、同様の熱収縮性フィルムを得た。該フィルムを用いて実施例1と同様の収縮加工性、リサイクル性を評価したところ同様の状況で、各項目3段階評価は順に○○○であった。
【0066】
(比較例1)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に60/20/20重量%で融点が165℃のフッ素系樹脂50重量%と、エチレン−テトラフルオロエチレンの交互共重合体に融点が260℃のフッ素系樹脂50重量%を2軸押出機にて配合混練し、ヘッドに取り付けた260℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて実施例1と同様に延伸を試みたところ安定操業を20分までしか確認できずに同様の熱収縮性フィルムを得た。該フィルムを用いて実施例1と同様の収縮加工性、リサイクル性を評価したところ、後者は同様に良好な状況であったが、前者は収縮不足できれいに密着して被覆せず、各項目3段階評価は順に△(〜×)×○であった。
【0067】
(比較例2)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に30/20/50重量%で融点が85℃のフッ素系樹脂50重量%と、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に40/20/40重量%で融点が115℃のフッ素系樹脂50重量%を2軸押出機にて配合混練し、ヘッドに取り付けた260℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて実施例1と同様に延伸を試みたところ安定操業を20分未満しか確認できずに同様の熱収縮性フィルムを得た。該フィルムを用いて実施例1と同様の収縮加工性、リサイクル性を評価したところ、後者は同様に良好な状況であったが、前者は収縮して密着はするものの収縮の位置によるばらつきがあり、気泡を所々に噛んだ状態で被覆され、各項目3段階評価は順に×△○であった。
【0068】
(比較例3)
テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体の共重合比が順に40/20/40重量%で融点が115℃のフッ素樹脂を一軸押出機にて、ヘッドに取り付けた260℃設定のTダイにより厚さ300μmのシートを採取した。該シートを引き続いて電子線照射装置で加速電圧300kV、吸収線量30Mradの条件にて照射架橋し、続いて実施例1と同様に延伸を試みたところ同様に1時間の安定操業を確認し同様の熱収縮性フィルムを得た。該フィルムを用いて実施例1と同様の収縮加工性、リサイクル性を評価したところ、前者はきれいに被覆でき良好であったが、後者は未溶融状の粒がきれいに分散しないばかりかすじ状の外観不良や穴あきが発生して延伸加工までに至らず、各項目3段階評価は順に△○×であった。
【0069】
【発明の効果】
本発明の熱収縮性プラスチック材料用組成物は、融点が120℃以下の低融点フッ素系樹脂と融点が150℃以上の高融点フッ素系樹脂をそれぞれ少なくとも1種類ずつ配合することにより、成形温度や延伸温度を適度なものとすることができるため製造効率が良好なものとなるという効果を奏する。また、延伸温度領域の弾性率の温度依存性を低くすることができるため、延伸成形性にも優れたものとなるという効果を奏する。
【0070】
このような熱収縮性プラスチック材料用組成物を用いてなる熱収縮性プラスチック材料は、収縮被覆温度を適度なものとすることができるので加工方法や被覆基材を制限されることなく使用することができ、また収縮加工性に優れているので、厚さ不良や収縮むらの発生が抑制された密着性に優れた被覆膜を形成することができるという効果を奏する。さらに、このようにして得られる本発明の熱収縮性フィルムまたはチューブなどの熱収縮性プラスチック材料は、リサイクル性にも優れたものとなるという効果を奏する。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composition for a heat-shrinkable plastic material used for covering materials such as electric wires / cables, capacitors, electronic components, chemical containers / plugs, walls, doors, pipes for frames, etc., and particularly relates to moldability and recycling. The present invention relates to a heat-shrinkable film or heat-shrinkable tube made of a fluorine-containing resin elastomer having excellent properties.
[0002]
[Prior art]
BACKGROUND ART Fluorine-based resins are used as materials for various heat-shrinkable films or tubes because of their excellent heat resistance, oil resistance, chemical resistance, electrical insulation, and flame retardancy. Heat-shrinkable films or tubes are used as coating materials for wires, cables, capacitors, electronic components, chemical containers and stoppers, walls, doors, pipes for frames, etc., and can be easily coated by applying heat. You can do it.
[0003]
As described above, the fluorine-based resin is the most suitable material for the heat-shrinkable film or tube. However, when a material having a high melting point is used among these fluorine-based resins, the toughness is high, but the temperature at the time of heat shrinkage is high. In addition, there is a problem that the usability is low and the production efficiency is inferior because of the high melting point.The use of a material with a low melting point improves the usability and production efficiency, but decreases the toughness and cold resistance. was there. For this reason, attempts have been made to solve these problems comprehensively by blending two or more kinds of fluorine-based resins, or by modifying or crosslinking.
[0004]
For example, in Patent Document 1, a vinylidene fluoride-hexafluoropropylene copolymer and a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene are blended with a tetrafluoroethylene-propylene-based copolymer, and a predetermined amount is blended with the blend. The composition for heat shrinkable tubing which added the crosslinking aid of this is provided. According to Patent Literature 1, by using the composition for a heat-shrinkable tube, it is possible to obtain a heat-shrinkable tube having excellent toughness and cold resistance, a low shrinkage temperature, and good workability.
[0005]
However, the technique disclosed in Patent Literature 1 is to improve the toughness and stretchability of a heat-shrinkable tube by adding a predetermined amount of a crosslinking aid to increase the crosslinking reactivity of a fluororesin. On the other hand, on the other hand, there is a problem that flexibility is inferior due to an increase in the degree of crosslinking and that recyclability is easily impaired.
[0006]
In the present invention, when the term "recyclability" is used, a material obtained by peeling a coating material after coating from a substrate is used as a raw material, and the same action and effect is obtained again by mixing, kneading, molding and stretching. It means that a heat-shrinkable plastic material can be manufactured.
[0007]
In addition, the term “formability” refers to ease of performing melt extrusion molding and stretch molding in a manufacturing process.
[0008]
As described above, in the conventional composition for a heat-shrinkable plastic material using a fluorine-based resin, when the hardness is low, the flexibility is inferior, or when it is necessary to process at a high temperature, the production efficiency in the production of a film or a tube is increased. Is reduced, or the processing method or coated base material is restricted due to high shrinkage coating temperature, or modification is performed due to low tear strength, and crosslinking is performed to improve heat resistance and stretchability. As a result, recyclability may be impaired, and a comprehensive solution to these problems has been urgently desired.
[Patent Document 1]
JP-A-9-31285
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is particularly capable of producing a heat-shrinkable plastic material having excellent moldability and recyclability. It is a main object to provide a heat-shrinkable film or tube manufactured using the same.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides, as described in claim 1, at least one kind of low melting point fluororesin having a melting point of 120 ° C. or less and at least one high melting point fluororesin having a melting point of 150 ° C. or more. Kind Code: A1 A composition for a heat-shrinkable plastic material is provided.
[0011]
By blending at least one each of a low melting point fluororesin having a melting point of 120 ° C. or lower and a high melting point fluororesin having a melting point of 150 ° C. or higher, the molding temperature and the stretching temperature can be made appropriate. Thus, the production efficiency of the heat-shrinkable plastic material is improved. In addition, since the temperature dependency of the elastic modulus in the stretching temperature region can be reduced, the stretch moldability is also excellent. Further, the heat-shrinkable plastic material obtained is excellent in shrinkage workability and recyclability when the base material is coated.
[0012]
In the first aspect of the present invention, as described in the second aspect, the low-melting-point fluororesin and the high-melting-point fluororesin are respectively a tetrafluoroethylene-hexafluoropropylene copolymer and an ethylene-tetrafluoroethylene copolymer. From fluoroethylene copolymer, vinylidene fluoride polymer, tetrafluoroethylene-vinylidene fluoride copolymer, hexafluoropropylene-vinylidene fluoride copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer Preferably, it is a fluororesin selected from the group consisting of: By selecting the low melting point fluorine-based resin and the high melting point fluorine-based resin, respectively, from the above-listed fluorine-based resins, the production efficiency and the stretch moldability of the heat-shrinkable plastic material become more excellent. It is. Further, it is because shrinkage workability and recyclability when the obtained heat shrinkable plastic material is coated on the base material are more excellent.
[0013]
In the first or second aspect of the present invention, as described in the third aspect, the blending amount of the low melting point fluororesin is in a range of 60% by weight to 95% by weight, and the high melting point It is preferable that the compounding amount of the fluororesin is in the range of 5% by weight to 40% by weight. By adjusting the mixing ratio of the low-melting-point fluorine-based resin and the high-melting-point fluorine-based resin as described above, the stretch moldability is further improved.
[0014]
According to the present invention, as described in claim 4, the composition for a heat-shrinkable plastic material according to any one of claims 1 to 3 is formed into a film, stretched, and cooled and fixed. A heat-shrinkable film is provided. Since such a heat-shrinkable film has an appropriate shrink coating temperature, it can be used without any limitation on a processing method or a coated substrate. In addition, since such a heat-shrinkable film has excellent shrinkability, when coated on a substrate, a coating film having excellent adhesion with reduced thickness and uneven shrinkage is suppressed. Can be formed. Further, such a heat-shrinkable film has not been subjected to a treatment such as increasing the degree of cross-linking, and thus has excellent recyclability.
[0015]
According to the present invention, as described in claim 5, the composition for a heat-shrinkable plastic material according to any one of claims 1 to 3 is formed into a tube, stretched, and cooled and fixed. A heat-shrinkable tube is provided. Since such a heat-shrinkable tube has an appropriate shrink coating temperature, it can be used without any limitation on a processing method or a coated substrate. In addition, since such a heat-shrinkable tube has excellent shrinkability, when coated on a base material, a coating film having excellent adhesion with reduced thickness and uneven shrinkage is suppressed. Can be formed. Further, since such a heat-shrinkable tube is not subjected to a treatment such as increasing the degree of cross-linking, the tube has excellent recyclability.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention includes a composition for a heat-shrinkable plastic material, a heat-shrinkable film, and a heat-shrinkable tube. Hereinafter, each will be described.
[0017]
A. Composition for heat-shrinkable plastic material
The composition for a heat-shrinkable plastic material of the present invention is characterized by having at least one kind of low-melting-point fluororesin having a melting point of 120 ° C. or less and at least one kind of high-melting-point fluororesin having a melting point of 150 ° C. or more. Is what you do.
[0018]
Here, in the present invention, as the melting point of the fluororesin, a value obtained by measurement by DSC (differential scanning calorimetry) is used.
[0019]
The composition for a heat-shrinkable plastic material of the present invention can make the molding temperature and the stretching temperature appropriate by setting the melting point of the fluorine-based resin used in the above range. This has the advantage that the production efficiency of the material can be improved. Further, since the temperature dependency of the elastic modulus in the stretching temperature region can be reduced, there is an advantage that the stretch moldability can be excellent. Furthermore, there is an advantage that the heat-shrinkable plastic material obtained can be excellent in shrinkage workability and recyclability when the base material is coated.
[0020]
Hereinafter, such a composition for a heat-shrinkable plastic material of the present invention will be described in detail for each of raw materials, production conditions, and the obtained composition for a heat-shrinkable plastic material.
[0021]
(1) Raw materials
The raw material of the composition for a heat-shrinkable plastic material of the present invention contains a low-melting fluororesin having a melting point of 120 ° C or lower, a high-melting fluororesin having a melting point of 150 ° C or higher, and additives. Hereinafter, each will be described.
[0022]
a. Low melting point fluorine resin
As described above, the low melting point fluorine-based resin used in the present invention can be used as long as it has a melting point of 120 ° C. or lower, and among them, it is preferable to use a resin in the range of 60 ° C. to 120 ° C.
[0023]
The low-melting-point fluororesin used as a raw material of such a composition for a heat-shrinkable plastic material is a polymer containing one or more types of fluorine-containing monomers, and is not particularly limited as long as it has a melting point within the above range. Not something.
[0024]
However, from the viewpoints of production efficiency when manufacturing heat-shrinkable plastic materials such as heat-shrinkable films or tubes, stretch moldability, and shrinkage processability and recyclability when coating heat-shrinkable plastic materials onto substrates. Is a tetrafluoroethylene-hexafluoropropylene copolymer, an ethylene-tetrafluoroethylene copolymer, a vinylidene fluoride polymer, a tetrafluoroethylene-vinylidene fluoride copolymer, a hexafluoropropylene-vinylidene fluoride copolymer, And a fluororesin selected from the group consisting of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.
[0025]
When the fluororesin exemplified above is a copolymer of a plurality of monomers, the copolymerization ratio of each monomer is not particularly limited, and any copolymerization ratio may be used as long as the melting point is within the above-described range. It may be.
[0026]
In the composition for a heat-shrinkable plastic material of the present invention, at least one kind of such a low-melting-point fluororesin is blended. When two or more kinds are blended, a combination of those fluororesins is used. The mixing ratio is not particularly limited, and may be a combination of two or more kinds of fluorine-based resins selected from the above-listed ones, and at least one kind selected from the above-listed ones and another fluorine-based resin. A resin may be combined with a resin, and may be appropriately selected and blended.
[0027]
b. High melting point fluorine resin
In the present invention, the high melting point fluorine-based resin used as a raw material of the composition for a heat-shrinkable plastic material can be used as long as it has a melting point of 150 ° C or more, and particularly within a range of 160 ° C to 280 ° C. Is preferably used.
[0028]
Such a high melting point fluorine-based resin in the present invention is a polymer containing one or more kinds of fluorine-containing monomers, and is not particularly limited as long as it has a melting point in the above range. Those selected from the fluororesin group listed in the series resins are preferably used.
[0029]
In the composition for a heat-shrinkable plastic material of the present invention, at least one kind of such a high-melting-point fluorine-based resin is blended. When two or more kinds are blended, a combination of those fluorine-based resins is used. The mixing ratio is not particularly limited, and may be a combination of two or more kinds of fluorine-based resins selected from the above-listed ones, and at least one kind selected from the above-listed ones and another fluorine-based resin. A resin may be combined with a resin, and may be appropriately selected and blended.
[0030]
c. Additive
In the composition for a heat-shrinkable plastic material of the present invention, various additives may be appropriately blended as long as the flexibility and the stretch formability are not impaired. Examples of the additives that can be used in the present invention include, for example, weathering stabilizers, heat stabilizers, antistatic agents, antiblocking agents, lubricants, nucleating agents, plasticizers, crosslinking agents, antioxidants, hydrochloric acid absorbers, An antioxidant, an eye-opening inhibitor and the like can be mentioned.
[0031]
(2) Manufacturing conditions
a. Raw material blending ratio
In the present invention, the compounding ratio of the raw materials is not particularly limited, and can be appropriately selected depending on the application of the obtained heat-shrinkable plastic material, but since the stretch moldability becomes more excellent, It is preferable that the blending amount of the low melting point fluororesin is 60% by weight to 95% by weight, and the blending amount of the high melting point fluororesin is 5% by weight to 40% by weight.
[0032]
If the blending amount of the low melting point fluororesin is less than 60% by weight, the stretching stress is increased, and it is difficult to increase the stretching ratio. This is because the stress becomes too small, the stretching ratio becomes unstable, and the stretching property decreases, which is not preferable.
[0033]
Further, when the blending amount of the high melting point fluororesin is less than 5% by weight, heat resistance at the time of shrinkage processing or at the time of use after shrinkage processing is lowered, which is not preferable in that it is easily deformed by heat. If it exceeds, the stretching stress is not preferable because it becomes excessive.
[0034]
b. Compounding and kneading
In the present invention, the composition for a heat-shrinkable plastic material is produced by blending and kneading the low-melting-point fluororesin, the high-melting-point fluororesin, and various additives. The compounding and kneading can be performed by a known method such as an extrusion molding method and a calendar molding method.
[0035]
Regarding the temperature conditions for compounding and kneading, it is preferable that the temperature is higher than the melting point of the fluororesin used in the present invention, which is the highest. If the temperature is lower than this, the kneading of the raw materials may be difficult to be uniform.
[0036]
When using the extrusion molding method, any of a single-screw extruder and a twin-screw extruder can be used.
[0037]
(3) Composition for heat-shrinkable plastic material
The composition for a heat-shrinkable plastic material of the present invention contains the low-melting-point fluororesin and the high-melting-point fluororesin as described above. In the present invention, since the melting point of the low-melting-point fluorine-based resin having a melting point on the low-temperature side is 120 ° C. or lower, the molding temperature and the stretching temperature of the heat-shrinkable plastic material can be controlled to appropriate ranges. Efficiency is improved, and the shrink coating temperature when using the heat-shrinkable plastic material becomes appropriate, so that the processing method and the coated substrate can be used without any limitation.
[0038]
Further, when the melting point of the high melting point fluorine-based resin having a melting point on the high temperature side is less than 150 ° C., the melting point of the fluorine-based resin having a melting point on the low temperature side in the stretching temperature region and the melting point of the fluorine-based resin having a melting point on the high temperature side are considered. Since the elastic modulus between the melting points becomes low or the temperature dependency of the elastic modulus becomes large and stretching due to temperature distribution becomes unstable, poor thickness or uneven shrinkage may easily occur. Has the advantage that the stretchability can be improved by setting the melting point of the high melting point fluorine-based resin having a melting point on the high temperature side to 150 ° C. or higher.
[0039]
(4) Heat-shrinkable plastic material
Known methods can be used as a method for producing the heat-shrinkable plastic material by molding, stretching, and cooling and fixing the composition for a heat-shrinkable plastic material of the present invention. Hereinafter, each step will be described.
[0040]
a. Molding
Molding can be carried out by kneading and kneading with an extruder or a calender as described above, and then forming into a film or tube shape by an extrusion method using a T-die or a tube die.
[0041]
b. Stretching
Stretching can be performed by a tubular method, a tenter method, or the like after forming into a film shape or a tube shape as described above. The stretching ratio is preferably in the range of 1.1 times to 4 times. By stretching within this range, stable stretching can be performed, and required shrinkage characteristics can be obtained.
The stretching can be performed by either uniaxial stretching or biaxial stretching. The thickness of the heat-shrinkable plastic material after stretching is appropriately set according to the intended use, but is generally in the range of 0.02 mm to 1 mm.
[0042]
The molding and stretching are preferably performed at a temperature equal to or higher than the melting point of the low-melting-point fluororesin having a lower melting point and lower than the melting point of the high-melting-point fluororesin having a higher melting point.
[0043]
c. Cooling fixed
Immediately after stretching as described above, the composition for a heat-shrinkable plastic material of the present invention can be annealed at a temperature lower than the melting point of the low-melting-point fluorine-based resin, and fixed by cooling to obtain a heat-shrinkable plastic material. it can.
[0044]
The heat-shrinkable plastic material obtained in this manner has a shrinkable coating temperature within an appropriate range, and also has excellent shrinkage workability, so that the thickness is not limited by the processing method and the coated base material. It is possible to form a coating film having excellent adhesion with suppressed defects and uneven shrinkage.
[0045]
B. Heat shrinkable film
The heat-shrinkable film of the present invention is obtained by molding the heat-shrinkable plastic material composition of the present invention into a film, stretching, and cooling and fixing the composition as described above.
[0046]
The heat-shrinkable film produced in this manner has a shrinkable coating temperature in an appropriate range and also has excellent shrinkability, so that when using the heat-shrinkable film of the present invention, It is possible to form a coating film having excellent adhesion with suppressed thickness defects and uneven shrinkage by a simple method with respect to any substrate without any limitation on the processing method and the coating substrate.
[0047]
The thickness of the heat shrinkable film of the present invention is generally in the range of 0.02 mm to 1 mm, preferably in the range of 0.05 mm to 0.5 mm.
[0048]
Such a heat-shrinkable film of the present invention, after covering the coated substrate, the temperature of the heating furnace so that the film surface is a temperature below the melting point of the high melting point fluorine-based resin, above the melting point of the low melting point fluorine-based resin. The coating process can be performed by setting the heating time and heating.
[0049]
C. Heat shrinkable tubing
The heat-shrinkable tube of the present invention is obtained by molding the heat-shrinkable plastic material composition of the present invention into a tube, stretching and cooling and fixing the composition as described above.
[0050]
The heat-shrinkable tube manufactured in this manner is, similarly to the heat-shrinkable film, without any limitation on a processing method and a coated base material, and can be easily adhered to any base material by a simple method. An excellent coating film can be formed.
[0051]
The film thickness of the heat-shrinkable tube of the present invention is generally in the range of 0.02 mm to 1 mm, preferably in the range of 0.05 mm to 0.5 mm.
[0052]
The heat-shrinkable tube of the present invention can also be coated on the coated substrate by the same method as the above-mentioned heat-shrinkable film.
[0053]
Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention, and any device having the same operation and effect can be realized by the present invention. It is included in the technical scope of the invention.
[0054]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0055]
(Example 1)
Alternating copolymerization of ethylene-tetrafluoroethylene with 50% by weight of a fluorine-based resin having a copolymerization ratio of 40/20/40% by weight and a melting point of 115 ° C. in order of a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer The combined product was mixed and kneaded with 50% by weight of a fluorine-based resin having a melting point of 260 ° C. using a twin-screw extruder, and a 300 μm-thick sheet was collected by a T-die set at 300 ° C. attached to the head. After the sheet was subsequently heated with a clip-type tenter at 125 ° C., when it was attempted to stretch twice in the direction perpendicular to the flow direction of the sheet, it could be stably performed continuously for 1 hour. Then, a 150 μm shrinkable film was obtained.
[0056]
The film was heat-sealed in a tubular shape so that the circumferential direction was the stretching direction, placed on an aluminum condenser having a diameter of 0.7 times, and passed through a heating furnace at 200 ° C. for 20 seconds to obtain a film. As a result of observing the covering state, it was found that the film was in close contact with the capacitor surface and was covered neatly. On the other hand, an attempt was made to collect a similar film under the same molding conditions as described above so that the film was finely pulverized so as to account for 30% by weight of the whole. As a result, a stable film having almost no difference in appearance was obtained. In addition, when the stretch formability, shrinkage workability, and recyclability were evaluated on a three-point scale (good, almost good, bad x), the order was △. In addition, evaluation of stretch formability, shrinkage workability, and recyclability was performed as follows.
[0057]
<Stretchability>
○ Can be processed stably.
△ Processing is possible, although unstable.
× Cannot be processed.
[0058]
<Shrinkability>
○ Can be covered beautifully as a whole.
△ Edges and wrinkles are slightly observed.
C: Edges are very wrinkled, wrinkled or shoulders are off.
[0059]
<Recyclability>
○ Can be extruded and stretched stably.
△ Extrusion and stretching can be performed while unstable.
× Cannot be processed.
[0060]
The evaluation of the shrink processability is based on visual observation of the packaging state of the end portion when the package is packed in a columnar article.
[0061]
(Example 2)
The copolymerization ratio of the tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer is, in order, 40/20/40% by weight and the melting point is 115 ° C. 50% by weight of a fluororesin, and the vinylidene fluoride polymer has a melting point of 180% A fluorine-based resin at 50 ° C was mixed and kneaded with a twin-screw extruder, and a 300-μm-thick sheet was collected by a T-die set at 260 ° C attached to the head. Subsequently, the sheet was stretched in the same manner as in Example 1. As a result, a stable operation for 2 hours was confirmed, and a similar heat-shrinkable film was obtained. Using this film, the same shrink workability and recyclability as in Example 1 were evaluated. Under the same conditions, the three-stage evaluation for each item was ○ in order.
[0062]
(Example 3)
50% by weight of a fluorine-based resin having a copolymerization ratio of 40/20/40% by weight and a melting point of 115 ° C. in order of a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene A fluoride copolymer having a copolymerization ratio of 60/20/20% by weight and a melting point of 165 ° C. and a fluorine-based resin of 50% by weight was kneaded and kneaded by a twin-screw extruder at a setting of 260 ° C. attached to a head. A sheet having a thickness of 300 μm was collected by a T-die. Subsequently, the sheet was stretched in the same manner as in Example 1. As a result, a stable operation for 2 hours was confirmed, and a similar heat-shrinkable film was obtained. Using this film, the same shrink workability and recyclability as in Example 1 were evaluated. Under the same conditions, the three-stage evaluation for each item was ○ in order.
[0063]
(Example 4)
50% by weight of a fluorine-based resin having a copolymerization ratio of a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer of 30/20/50% by weight and a melting point of 85 ° C., and tetrafluoroethylene-hexafluoropropylene-vinylidene A fluoride copolymer having a copolymerization ratio of 60/20/20% by weight and a melting point of 165 ° C. and a fluorine-based resin of 50% by weight was compounded and kneaded by a twin-screw extruder, and the mixture was set at 260 ° C. attached to a head. A sheet having a thickness of 300 μm was collected by a T-die. Subsequently, the sheet was stretched in the same manner as in Example 1. As a result, a stable operation for 2 hours was confirmed, and a similar heat-shrinkable film was obtained. Using this film, the same shrink workability and recyclability as in Example 1 were evaluated. Under the same conditions, the three-stage evaluation for each item was ○ in order.
[0064]
(Example 5)
50% by weight of a fluorine-based resin having a copolymerization ratio of 40/20/40% by weight and a melting point of 115 ° C. in the order of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene The copolymerization ratio of the fluoride copolymer was 60/20/20% by weight and the melting point was 185 ° C., and the copolymerization ratio of the fluororesin 35% by weight and the tetrafluoroethylene-hexafluoropropylene copolymer was 85%. / 15% by weight and 15% by weight of a fluororesin having a melting point of 270 ° C. were mixed and kneaded by a twin screw extruder, and a sheet having a thickness of 300 μm was collected by a T-die set at 310 ° C. attached to a head. When the sheet was subsequently stretched in the same manner as in Example 1, a stable operation for 1 hour was confirmed in the same manner, and a similar heat-shrinkable film was obtained. Using this film, the same shrink workability and recyclability as in Example 1 were evaluated. Under the same conditions, the three-stage evaluation for each item was Δ △ in order.
[0065]
(Example 6)
85% by weight of a fluorine-based resin having a copolymerization ratio of 40/20/40% by weight and a melting point of 115 ° C. of a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer and 85% by weight of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride 15% by weight of a fluorine-based resin having a copolymerization ratio of 60/20/20% by weight and a melting point of 165 ° C. was mixed and kneaded with a twin-screw extruder, and a T-die set at 260 ° C. attached to a head. To obtain a sheet having a thickness of 300 μm. When the sheet was subsequently stretched in the same manner as in Example 1, stable operation for more than 3 hours was confirmed, and a similar heat-shrinkable film was obtained. Using this film, the same shrink workability and recyclability as in Example 1 were evaluated. Under the same conditions, the three-stage evaluation for each item was ○ in order.
[0066]
(Comparative Example 1)
Alternating copolymerization of ethylene-tetrafluoroethylene with 50% by weight of a fluorine-based resin having a copolymerization ratio of a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer of 60/20/20% by weight and a melting point of 165 ° C. 50 wt% of a fluorine-based resin having a melting point of 260 ° C. was compounded and kneaded with a twin-screw extruder, and a 300 μm thick sheet was collected by a T-die set at 260 ° C. attached to the head. When the sheet was subsequently stretched in the same manner as in Example 1, stable operation was confirmed only for 20 minutes, and a similar heat-shrinkable film was obtained. When the film was evaluated for shrinkage workability and recyclability in the same manner as in Example 1, the latter was in a good condition as well, but the former was insufficiently shrinkage and did not adhere closely to cover. The grade evaluation was Δ (~ ×) × ○ in order.
[0067]
(Comparative Example 2)
50% by weight of a fluorine-based resin having a copolymerization ratio of a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer of 30/20/50% by weight and a melting point of 85 ° C., and tetrafluoroethylene-hexafluoropropylene-vinylidene 50% by weight of a fluorine-based resin having a copolymerization ratio of 40/20/40% by weight and a melting point of 115 ° C. was mixed and kneaded with a twin-screw extruder, and T was set to 260 ° C. and attached to a head. A sheet having a thickness of 300 μm was collected by a die. When the sheet was subsequently stretched in the same manner as in Example 1, stable operation was confirmed for less than 20 minutes, and a similar heat-shrinkable film was obtained. When the same shrink processability and recyclability as in Example 1 were evaluated using the film, the latter was in a similar favorable condition, but the former shrinks and adheres, but there is variation due to the shrinkage position. The air bubbles were covered in a state where air bubbles were bitten in places, and the three-level evaluation for each item was xΔ △ in order.
[0068]
(Comparative Example 3)
The copolymerization ratio of the tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer was 40/20/40% by weight, and a fluororesin having a melting point of 115 ° C was attached to the head by a single screw extruder at 260 ° C. A sheet having a thickness of 300 μm was collected by a T-die. The sheet was subsequently irradiated and cross-linked by an electron beam irradiation apparatus under the conditions of an acceleration voltage of 300 kV and an absorbed dose of 30 Mrad. Then, when stretching was attempted in the same manner as in Example 1, a stable operation for 1 hour was confirmed in the same manner. A heat-shrinkable film was obtained. When the same shrink workability and recyclability as in Example 1 were evaluated using this film, the former was excellent in that it could be coated well and the latter had a streak-like appearance in which unmelted particles did not disperse well. Defective or perforated holes were generated and did not lead to stretching, and the three-stage evaluation for each item was Δ △ × in order.
[0069]
【The invention's effect】
The composition for a heat-shrinkable plastic material of the present invention has a melting point of 120 ° C. or lower and a low melting point fluorine-based resin and a melting point of at least one kind of high melting point fluorine-based resin having a melting point of 150 ° C. or higher. Since the stretching temperature can be made appropriate, there is an effect that the production efficiency is improved. Further, since the temperature dependency of the elastic modulus in the stretching temperature region can be reduced, there is an effect that the stretch moldability is excellent.
[0070]
A heat-shrinkable plastic material using such a composition for a heat-shrinkable plastic material can be used without any limitation on a processing method and a coated base material because a shrinkable coating temperature can be made appropriate. In addition, since it is excellent in shrinkage workability, it is possible to form a coating film having excellent adhesion, which suppresses the occurrence of poor thickness and uneven shrinkage. Furthermore, the heat-shrinkable plastic material such as the heat-shrinkable film or tube of the present invention thus obtained has an effect of being excellent in recyclability.

Claims (5)

融点が120℃以下の低融点フッ素系樹脂を少なくとも1種類と、融点が150℃以上の高融点フッ素系樹脂を少なくとも1種類有することを特徴とする熱収縮性プラスチック材料用組成物。A composition for a heat-shrinkable plastic material, comprising at least one kind of low melting point fluororesin having a melting point of 120 ° C. or lower and at least one kind of high melting point fluororesin having a melting point of 150 ° C. or higher. 前記低融点フッ素系樹脂および前記高融点フッ素系樹脂がそれぞれ、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、ビニリデンフルオリド重合体、テトラフルオロエチレン−ビニリデンフルオリド共重合体、ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体、およびテトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオリド共重合体からなる群から選ばれるフッ素系樹脂であることを特徴とする請求項1に記載の熱収縮性プラスチック材料用組成物。The low melting point fluororesin and the high melting point fluororesin are respectively a tetrafluoroethylene-hexafluoropropylene copolymer, an ethylene-tetrafluoroethylene copolymer, a vinylidene fluoride polymer, and a tetrafluoroethylene-vinylidene fluoride copolymer. 2. A fluororesin selected from the group consisting of a polymer, a hexafluoropropylene-vinylidene fluoride copolymer, and a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer. A composition for heat-shrinkable plastic materials. 前記低融点フッ素系樹脂の配合量が60重量%〜95重量%の範囲内であり、前記高融点フッ素系樹脂の配合量が5重量%〜40重量%の範囲内であることを特徴とする請求項1または請求項2に記載の熱収縮性プラスチック材料用組成物。The compounding amount of the low melting point fluororesin is in the range of 60% by weight to 95% by weight, and the compounding amount of the high melting point fluorinated resin is in the range of 5% by weight to 40% by weight. The composition for a heat-shrinkable plastic material according to claim 1. 請求項1から請求項3までのいずれかの請求項に記載の熱収縮性プラスチック材料用組成物をフィルム状に成形し、延伸し、冷却固定してなる熱収縮性フィルム。A heat-shrinkable film formed by forming the composition for a heat-shrinkable plastic material according to any one of claims 1 to 3 into a film, stretching, and cooling and fixing the film. 請求項1から請求項3までのいずれかの請求項に記載の熱収縮性プラスチック材料用組成物をチューブ状に成形し、延伸し、冷却固定してなる熱収縮性チューブ。A heat-shrinkable tube obtained by molding the composition for a heat-shrinkable plastic material according to any one of claims 1 to 3 into a tube, stretching, and fixing by cooling.
JP2002290393A 2002-10-02 2002-10-02 Composition for heat-shrinkable plastic material, heat-shrinkable film and heat-shrinkable tube Pending JP2004123920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290393A JP2004123920A (en) 2002-10-02 2002-10-02 Composition for heat-shrinkable plastic material, heat-shrinkable film and heat-shrinkable tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290393A JP2004123920A (en) 2002-10-02 2002-10-02 Composition for heat-shrinkable plastic material, heat-shrinkable film and heat-shrinkable tube

Publications (1)

Publication Number Publication Date
JP2004123920A true JP2004123920A (en) 2004-04-22

Family

ID=32282293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290393A Pending JP2004123920A (en) 2002-10-02 2002-10-02 Composition for heat-shrinkable plastic material, heat-shrinkable film and heat-shrinkable tube

Country Status (1)

Country Link
JP (1) JP2004123920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693650A (en) * 2011-11-21 2015-06-10 株式会社润工社 Heat-shrinkable tube having tearability
US10898616B1 (en) 2017-07-11 2021-01-26 Teleflex Medical Incorporated Peelable heat-shrink tubing
CN114025940A (en) * 2019-01-31 2022-02-08 株式会社润工社 Heat shrinkable tube having tearability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693650A (en) * 2011-11-21 2015-06-10 株式会社润工社 Heat-shrinkable tube having tearability
US10898616B1 (en) 2017-07-11 2021-01-26 Teleflex Medical Incorporated Peelable heat-shrink tubing
CN114025940A (en) * 2019-01-31 2022-02-08 株式会社润工社 Heat shrinkable tube having tearability

Similar Documents

Publication Publication Date Title
JP5543750B2 (en) Polylactic acid film or sheet
KR101516026B1 (en) Resin composition used for heat shrinkable member heat shrinkable tube composed of the resin composition and member covered with the tube
JP7298751B2 (en) biaxially oriented polypropylene film
TW201904767A (en) Laminated body with thermoplastic engineering plastic layer and manufacturing method thereof
JPH01502676A (en) polymer composition
JP2010535273A (en) Polyethylene film
JP3528360B2 (en) Fluororesin composition and heat-shrinkable tube and insulated wire using the same
JP2836819B2 (en) Fluoropolymer composition
EP0140546B1 (en) Stretchend fluorine type film and method for manufacture thereof
JP4351168B2 (en) Method for producing polybutylene terephthalate film
JP2004123920A (en) Composition for heat-shrinkable plastic material, heat-shrinkable film and heat-shrinkable tube
US3265769A (en) Biaxially oriented polypropylene film containing butyl rubber
JP2008189795A (en) Polypropylene film
JP2005307059A (en) Poly(4-methyl-1-pentene) resin film
JP7040681B1 (en) Biaxially oriented polypropylene film
JP2003321599A (en) Thermoplastic resin molded article
JPH11323053A (en) Fluororesin composition, insulating tube, heat shrinkable tube and insulating electric wire all using the composition, and their production
JP3983458B2 (en) Polyolefin heat shrinkable tube
JP3555628B2 (en) Method for producing fluoroelastomer molded article, method for producing insulated wire using same, method for producing insulated tube
JP3384460B2 (en) Polypropylene film with improved slip properties
JPS59227437A (en) Heat-recoverable article
JP2000302926A (en) Polypropylene composition for drawn film
JPH0764023B2 (en) Method for producing biaxially stretched polyetheretherketone film
JPH02253924A (en) Biaxially oriented film of heat-resistant fluorine polymer and its manufacture
JP4457594B2 (en) Polypropylene composition and film comprising the same