JP2004123894A - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP2004123894A
JP2004123894A JP2002289602A JP2002289602A JP2004123894A JP 2004123894 A JP2004123894 A JP 2004123894A JP 2002289602 A JP2002289602 A JP 2002289602A JP 2002289602 A JP2002289602 A JP 2002289602A JP 2004123894 A JP2004123894 A JP 2004123894A
Authority
JP
Japan
Prior art keywords
substrate
weight
laminate
parts
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002289602A
Other languages
Japanese (ja)
Inventor
Yoshinori Sato
佐藤 美紀
Yoshiyuki Narabe
奈良部 嘉行
Kazunaga Sakai
坂井 和永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002289602A priority Critical patent/JP2004123894A/en
Priority to CNA2003801003736A priority patent/CN1692006A/en
Priority to KR1020047010349A priority patent/KR100625157B1/en
Priority to PCT/JP2003/012646 priority patent/WO2004030884A1/en
Publication of JP2004123894A publication Critical patent/JP2004123894A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • B29C70/885Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/10Thermosetting resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a laminate such as a thermosetting resin laminate, a thermosetting resin copper-clad laminate, etc., having an improved level of heat resistance and causing no bad condition such as swelling in a reflow process, etc., by impregnating a substrate such as a halogen-free phenol resin copper-clad laminate, etc., with a thermosetting resin containing no halogen-based flame retardant, heating and drying the substrate to give prepreg, piling a predetermined number of prepregs, optionally superposing a copper foil on its one side or both sides and laminating the copper foil to the substrate by heating under pressure. <P>SOLUTION: In the laminate obtained by impregnating the substrate with the thermosetting resin containing no halogen-based flame retardant, heating and drying the substrate to give the prepreg, piling the predetermined number of the prepregs, optionally superposing a copper foil on its one side or both sides and laminating the copper foil to the substrate by heating under pressure, a substrate obtained by impregnation with a solution containing an alkoxysilane derivative and/or its condensate is used as the substrate to give the laminate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フェノール樹脂積層板及びフェノール樹脂銅張積層板等の積層板に関する。
【0002】
【従来の技術】
近年の電子機器の小型化、多機能化に伴い、プリント配線板も高密度化、小型化が進んでいる中、紙基材フェノール樹脂銅張積層板は、打抜加工性、ドリル加工性にすぐれ、かつ安価であるため民生用電子機器のプリント配線板用基板として広く用いられている。
紙基材フェノール樹脂積層板は、フェノール類とアルデヒド類とをアルカリ触媒の存在下に反応させてフェノール樹脂を得、フェノール樹脂を溶剤で調整し、紙基材に含浸乾燥して得られるプリプレグを所定枚数重ね合わせて加熱加圧して製造される。紙基材フェノール樹脂銅張積層板は、上記の所定枚数のプリプレグと銅はくとを重ね合わせて加熱加圧して製造される。銅張積層板の銅はくをエッチングすることにより、回路を形成してプリント配線板が得られる。
最近、セットメーカーでは、環境保護の意識の高まりから、難燃剤にハロゲン系難燃剤を使用しない材料(ハロゲンフリー材)、及び有害物質である鉛を使用しないはんだ(鉛フリーはんだ)が検討されている。
しかし、鉛フリーはんだは、従来の鉛含有はんだ(Sn−Pb)と比較して溶融温度が高く、そのために、リフロー工程時の設定温度が高くなる傾向にあり、プリント配線板の耐熱性向上、特にリフロー工程での耐熱性向上が要求されている。
【0003】
【発明が解決しようとする課題】
紙基材フェノール樹脂銅張積層板は、安価であることから、広く用いられているが、ガラス基材エポキシ樹脂銅張積層板と比較して、耐熱性レベルが低いため、リフロー工程時の温度設定も低く設定されており、温度設定が高くなるとふくれ等の不具合が発生する。
また、鉛フリーはんだの溶融温度が従来のはんだ(Sn−Pb)より高いため、鉛フリーはんだ採用時は、リフロー工程の温度設定も高く設定するため、紙基材フェノール樹脂銅張積層板を用いたプリント配線板は、ふくれ等の不具合が発生する。特にフェノール樹脂がハロゲンフリーである場合、難燃性を付与するためハロゲン系難燃剤の代わりにリン系、窒素系、無機系難燃剤を多量に、かつバランス良く使用しなければならず、難燃剤の耐熱性の影響を大きく受けることから樹脂の耐熱性レベルを向上させることは非常に困難であった。
本発明は、ハロゲンフリーフェノール樹脂銅張積層板等の基材にハロゲン系難燃剤を含まない熱硬化性樹脂を含浸、加熱乾燥してなるプリプレグを所定枚数重ねて、必要に応じその片側又は両側に銅箔を重ね、加熱加圧積層してなる積層板の耐熱性レベルを向上し、リフロー工程時にふくれ等の不具合を発生しない熱硬化性樹脂積層板、熱硬化性樹脂銅張積層板等の積層板を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、次のものに関する。
(1)基材にハロゲン系難燃剤を含まない熱硬化性樹脂を含浸、加熱乾燥してなるプリプレグを所定枚数重ねて、必要に応じその片側又は両側に銅箔を重ね、加熱加圧積層してなる積層板において、基材としてアルコキシシラン誘導体及び/又はその縮合物を含有する溶液で含浸処理して得られた基材を用いたことを特徴とする積層板。
(2)アルコキシシラン誘導体が、少なくとも1つのエポキシ基を有するアルコキシシランである上記の積層板。
(3)アルコキシシラン誘導体が、一般式(式1)で示される化合物である上記の積層板。
【化2】

Figure 2004123894
(式中、R〜Rは炭素数1〜3のアルキル基を示し、Rは2価の有機基を示す。)
(4)アルコキシシラン誘導体及び/又はその縮合物を含有する溶液が、水溶性フェノール樹脂100重量部に一般式(式1)で示される化合物及び/又はその縮合物3〜50重量部を配合した溶液である上記の積層板。
【0005】
【発明の実施の形態】
本発明で用いられるアルコキシシラン誘導体としては、
Si(OCH、Si(OC
Si(OC、Si(OC
等のテトラアルコキシシラン等の4官能性シラン化合物(以下、シラン化合物における官能性とは、縮合反応性の官能基を有することを意味する。)、
CSi(OCH、HSi(OCH
Si(OCH、HSi(OCH
CSi(OC、HSi(OC
Si(OC、HSi(OC
CSi(OC、HSi(OC
Si(OC、HSi(OC
CSi(OC、HSi(OC
Si(OC、HSi(OC
等のモノアルキルトリアルコキシシラン、
PhSi(OCH、PhSi(OC
PhSi(OC、PhSi(OC
(ただし、Phはフェニル基を示す。以下同様)
等のフェニルトリアルコキシシラン、
(CHOCH)CHSi(OCH、CH=CHSi(OCH
HSCSi(OCH、HNCSi(OCH
(CHOCH)CHSi(OC、CH=CHSi(OC
HSCSi(OC、HNCSi(OC
(CHOCH)CHSi(OC、CH=CHSi(OC
HSCSi(OC、HNCSi(OC
等の反応性基を持つトリアルコキシシランなどの3官能性シラン化合物、
(HC)Si(OCH、(HSi(OCH
(HSi(OCH、(HSi(OCH
(HC)Si(OC、(HSi(OC
(HSi(OC、(HSi(OC
(HC)Si(OC、(HSi(OC
(HSi(OC、(HSi(OC
(HC)Si(OC、(HSi(OC
(HSii(OC、(HSii(OC
等のジアルキルジアルコキシシラン、
PhSi(OCH、PhSi(OC
等のジフェニルジアルコキシシラン、
((CHOCH)CHSi(OCH、(CH=CH)Si(OCH
(HSCSi(OCH、(HNCSi(OCH
((CHOCH)CHSi(OC、(CH=CH)Si(OC
(HSCSi(OC、(HNCSi(OC
((CHOCH)CHSi(OC、(CH=CH)Si(OC
(HSCSi(OC、(HNCSi(OC
等の反応性基を有するジアルコキシシランなどの2官能性シラン化合物などがある。
【0006】
これらのアルコキシシラン誘導体は単独あるいは数種組合せて用いることができる。これらの中でも反応基を持つアルコキシシラン誘導体は、この後熱硬化性樹脂を含浸する際、熱硬化性樹脂と反応することができ、紙と熱硬化性樹脂との界面の接着性が向上するため好ましい。アルコキシシラン誘導体として、少なくとも1つエポキシ基を有するアルコキシシランが好ましく、一般式(式1)で示される化合物がより好ましい。(式1)において、Rとしては炭素数1〜5のアルキレン基が好ましい。さらに、この中でもトリメトキシ(グリシジルメチル)シラン((CHOCH)CHSi(OCH)はアルコキシシランの反応性が高く、またグリシジル基を持つため、熱硬化性樹脂を含浸する際に親和性が良く、とりわけ好ましい。
【0007】
また、これらのアルコキシシラン誘導体は予め縮合させ、オリゴマー化した上で用いてもよい。この際には、触媒として塩酸、硫酸、リン酸、硝酸、フッ酸等の無機酸、マレイン酸、スルホン酸、シュウ酸、ギ酸等の有機酸、あるいはアンモニア、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの塩基触媒を用いると好ましい。これらの触媒は、用いるアルコキシシラン誘導体の種類、量によって適当量用いられるが、好適にはアルコキシシラン誘導体1モルに対して0.001〜0.5モルの範囲で用いられる。
【0008】
上記縮合は、例えばアセトン、メチルエチルケトン、トルエン、キシレン、酢酸エチル、メタノール、エタノールなどの溶媒中でおこなうことが好ましい。また、この反応に際して水が適量必要であり、多すぎる場合には縮合の進行が早すぎてゲル化する可能性があり、少なすぎると十分に縮合が進行しないため、アルコキシシラン1モルに対して0.1〜5モルが好ましく、0.3〜4モルとするのがより好ましい。
【0009】
これらのアルコキシシラン誘導体及び/又はその縮合物を含有する溶液は、アルコキシシラン誘導体及び/又はその縮合物5〜50重量%、水10〜70重量%及びアルコール10〜70重量%の溶液として用いることが好ましい。この際、水が多すぎると保存安定性が悪くなる傾向があり、水とアルコールの比率は5:5程度とすることが好ましい。
用いるアルコールの種類については特に限定はしないが、メタノールを用いると沸点が低く、加熱乾燥を容易におこなうことができるため好ましい。
この溶液中に水溶性フェノール樹脂を、水溶性フェノール樹脂100重量部に対してアルコキシシラン誘導体及び/又はその縮合物が3〜50重量部になるように含有させることが好ましい。
アルコキシシラン誘導体及び/又はその縮合物は基材に対して好ましくは付着量が0.5〜10重量%となるように付着させることが好ましい。
【0010】
本発明の積層板の製造方法においては、基材を予めアルコキシシラン誘導体及び/又はその縮合物を含有する溶液で含浸処理を行う。
本発明で用いる基材は、打抜加工性の点から、紙基材を用いるのが好ましい。紙基材としては,クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙、ガラス繊維と紙繊維の混抄紙等も使用できる。
含浸処理は、基材にアルコキシシラン誘導体及び/又はその縮合物を含む溶液を含浸した後、加熱乾燥を行う。この際、アルコキシシラン誘導体は、縮合が進み、紙の疎水性を向上させる。
この後、更に熱硬化性樹脂を含浸し、加熱乾燥させることにより、加熱加圧積層が可能なプリプレグを得ることができる。
【0011】
本発明で使用する熱硬化性樹脂としては、安価であることから、植物油変性フェノール樹脂があげられる。
植物油変性フェノール樹脂は、フェノール類と植物油とを酸触媒の存在下に反応させ、ついで、アルデヒド類をアルカリ触媒の存在下に反応させることにより得られる。
酸触媒としてはパラトルエンスルフォン酸などが挙げられる。アルカリ触媒としては、アンモニア、トリメチルアミン、トリエチルアミンなどのアミン系触媒が挙げられる。
植物油としては、乾性油を用いることが好ましく、これらの例として、桐油、アマニ油、脱水ヒマシ油、オイチシカ油等がある。
フェノール類としては、フェノール、メタクレゾール、パラクレゾール、オルソクレゾール、イソプロピルフェノール、ノニルフェノール等が使用される。
アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、パラアセトアルデヒド、ブチルアルデヒド、オクチルアルデヒド、ベンズアルデヒド等が上げられ,特に制限されるものではない。一般にはホルムアルデヒド又はパラホルムアルデヒドが使用される。
【0012】
熱硬化性樹脂は、溶剤にて調整し、溶解ないし分散させワニスとして基材に含浸される。
【0013】
ワニスには、積層板に可塑性、難燃性を付与するために各種の可塑剤、難燃剤を添加してもよい。
難燃剤は、ハロゲン系難燃剤を使用しないので、市販の窒素系難燃剤又はリン系難燃剤を使用することが好ましい。
【0014】
熱硬化性樹脂として、植物油変性フェノール樹脂を用いる場合、メラミン変性フェノール樹脂を併用することが好ましい。メラミン変性フェノール樹脂としては、市販品が使用でき、窒素含有率が3〜15重量%のものが好ましい。窒素含有率が3重量%未満では、難燃性が劣り、15重量%を超えると打抜加工性が劣る傾向がある。
メラミン変性フェノール樹脂は、植物油変性フェノール樹脂と反応して難燃性に寄与する。このことから植物油変性フェノール樹脂100重量部に対し、5〜30重量部の範囲で配合するのが好ましい。植物油変性フェノール樹脂100重量部に対する配合量が5重量部未満であると難燃性付与の効果が不十分となり、30重量部を超えると打抜加工性が悪くなる傾向にある。
このことから、植物油変性フェノール樹脂100重量部に対し、10〜20重量部の範囲で配合することがより好ましい。
【0015】
本発明で用いられるリン系難燃剤であるリン酸エステルは、トリエチルホスフェイト、トリブチルホスフェイト、トリフェニルホスフェイト、トリクレジルホスフェイト、クレジルジフェニルホスフェイト、レゾルシルジフェニルホスフェイト、トリイソプロピルフェニルホスフェイト等が挙げられ、これらは、1種又は2種以上の混合系として使用される。なかでも、トリフェニルホスフェイトを用いるのが安価で、好ましい。
リン酸エステルは、植物油変性フェノール樹脂100重量部に対し、10〜100重量部の範囲で配合するのが好ましい。植物油変性フェノール樹脂100重量部に対する配合量が10重量部未満であると、配合する効果が小さく、100重量部を超えると打抜加工性が悪くなり、吸水率等の他の特性が低下する傾向を示す。
【0016】
リン酸エステルの他、他の難燃剤、例えば、水酸化アルミニウムような無機充填剤系難燃剤を全組成物100重量部のうち、50重量部までの範囲で配合することもできる。これらリン酸エステル以外の難燃剤を配合すると、相乗作用により少量の配合で難燃性をより高めることができ、難燃剤の配合量を少なくすることができる。これらリン酸エステル以外の難燃剤の配合量が50重量部を超えると、打抜加工性、耐熱性が悪くなる傾向を示す。
前記のワニスを基材に含浸、加熱乾燥してプリプレグとし、得られたプリプレグを所定枚数重ね、その片面若しくは両面に必要に応じ銅はくを重ね、好ましくは温度150〜180℃、圧力9〜20MPaで加熱加圧積層して積層板とする。
【0017】
【実施例】
次に実施例により本発明を具体的に説明するが、本発明は、これらに限定されるものではない。
(上塗り用フェノール樹脂の合成)
桐油150重量部とフェノール280重量部、p−トルエンスルホン酸0.2重量を反応釜に仕込み、90℃1時間反応させ、次いでパラホルムアルデヒド200重量部、28重量%アンモニア水30重量部を加えて75℃で2時間反応させて桐油変性率35重量%の桐油変性レゾール樹脂を得た。
桐油変性レゾール樹脂100重量部に表1に示すメラミン変性フェノール樹脂及びトリフェニルホスフェイトを所定量(重量部)添加し、溶剤で溶解して、樹脂分50重量%のワニスとした。
【0018】
(水溶性フェノール樹脂の合成)
フェノール1モル、37重量%ホルマリンをホルムアルデヒド換算で1.2モル及びトリエチルアミン換算で0.4モル量のトリエチルアミン水溶液(濃度:30重量%)を70℃6時間反応させて水溶性フェノール樹脂を得た。
得られた水溶性フェノール樹脂を重量比で、水1対メタノール1の混合溶媒で希釈し、固形分12重量%の水溶性フェノール樹脂とした。
【0019】
実施例1、2、3
上記、水溶性フェノール樹脂の固形分に対し、トリメトキシ(グリシジルメチル)シランを表1に示す割合(重量%)で配合し、攪拌後、この溶液を用いて、厚さ0.2mm、坪量125g/mのクラフト紙に含浸処理し、付着量が18重量%となるように付着させ、次に、上塗り用フェノール樹脂ワニスを、乾燥後の全樹脂付着量が、50重量%になるように含浸、加熱乾燥してプリプレグを得た。
得られたプリプレグ8枚を重ね、その両側に銅箔の厚さが35μmで、接着剤付銅箔を接着剤層がプリプレグ側となるようにして重ね、温度170℃、圧力15MPaで90分加熱加圧して、厚さ1.6mmの両面銅張積層板を得た。
【0020】
比較例1、2
トリメトキシ(グリシジルメチル)シランを配合しないほかは、表1の配合で、実施例と同様にして厚さ1.6mmの両面銅張積層板を得た。以上で得られた両面銅張積層板について、リフロー耐熱性、打抜加工性を評価した。その結果を表1に示す。なお、試験方法は、以下の通りとした。リフロー耐熱性は、印刷法により回路を形成し、銅はくをエッチングし、残銅70%のプリント配線板を作成し、リフロー装置にて、プリント配線板を流し、ふくれの有無を目視により観察した。リフロー装置の温度設定は、プリント配線板の基材表面の最高温度を測定し、温度設定を行った。難燃性は、得られた片面銅張積層板から、銅箔を全面エッチングして、127×13mmの試験片を切り出した。この試験片を長辺が垂直になるように保持し、バーナーにより下から10秒間接炎を2回繰り返し、消炎するまでの時間を測定した。難燃性の試験は,試験片数5個について行い、その平均値、及び測定値の範囲(かっこ内)を示した。打抜加工性は、試験片の表面温度を変えて、ポンチ径1.0〜1.2mm、穴間ピッチ2.54mm、24穴の試験用金型を用いて打抜加工した。打抜加工した試験片の穴周辺の目視観察し、その状態を記号で示した。
○: はくり、目白なし
△:はくり、目白、若干あり
×: はくり、目白あり
【0021】
【表1】
Figure 2004123894
比較例1のように、難燃剤にトリフェニルホスフェイトを20部のみ添加した系ではリフロー耐熱性は良好であるが、難燃性はUL94V―0を満足せず、打抜加工性も低温でのはくりがみられた。比較例2のように難燃剤にトリフェニルホスフェイトを40部、メラミン変性フェノール樹脂15部添加した系では難燃性、打抜加工性は良好であるが、リフロー耐熱性は低下した。
実施例1〜3のように、トリメトキシ(グリシジルメチル)シランを添加することによって、リフロー耐熱性が良好となり、 トリフェニルホスフェイトを40部、メラミン変性フェノール樹脂15部添加することにより、打抜加工性、難燃性ともに良好なフェノール樹脂銅張積層板を得ることができた。また、トリメトキシ(グリシジルメチル)シランは添加量が多いほどリフロー耐熱性は良好な傾向にあった。
【0022】
【発明の効果】
本発明によれば、ハロゲン系難燃剤を含まない、難燃性、リフロー耐熱性に優れた積層板を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminate such as a phenolic resin laminate and a phenolic resin-clad laminate.
[0002]
[Prior art]
In recent years, with the miniaturization and multifunctionality of electronic devices, printed wiring boards have been increasing in density and miniaturization. Because it is excellent and inexpensive, it is widely used as a printed wiring board substrate for consumer electronic devices.
Paper-based phenolic resin laminates are prepared by reacting phenols and aldehydes in the presence of an alkali catalyst to obtain a phenolic resin, adjusting the phenolic resin with a solvent, impregnating and drying the paper-based prepreg, and forming a prepreg. It is manufactured by heating and pressing a predetermined number of sheets. The paper-based phenolic resin-clad laminate is manufactured by laminating a predetermined number of prepregs and copper foil and heating and pressing. By etching the copper foil of the copper-clad laminate, a circuit is formed and a printed wiring board is obtained.
Recently, set manufacturers have been studying materials that do not use halogen-based flame retardants as flame retardants (halogen-free materials) and solders that do not use lead, which is a harmful substance (lead-free solder), due to increasing awareness of environmental protection. I have.
However, the lead-free solder has a higher melting temperature than the conventional lead-containing solder (Sn-Pb), and thus tends to have a higher set temperature during the reflow process, which improves the heat resistance of the printed wiring board. In particular, improvement in heat resistance in the reflow process is required.
[0003]
[Problems to be solved by the invention]
Paper-based phenolic copper-clad laminates are widely used because they are inexpensive.However, compared to glass-based epoxy resin copper-clad laminates, the heat resistance level is lower, so the temperature during the reflow process is low. The setting is also set low, and when the temperature setting is high, problems such as blistering occur.
Also, since the melting temperature of lead-free solder is higher than that of conventional solder (Sn-Pb), when using lead-free solder, the temperature setting for the reflow process should be set higher. The printed wiring board suffers from problems such as blistering. Especially when the phenolic resin is halogen-free, a large amount of phosphorus-based, nitrogen-based, and inorganic-based flame retardants must be used instead of halogen-based flame retardants in order to impart flame retardancy. It is very difficult to improve the heat resistance level of the resin because it is greatly affected by the heat resistance of the resin.
The present invention impregnates a predetermined number of prepregs obtained by impregnating a thermosetting resin containing no halogen-based flame retardant into a base material such as a halogen-free phenol resin copper-clad laminate and drying by heating, and if necessary, on one or both sides thereof. To improve the heat resistance level of laminates made by laminating copper foil and heating and pressurizing, such as thermosetting resin laminates and thermosetting resin copper-clad laminates, which do not cause problems such as blistering during the reflow process It is an object to provide a laminate.
[0004]
[Means for Solving the Problems]
The present invention relates to the following.
(1) A predetermined number of prepregs obtained by impregnating a base material with a thermosetting resin not containing a halogen-based flame retardant and heating and drying are stacked, and if necessary, copper foil is stacked on one or both sides thereof, and then heat-pressed and laminated. A laminate comprising: a laminate obtained by impregnating with a solution containing an alkoxysilane derivative and / or a condensate thereof as a substrate.
(2) The laminate described above, wherein the alkoxysilane derivative is an alkoxysilane having at least one epoxy group.
(3) The above laminate wherein the alkoxysilane derivative is a compound represented by the general formula (Formula 1).
Embedded image
Figure 2004123894
(In the formula, R 1 to R 3 represent an alkyl group having 1 to 3 carbon atoms, and R 4 represents a divalent organic group.)
(4) A solution containing an alkoxysilane derivative and / or a condensate thereof is obtained by mixing a compound represented by the general formula (Formula 1) and / or 3 to 50 parts by weight of a condensate thereof with 100 parts by weight of a water-soluble phenol resin. A laminate as described above which is a solution.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
As the alkoxysilane derivative used in the present invention,
Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 ,
Si (OC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4
A tetrafunctional silane compound such as a tetraalkoxysilane (hereinafter, the functionality in the silane compound means having a condensation-reactive functional group);
H 3 CSi (OCH 3 ) 3 , H 5 C 2 Si (OCH 3 ) 3 ,
H 7 C 3 Si (OCH 3 ) 3 , H 9 C 4 Si (OCH 3 ) 3 ,
H 3 CSi (OC 2 H 5 ) 3 , H 5 C 2 Si (OC 2 H 5 ) 3 ,
H 7 C 3 Si (OC 2 H 5 ) 3 , H 9 C 4 Si (OC 2 H 5 ) 3 ,
H 3 CSi (OC 3 H 7 ) 3 , H 5 C 2 Si (OC 3 H 7 ) 3 ,
H 7 C 3 Si (OC 3 H 7 ) 3 , H 9 C 4 Si (OC 3 H 7 ) 3 ,
H 3 CSi (OC 4 H 9 ) 3 , H 5 C 2 Si (OC 4 H 9 ) 3 ,
H 7 C 3 Si (OC 4 H 9 ) 3 , H 9 C 4 Si (OC 4 H 9 ) 3 ,
Monoalkyl trialkoxysilanes such as,
PhSi (OCH 3 ) 3 , PhSi (OC 2 H 5 ) 3 ,
PhSi (OC 3 H 7 ) 3 , PhSi (OC 4 H 9 ) 3
(However, Ph represents a phenyl group. The same applies hereinafter.)
Phenyl trialkoxysilane such as
(CH 2 OCH) CH 2 Si (OCH 3 ) 3 , CH 2 CHCHSi (OCH 3 ) 3 ,
HSC 3 H 6 Si (OCH 3 ) 3 , H 2 NC 3 H 6 Si (OCH 3 ) 3 ,
(CH 2 OCH) CH 2 Si (OC 2 H 5 ) 3 , CH 2 CHCHSi (OC 2 H 5 ) 3 ,
HSC 3 H 6 Si (OC 2 H 5 ) 3 , H 2 NC 3 H 6 Si (OC 2 H 5 ) 3 ,
(CH 2 OCH) CH 2 Si (OC 3 H 7 ) 3 , CH 2 CHCHSi (OC 3 H 7 ) 3 ,
HSC 3 H 6 Si (OC 3 H 7 ) 3 , H 2 NC 3 H 6 Si (OC 3 H 7 ) 3
A trifunctional silane compound such as a trialkoxysilane having a reactive group such as
(H 3 C) 2 Si (OCH 3 ) 2 , (H 5 C 2 ) 2 Si (OCH 3 ) 2 ,
(H 7 C 3 ) 2 Si (OCH 3 ) 2 , (H 9 C 4 ) 2 Si (OCH 3 ) 2 ,
(H 3 C) 2 Si (OC 2 H 5 ) 2 , (H 5 C 2 ) 2 Si (OC 2 H 5 ) 2 ,
(H 7 C 3 ) 2 Si (OC 2 H 5 ) 2 , (H 9 C 4 ) 2 Si (OC 2 H 5 ) 2 ,
(H 3 C) 2 Si (OC 3 H 7 ) 2 , (H 5 C 2 ) 2 Si (OC 2 H 5 ) 2 ,
(H 7 C 3 ) 2 Si (OC 3 H 7 ) 2 , (H 9 C 4 ) 2 Si (OC 3 H 7 ) 2 ,
(H 3 C) 2 Si (OC 4 H 9 ) 2 , (H 5 C 2 ) 2 Si (OC 4 H 9 ) 2
(H 7 C 3 ) 2 Sii (OC 4 H 9 ) 2 , (H 9 C 4 ) 2 Sii (OC 4 H 9 ) 2
Dialkyl dialkoxysilanes such as,
Ph 2 Si (OCH 3 ) 2 , Ph 2 Si (OC 2 H 5 ) 2
Diphenyl dialkoxy silane, etc.
((CH 2 OCH) CH 2 ) 2 Si (OCH 3) 2, (CH 2 = CH) 2 Si (OCH 3) 2,
(HSC 3 H 6 ) 2 Si (OCH 3 ) 2 , (H 2 NC 3 H 6 ) 2 Si (OCH 3 ) 2 ,
((CH 2 OCH) CH 2 ) 2 Si (OC 2 H 5) 2, (CH 2 = CH) 2 Si (OC 2 H 5) 2,
(HSC 3 H 6 ) 2 Si (OC 2 H 5 ) 2 , (H 2 NC 3 H 6 ) 2 Si (OC 2 H 5 ) 2 ,
((CH 2 OCH) CH 2 ) 2 Si (OC 3 H 7 ) 2 , (CH 2 CHCH) 2 Si (OC 3 H 7 ) 2 ,
(HSC 3 H 6 ) 2 Si (OC 3 H 7 ) 2 , (H 2 NC 3 H 6 ) 2 Si (OC 3 H 7 ) 2
And other bifunctional silane compounds such as dialkoxysilanes having a reactive group.
[0006]
These alkoxysilane derivatives can be used alone or in combination of several kinds. Among these, the alkoxysilane derivative having a reactive group can react with the thermosetting resin when subsequently impregnating the thermosetting resin, and the adhesion at the interface between the paper and the thermosetting resin is improved. preferable. As the alkoxysilane derivative, an alkoxysilane having at least one epoxy group is preferable, and a compound represented by the general formula (Formula 1) is more preferable. In Formula 1, R 4 is preferably an alkylene group having 1 to 5 carbon atoms. Further, among these, trimethoxy (glycidylmethyl) silane ((CH 2 OCH) CH 2 Si (OCH 3 ) 3 ) has a high reactivity of alkoxysilane and has a glycidyl group, so that when impregnating a thermosetting resin, Good affinity, especially preferred.
[0007]
These alkoxysilane derivatives may be condensed in advance and oligomerized before use. In this case, as a catalyst, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid; an organic acid such as maleic acid, sulfonic acid, oxalic acid, and formic acid; or a base such as ammonia, trimethylamine, triethylamine, and tributylamine It is preferable to use a catalyst. These catalysts are used in an appropriate amount depending on the kind and amount of the alkoxysilane derivative used, but are preferably used in the range of 0.001 to 0.5 mol per 1 mol of the alkoxysilane derivative.
[0008]
The above condensation is preferably carried out in a solvent such as acetone, methyl ethyl ketone, toluene, xylene, ethyl acetate, methanol and ethanol. In addition, an appropriate amount of water is required for this reaction. If the amount is too large, the progress of the condensation may be too fast to cause gelation, and if the amount is too small, the condensation does not sufficiently proceed. 0.1 to 5 mol is preferable, and 0.3 to 4 mol is more preferable.
[0009]
The solution containing these alkoxysilane derivatives and / or condensates thereof is used as a solution of 5 to 50% by weight of alkoxysilane derivatives and / or condensates thereof, 10 to 70% by weight of water and 10 to 70% by weight of alcohol. Is preferred. At this time, if there is too much water, the storage stability tends to deteriorate, and the ratio of water to alcohol is preferably about 5: 5.
There is no particular limitation on the type of alcohol to be used, but methanol is preferred because it has a low boiling point and can be easily heated and dried.
It is preferable that the solution contains a water-soluble phenol resin in an amount of 3 to 50 parts by weight of the alkoxysilane derivative and / or its condensate based on 100 parts by weight of the water-soluble phenol resin.
The alkoxysilane derivative and / or the condensate thereof are preferably attached to the base material such that the amount of attachment is preferably 0.5 to 10% by weight.
[0010]
In the method for producing a laminate of the present invention, the base material is previously impregnated with a solution containing an alkoxysilane derivative and / or a condensate thereof.
The substrate used in the present invention is preferably a paper substrate from the viewpoint of punching workability. As the paper substrate, kraft paper, cotton linter paper, mixed paper of linter and kraft pulp, mixed paper of glass fiber and paper fiber, and the like can be used.
In the impregnation treatment, the substrate is impregnated with a solution containing an alkoxysilane derivative and / or a condensate thereof, and then heated and dried. At this time, the condensation of the alkoxysilane derivative proceeds, and the hydrophobicity of the paper is improved.
Thereafter, a thermosetting resin is further impregnated and dried by heating to obtain a prepreg that can be laminated by heating and pressing.
[0011]
As the thermosetting resin used in the present invention, vegetable oil-modified phenolic resin can be mentioned because of its low cost.
Vegetable oil-modified phenolic resin is obtained by reacting phenols with vegetable oil in the presence of an acid catalyst, and then reacting aldehydes in the presence of an alkali catalyst.
Examples of the acid catalyst include p-toluenesulfonic acid. Examples of the alkali catalyst include amine catalysts such as ammonia, trimethylamine, and triethylamine.
As the vegetable oil, it is preferable to use a drying oil, and examples thereof include paulownia oil, linseed oil, dehydrated castor oil, and deer oil.
As phenols, phenol, meta-cresol, para-cresol, ortho-cresol, isopropylphenol, nonylphenol and the like are used.
Aldehydes include, but are not particularly limited to, formaldehyde, paraformaldehyde, acetaldehyde, paraacetaldehyde, butyraldehyde, octylaldehyde, benzaldehyde, and the like. Generally, formaldehyde or paraformaldehyde is used.
[0012]
The thermosetting resin is adjusted with a solvent, dissolved or dispersed, and impregnated into a base material as a varnish.
[0013]
Various plasticizers and flame retardants may be added to the varnish in order to impart plasticity and flame retardancy to the laminate.
Since a flame retardant does not use a halogen-based flame retardant, it is preferable to use a commercially available nitrogen-based flame retardant or a phosphorus-based flame retardant.
[0014]
When a vegetable oil-modified phenol resin is used as the thermosetting resin, it is preferable to use a melamine-modified phenol resin in combination. As the melamine-modified phenol resin, commercially available products can be used, and those having a nitrogen content of 3 to 15% by weight are preferable. If the nitrogen content is less than 3% by weight, the flame retardancy tends to be poor, and if it exceeds 15% by weight, the punchability tends to be poor.
The melamine-modified phenol resin reacts with the vegetable oil-modified phenol resin and contributes to flame retardancy. For this reason, it is preferable to mix in a range of 5 to 30 parts by weight with respect to 100 parts by weight of the vegetable oil-modified phenol resin. If the amount is less than 5 parts by weight per 100 parts by weight of the vegetable oil-modified phenolic resin, the effect of imparting flame retardancy will be insufficient, and if it exceeds 30 parts by weight, the punching properties will tend to be poor.
For this reason, it is more preferable to mix in a range of 10 to 20 parts by weight with respect to 100 parts by weight of the vegetable oil-modified phenol resin.
[0015]
Phosphoric acid esters, which are phosphorus-based flame retardants used in the present invention, include triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, resorcil diphenyl phosphate, and triisopropyl phenyl. Phosphate and the like can be mentioned, and these are used as one kind or a mixture of two or more kinds. Among them, the use of triphenyl phosphate is inexpensive and preferable.
It is preferable to mix the phosphate ester in an amount of 10 to 100 parts by weight with respect to 100 parts by weight of the vegetable oil-modified phenol resin. If the blending amount is less than 10 parts by weight based on 100 parts by weight of the vegetable oil-modified phenolic resin, the blending effect is small, and if it exceeds 100 parts by weight, the punching processability becomes poor, and other properties such as water absorption tend to decrease. Is shown.
[0016]
In addition to the phosphoric acid ester, other flame retardants, for example, an inorganic filler-based flame retardant such as aluminum hydroxide, may be blended in a range of up to 50 parts by weight based on 100 parts by weight of the total composition. When these flame retardants other than the phosphoric acid ester are blended, the flame retardancy can be further increased with a small amount of blending due to the synergistic action, and the blending amount of the flame retardant can be reduced. If the amount of the flame retardant other than the phosphoric acid ester exceeds 50 parts by weight, the punching workability and heat resistance tend to deteriorate.
The varnish is impregnated into the base material, dried by heating to form a prepreg, a predetermined number of the obtained prepregs are stacked, and copper foil is stacked on one or both sides thereof as necessary, preferably at a temperature of 150 to 180 ° C. and a pressure of 9 to The laminate is formed by laminating under heat and pressure at 20 MPa.
[0017]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
(Synthesis of phenolic resin for top coating)
150 parts by weight of tung oil, 280 parts by weight of phenol, and 0.2 parts by weight of p-toluenesulfonic acid were charged into a reaction vessel and reacted at 90 ° C. for 1 hour. Then, 200 parts by weight of paraformaldehyde and 30 parts by weight of 28% by weight ammonia water were added. The reaction was carried out at 75 ° C. for 2 hours to obtain a tung oil-modified resole resin having a tung oil modification rate of 35% by weight.
A predetermined amount (parts by weight) of the melamine-modified phenol resin and triphenyl phosphate shown in Table 1 was added to 100 parts by weight of the tung oil-modified resole resin, and dissolved with a solvent to obtain a varnish having a resin content of 50% by weight.
[0018]
(Synthesis of water-soluble phenolic resin)
An aqueous solution of triethylamine (concentration: 30% by weight) in which 1 mol of phenol and 37% by weight of formalin were converted to 1.2 mol of formaldehyde and 0.4 mol of triethylamine was reacted at 70 ° C. for 6 hours to obtain a water-soluble phenol resin. .
The obtained water-soluble phenol resin was diluted with a mixed solvent of water and methanol at a weight ratio of 1 to obtain a water-soluble phenol resin having a solid content of 12% by weight.
[0019]
Examples 1, 2, 3
Trimethoxy (glycidylmethyl) silane was blended in the ratio (% by weight) shown in Table 1 with respect to the solid content of the water-soluble phenol resin, and after stirring, this solution was used to obtain a 0.2 mm thick, 125 g basis weight. / M 2 of kraft paper and impregnated so as to have an adhesion amount of 18% by weight, and then apply a phenolic resin varnish for overcoating so that the total resin adhesion amount after drying is 50% by weight. Impregnation and drying by heating were performed to obtain a prepreg.
Eight pieces of the obtained prepregs are stacked, and a copper foil having a thickness of 35 μm and an adhesive is stacked on both sides thereof such that the adhesive layer is on the prepreg side, and heated at a temperature of 170 ° C. and a pressure of 15 MPa for 90 minutes. Pressing was performed to obtain a 1.6 mm double-sided copper-clad laminate.
[0020]
Comparative Examples 1 and 2
A 1.6 mm-thick double-sided copper-clad laminate was obtained in the same manner as in the Example, except that trimethoxy (glycidylmethyl) silane was not used. The double-sided copper-clad laminate obtained above was evaluated for reflow heat resistance and punching workability. Table 1 shows the results. In addition, the test method was as follows. For the reflow heat resistance, a circuit is formed by the printing method, the copper foil is etched, a printed wiring board with the remaining copper of 70% is created, the printed wiring board is flown by the reflow device, and the presence of blisters is visually observed. did. The temperature of the reflow device was set by measuring the maximum temperature of the substrate surface of the printed wiring board. The flame retardancy was determined by cutting out a 127 × 13 mm test piece from the obtained single-sided copper-clad laminate by etching the entire surface of the copper foil. The test piece was held so that the long side was vertical, and the indirect flame was repeated twice from below with a burner for 10 seconds, and the time until the flame quenched was measured. The flame retardancy test was performed on five test pieces, and the average value and the range of measured values (in parentheses) were shown. The punching workability was determined by changing the surface temperature of the test piece and using a 24-hole test die having a punch diameter of 1.0 to 1.2 mm, a pitch between holes of 2.54 mm. The perimeter of the hole around the punched test specimen was visually observed, and the state was indicated by a symbol.
:: No peeling, no white spots △: Stripped, white spots slightly X: Stripped, white spots present [0021]
[Table 1]
Figure 2004123894
As in Comparative Example 1, the system in which only 20 parts of triphenyl phosphate is added to the flame retardant has good reflow heat resistance, but the flame retardancy does not satisfy UL94V-0, and the punching workability is low. The end was seen. In a system in which triphenyl phosphate was added to the flame retardant in an amount of 40 parts and the melamine-modified phenol resin in an amount of 15 parts as in Comparative Example 2, the flame retardancy and punching workability were good, but the reflow heat resistance was reduced.
As in Examples 1 to 3, by adding trimethoxy (glycidylmethyl) silane, the reflow heat resistance was improved. By adding 40 parts of triphenyl phosphate and 15 parts of a melamine-modified phenol resin, punching was performed. A phenolic resin-clad laminate having good properties and flame retardancy was obtained. Further, the reflow heat resistance tended to be better as the amount of trimethoxy (glycidylmethyl) silane added was larger.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the laminated board which is excellent in flame retardance and reflow heat resistance which does not contain a halogen type flame retardant can be obtained.

Claims (4)

基材にハロゲン系難燃剤を含まない熱硬化性樹脂を含浸、加熱乾燥してなるプリプレグを所定枚数重ねて、必要に応じその片側又は両側に銅箔を重ね、加熱加圧積層してなる積層板において、基材としてアルコキシシラン誘導体及び/又はその縮合物を含有する溶液で含浸処理して得られた基材を用いたことを特徴とする積層板。Laminating a predetermined number of prepregs obtained by impregnating a base material with a thermosetting resin containing no halogen-based flame retardant and drying by heating, laminating copper foil on one or both sides as needed, and laminating by heating and pressing A laminated plate, wherein a substrate obtained by impregnating with a solution containing an alkoxysilane derivative and / or a condensate thereof is used as the substrate. アルコキシシラン誘導体が、少なくとも1つのエポキシ基を有するアルコキシシランである請求項1に記載の積層板。The laminate according to claim 1, wherein the alkoxysilane derivative is an alkoxysilane having at least one epoxy group. アルコキシシラン誘導体が、一般式(式1)で示される化合物である請求項1又は2記載の積層板。
Figure 2004123894
(式中、R〜Rは炭素数1〜3のアルキル基を示し、Rは2価の有機基を示す。)
3. The laminate according to claim 1, wherein the alkoxysilane derivative is a compound represented by the general formula (Formula 1).
Figure 2004123894
(In the formula, R 1 to R 3 represent an alkyl group having 1 to 3 carbon atoms, and R 4 represents a divalent organic group.)
アルコキシシラン誘導体及び/又はその縮合物を含有する溶液が、水溶性フェノール樹脂100重量部に一般式(式1)で示されるアルコキシシラン誘導体及び/又はその縮合物3〜50重量部を配合した溶液である請求項1〜3何れか記載の積層板。A solution in which a solution containing an alkoxysilane derivative and / or a condensate thereof is mixed with 100 parts by weight of a water-soluble phenol resin and 3 to 50 parts by weight of an alkoxysilane derivative represented by the general formula (Formula 1) and / or a condensate thereof. The laminate according to any one of claims 1 to 3.
JP2002289602A 2002-10-02 2002-10-02 Laminate Pending JP2004123894A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002289602A JP2004123894A (en) 2002-10-02 2002-10-02 Laminate
CNA2003801003736A CN1692006A (en) 2002-10-02 2003-10-02 Laminates
KR1020047010349A KR100625157B1 (en) 2002-10-02 2003-10-02 Laminates
PCT/JP2003/012646 WO2004030884A1 (en) 2002-10-02 2003-10-02 Laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289602A JP2004123894A (en) 2002-10-02 2002-10-02 Laminate

Publications (1)

Publication Number Publication Date
JP2004123894A true JP2004123894A (en) 2004-04-22

Family

ID=32063747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289602A Pending JP2004123894A (en) 2002-10-02 2002-10-02 Laminate

Country Status (4)

Country Link
JP (1) JP2004123894A (en)
KR (1) KR100625157B1 (en)
CN (1) CN1692006A (en)
WO (1) WO2004030884A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971332A (en) * 1982-10-14 1984-04-23 Nittetsu Mining Co Ltd Resin-impregnated laminated paper board and its manufacture
JPH0826167B2 (en) * 1987-12-02 1996-03-13 東芝ケミカル株式会社 Phenolic resin copper clad laminate
JPH06271633A (en) * 1993-03-24 1994-09-27 Shin Kobe Electric Mach Co Ltd Production of phenol resin for laminated sheet and production of laminated sheet
JP3458557B2 (en) * 1995-09-21 2003-10-20 大日本インキ化学工業株式会社 Thermosetting resin composition, laminate using the same, and method for producing the same
JPH10157011A (en) * 1996-11-28 1998-06-16 Hitachi Chem Co Ltd Copper-clad laminate

Also Published As

Publication number Publication date
KR20040073532A (en) 2004-08-19
CN1692006A (en) 2005-11-02
KR100625157B1 (en) 2006-09-20
WO2004030884A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
TWI268945B (en) Resin composition, prepreg, and phenolic resin paper base laminate
JP2007009169A (en) Prepreg, and laminate board and print circuit board by using the same
KR100589096B1 (en) Phenol Resin Composition and Phenol Resin Copper-Clad Laminate
US20060105176A1 (en) Prepreg and laminate and printed wiring board using the same
JP2004123894A (en) Laminate
JP2004224999A (en) Phenol resin-laminated board and copper-clad phenolic resin-laminated board
JP3937732B2 (en) Phenolic resin composition, prepreg and phenolic resin laminate
JP2005290144A (en) Resin composition, prepreg and phenolic resin laminated plate
JP2001181417A (en) Prepreg and copper-clad laminate
JP2004123892A (en) Resin composition, prepreg and paper-based phenolic resin laminate
JP2004250579A (en) Resin composition, prepreg and phenolic resin laminate
JPH10279715A (en) Flame-retardant phenolic resin laminate
JP2003128742A (en) Modified novolak-type phenol resin, modified resol-type phenol resin, phenol resin composition, and laminated sheet
JP2002145975A (en) Phenol resin composition for laminate and method for producing phenol resin copper-clad laminate using the same phenol resin composition
JP2001284753A (en) Prepreg for printed wiring board and laminated board
JP2007009170A (en) Resin composition, and prepreg, laminate board and printed wiring board using the same
JPH10157043A (en) Phenol resin laminate
JPH10286925A (en) Flame retardant phenol resin laminate
JP2001279007A (en) Prepreg and laminated board for printed circuit board
JP2000319344A (en) Production of drying oil-modified phenolic resin and phenolic resin laminate
JP2002302590A (en) Phenol resin composition for laminate and method for producing copper-clad laminate using the same
JPH09157414A (en) Production of phenol resin
JP2004244565A (en) Method for producing paper-base phenolic laminated sheet
JPS6221369B2 (en)
JP2003221424A (en) Phenolic resin copper-clad laminated board using drying oil-modified phenolic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104