JP2004123699A - Method for producing diglycosylated gallic acid derivative - Google Patents

Method for producing diglycosylated gallic acid derivative Download PDF

Info

Publication number
JP2004123699A
JP2004123699A JP2003132776A JP2003132776A JP2004123699A JP 2004123699 A JP2004123699 A JP 2004123699A JP 2003132776 A JP2003132776 A JP 2003132776A JP 2003132776 A JP2003132776 A JP 2003132776A JP 2004123699 A JP2004123699 A JP 2004123699A
Authority
JP
Japan
Prior art keywords
reaction
gallic acid
acid derivative
diglycosylated
saccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003132776A
Other languages
Japanese (ja)
Inventor
Naoko Sumiya
住谷 直子
Michi Watanabe
渡辺 美地
Akiyoshi Hosokawa
細川 明美
Kazuaki Sugano
菅野 和明
Shuji Ichikawa
市川 修治
Takahiro Fukumoto
福本 貴啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003132776A priority Critical patent/JP2004123699A/en
Publication of JP2004123699A publication Critical patent/JP2004123699A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce a diglycosylated gallic acid derivative by an industrially simple operation in a high yield and in a high purity. <P>SOLUTION: This method for producing the diglycosylated gallic acid derivative comprises performing a condensation reaction of gallic acid, a gallic acid ester or a gallic acid salt with an acetylated monosaccharide, disaccharide or oligosaccharide while distilling off acetic acid produced as a byproduct, and after the completion of the reaction, isolating the obtained diglycosylated gallic acid derivative by crystallization. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、没食子酸誘導体のジグリコシル化反応に関する。ジグリコシル化没食子酸誘導体は毛髪用化粧料あるいは皮膚外用剤などの分野において有用な化合物である。
【0002】
【従来の技術】
近年、没食子酸の誘導体はクリームや乳液などの皮膚外用剤や、ヘアメイク剤やジェルなどの毛髪処理剤などの分野への応用が期待されている。なかでもグリコシル基を有する没食子酸誘導体は、安定性に優れ、かつ配合組成上の制限の少ない化合物として知られている(例えば特許文献1参照)特開2000−319116号公報)。
【0003】
しかしながら、上記公報の製造例を追試したところ反応収率が低く、かつ、糖類の使用量が大過剰であること及び目的生成物の単離に当たってはカラムクロマトグラフィーを用いているなど、工業的に製造するに当たっては煩雑で好ましくないことが判明した。
【0004】
【特許文献1】特開2000−319116号公報
【0005】
【発明が解決しようとする課題】
本発明は、ジグリコシル化没食子酸誘導体を工業上の使用が容易な試薬を用い、工業上簡便な操作により効率的に製造できる方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは鋭意検討の結果、没食子酸誘導体と1−アセチル化糖類とを縮合するにあたり、副生する酢酸を反応系外へ留去しながら反応させることでジグリコシル化没食子酸誘導体が容易に製造でき、さらに引き続き、晶析操作を行うことで不純物の混入無く簡便に目的物の単離ができることを見出し、ジグリコシル化没食子酸誘導体の簡便で効率的な製造プロセスを完成するに至った。すなわち、本発明の要旨は、下記一般式(1)
【0007】
【化4】

Figure 2004123699
【0008】
(式中、Rは、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム塩、アルキル基、アラルキル基、アルケニル基又はアリール基を示す)で表される没食子酸誘導体と、下記一般式(2)
【0009】
【化5】
Y−1−OAc  (2)
(式(2)中、Yは、単糖類、二糖類又はオリゴ糖類残基を示し、Acはアセチル基を示す)で表される糖類とを副生する酢酸を反応系外へ留去しながら縮合反応を行い、反応終了後、下記一般式(3)
【0010】
【化6】
Figure 2004123699
【0011】
(式中、R′は、水素原子、アルキル基、アラルキル基、アルケニル基又はアリール基を示し、Yは一般式(2)と同意義を示す)で表されるジグリコシル化没食子酸誘導体を晶析により単離することを特徴とするジグリコシル化没食子酸誘導体の製造方法に存する。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
(没食子酸誘導体)
上記一般式(1)で表される没食子酸誘導体は、五倍子、ゲンノショウコ、没食子、タラなどの天然物から抽出される没食子酸誘導体を原料として、塩の形成或いはエステル化等、公知の方法で製造することができ、また、市販品をそのまま用いることも可能である。
【0013】
Rとしては、水素原子;リチウム、ナトリウム、カリウムなどのアルカリ金属;マグネシウム、カルシウム、バリウムなどのアルカリ土類金属;アンモニウム、メチルアンモニウム、ジメチルアンモニウム、トリメチルアンモニウム、テトラメチルアンモニウムなどのアンモニウム塩;メチル、エチル、n−プロピル、i−プロピル、n−ブチル、2−ブチル、i−ブチル、t−ブチルなどのアルキル基;ベンジル、2−フェニルエチルなどのアラルキル基;アリル、メタリル、ビニルなどのアルケニル基又はフェニル、ナフチルなどのアリール基を示す。上記アルキル基、アラルキル基、アルケニル基及びアリール基の炭素数としては、20以下が好ましい。
【0014】
このうち上記Rとして好ましくは、水素原子、炭素数1〜10のアルキル基又はフェニル基であり、より好ましくは水素原子又は炭素数1〜6のアルキル基である。
(糖類)
本反応に用いられる糖類は、上記一般式(2)で表されるような1位の水酸基がアセチル化された糖類である。
【0015】
ここで、Yとしてはグルコース、マンノース、ガラクトース、リボースなどの単糖類;マルトース、セロビオース、ラクトースなどの二糖類;アミロース、セルロースのようなオリゴ糖残基などが挙げられ、このうち好ましくは単糖類であり、より好ましくはヘキソース類である。
これらの糖類には1−位以外にも複数の水酸基が存在するが、これらの水酸基は保護基を有している方が好ましい。
【0016】
上記水酸基の保護基としては、一般的な水酸基の保護基であれば特に限定されず、具体的には、アセチル、ベンゾイル、トリメチルアセチル、クロロアセチル、レブリノイル(CHCOCHCHCO−)などのアシル基;メチル、ベンジル、p−メトキシベンジル、アリル、トリチル、t−ブチルジメチルシリル、t−ブチルジフェニルシリル、トリメチルシリルエチル、トリクロロエチル等の各種保護基が挙げられる。またこれらの複数が互いに結合し、ベンジリデン、イソプロピリデンなどの環状アセタール基のように環を形成していてもよい。
【0017】
このうち、保護基の着脱が容易で誘導化しやすい一方、縮合反応における脱離が無い保護基として、メチル基、ベンジル基又はアシル基が好ましく、より好ましくはメチル基、アセチル基又はベンゾイル基であり、特に好ましくは1位の保護基と同じアセチル基である。
また、これらの糖類は分子内に複数個の不斉炭素を有するため数多くの立体異性体が存在するが、本反応においてはその立体化学に関して特に限定するものではなく、あらゆる立体異性体を使用することができる。また糖の1位の立体異性体についてもα体、β体のどちらのアノマー体でも本反応に供することができる。
【0018】
このうちYとして好ましくは、全ての水酸基を保護した単糖類であり、Y−1−OAcとしてより好ましくはペンタアセチル−β−D−グルコースである。従って、好ましく得られる没食子酸誘導体の糖類結合部(アノマー位)の立体構造はβ、βである
(縮合反応)
一般式(1)で表される没食子酸誘導体と一般式(2)で表される糖類との反応では、没食子酸誘導体に対する糖類の理論量として2モル比であり、理論量より著しく少ないと反応収率の低下を招くため好ましくない。一方、従来の技術(特開2000−319116号公報)に記載のように大過剰の糖類を使用すると反応収率は向上の傾向を示すが、未反応の糖類が反応系に多く残存し、その結果晶析等の操作で得られる目的物の純度が低下してしまので、コスト及び精製分離の観点から好ましくない。没食子酸誘導体に対する糖類の使用量は、没食子酸誘導体1モルに対して通常、0.05モル以上、好ましくは0.1モル以上、さらに好ましくは2モル以上の範囲である。また、通常20モル以下、好ましくは5モル以下、さらに好ましくは4モル以下、特に好ましくは3モル以下の範囲で用いられる。
【0019】
この反応は通常、酸の共存下で実施される。酸としては、塩酸、臭化水素酸、ヨウ化水素酸、フッ化水素酸、硫酸、硝酸、リン酸などの無機酸類;酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸などの有機酸類;ヘテロポリ酸、強酸性イオン交換樹脂などの固体酸類等のプロトン酸類;又は、三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素テトラヒドロフラン錯体、三フッ化ホウ素酢酸錯体、四塩化スズ、二塩化スズ、二塩化亜鉛、二臭化亜鉛、四塩化チタン、テトラエトキシチタンなどのルイス酸類が例示される。
【0020】
このうち、好ましい酸としてはルイス酸類であり、より好ましくは三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素テトラヒドロフラン錯体、又は三フッ化ホウ素酢酸錯体である。
酸の使用量は、没食子酸誘導体1モルに対し、通常0.001モル以上であり、好ましくは0.005モル以上である。また、通常10モル以下であり、好ましくは1モル以下である。
【0021】
この反応では、副生する酢酸を常圧下または減圧下における蒸留によって反応系外へ除去することで、没食子酸誘導体と糖類との反応性を高め、ジグリコシル化没食子酸誘導体の収率を向上させる。
特に減圧条件下においては、副生する酢酸を比較的低温で留去することができるので工業的にも好ましい。減圧下で縮合反応を行う際、酢酸よりも高沸点の溶媒を使用し副生する酢酸のみを留去する手法でも、酢酸と共沸混合物を形成する溶媒を使用し共沸組成物として留去する手法等いかなる方法でも構わない。
【0022】
反応温度は高すぎると目的物の分解反応が促進されるため、副生する酢酸の留去を容易に行うことができ、且つ、反応に必要な熱エネルギーが確保できるよう、圧力と温度条件を設定することが肝要である。
縮合反応の圧力条件としては、通常は常圧以下であり、好ましくは11kPa(約80torr)以上67kPa以下(約500torr)である。
このことは、必ずしも反応のすべてを減圧系で実施することが好ましいという意味ではなく、例えば、反応初期や反応後期は常圧下の反応で、途中減圧条件下副生する酢酸を減圧条件下で留去することでも目的は達成される。
【0023】
反応温度は、反応圧力にも依存するが、酢酸が留去できる温度であれば特に限定されず、通常、65℃以上、好ましくは70℃以上、より好ましくは75℃以上であり、反応温度は段階的に上昇させてもよい。また、反応温度の上限としては、常圧の場合、通常、200℃以下、好ましくは150℃以下である。減圧下の場合は、好ましくは110℃以下、さらに好ましくは100℃以下である。
【0024】
このとき使用される溶媒としては、本反応条件において不活性なものであれば構わないが、縮合反応の温度を確保する観点から、縮合反応時の圧力における沸点が70℃以上の溶媒が好ましい。または、常圧における沸点が100℃以上であるか、酢酸との共沸混合物を形成できる溶媒が好ましい。
例えば、常圧における沸点が100℃以上の溶媒の具体例としては、ジオキサン、ジエチレングリコールジメチルエーテルなどのポリエチレングリコールジアルキルエーテル類等が挙げられ、酢酸との共沸混合物を形成できる溶媒としては、ヘキサン、ヘプタン、シクロヘキサン、オクタン、トルエン、キシレン、メシチレン、エチルベンゼン、クロロベンゼン等の炭化水素系溶媒等が挙げられる。
【0025】
このうち酢酸との共沸混合物を形成し、常圧における該共沸混合物の沸点が60〜116℃となるような溶媒が好ましく、より好ましくはトルエン又はキシレンである。
また、反応後に目的物を晶析等で取得する際に溶解度差の大きい溶媒であること及び酢酸との共沸組成で酢酸濃度が高いとの観点からも、トルエン又はキシレンが好ましい。
上記溶媒は、単独で用いても、混合溶媒として用いてもよい。
溶媒の使用量は、反応及びその後の晶析等の取り出し操作で攪拌が可能な量であれば特に限定されないが、没食子酸誘導体の重量に対し、通常0.01〜100倍、好ましくは0.05〜30倍である。
共沸混合物を形成する溶媒で反応を実施した場合、酢酸留去とともに溶媒を留去することとなるが、反応後に攪拌な可能な溶媒量を確保できるよう反応初期から多めの溶媒量を使用しても、留出量に見合う溶媒を反応後又は反応中に添加してもよい。
【0026】
反応時間は、反応の規模にもよるが、通常、0.5時間以上、好ましくは1時間以上行われる。
但し、110℃以上の温度で反応を行う場合は、生成物のジグリコシル化没食子酸誘導体のグリコシル置換部位(アノマー位)での熱異性化が逐次的に起こりうるため長時間の高温処理は避ける方が望ましい。従って、通常、24時間以下、好ましくは12時間以下の範囲で実施される。
【0027】
この反応では、反応蒸留操作の可能な反応器を用いる。また反応試剤の投入方法・順序にも特に制限はなく、任意の方法・順序で添加することができ、反応器内部が所定の温度に到達した時点で反応開始とする。このうち具体的な好ましい反応様式としては、例えば、室温においてディーンスターク管および溶媒滴下容器を備えた回分式反応容器に、没食子酸誘導体、糖類、溶媒及び酸を加え、撹拌しながら昇温し、内容物が沸点に達し留出してくる酢酸と溶媒の共沸混合物を抜き取り、同量の新鮮な溶媒を添加することで反応を行う方法が挙げられる。
【0028】
また、別の好ましい反応様式としては、減圧系ライン及び留出ラインを備えた回分式反応容器に、没食子酸誘導体、糖類、溶媒及び酸を加え、攪拌しながら昇温し所定の温度で反応を実施する。反応により副生する酢酸は減圧下において留去し反応を促進させる。共沸により溶媒量が減少し目的物が析出する場合又は反応後の晶析においてスラリー濃度が高く攪拌困難と判断される場合には、反応後あるいは反応中に溶媒を追加することが必要となる。留去する溶媒量を削減するためには、還流器を備えることや規則充填物又は不規則充填物等の精留塔を備えることは、工業的に実施の際に溶媒量削減のため有用な手段となる。
生成物の確認は、必要に応じて、HPLC等による反応液の分析により行うことができる。
【0029】
(晶析)
本製造方法においては、所定時間反応させた後、目的とする上記一般式(3)で表されるようなジグリコシル化没食子酸誘導体を晶析単離する。ここで一般式(3)中のR′としては、水素原子、アルキル基、アラルキル基、アルケニル基又はアリール基であり、これらの基としては、一般式(1)中のRと同様のものである。
【0030】
晶析方法としては、1)反応液を冷却して晶析させる方法、2)反応液に種晶を添加して晶析させる方法、3)反応液に貧溶媒を添加して晶析させる方法等一般的な晶析方法を単独で又はそれらを組み合わせて用いればよく、必要に応じて、反応液を濃縮してから1)〜3)に記載のいずれかの又は複数組み合わせて操作を実施してもよい。
晶析時の温度は、基質の濃度、種晶や貧溶媒の使用の有無により変わるが、一般的には−50℃〜80℃、好ましくは−20℃〜50℃、特に好ましくは0℃〜40℃の範囲である。
【0031】
晶析時に使用される貧溶媒としては、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒が例示される。またその添加量は没食子酸誘導体の重量に対し、通常0.001〜10倍、好ましくは0.005〜3倍である。
反応液を濃縮してから晶析する場合の濃縮度は、系内の基質濃度にも依存するが、濃縮後の残存溶媒量が反応仕込み時の溶媒体積量に対して20〜90%となる程度とするのが好ましい。
反応液を50℃以下に冷却して晶析を実施する場合には、温度による目的物の溶解度差が大きいものが好ましく、トルエン、キシレン、クロロベンゼン等の芳香族系炭化水素溶媒が例示される。
【0032】
上記晶析操作により得られた結晶は、ろ過、乾燥という通常の後処理操作により単離することができるが、必要に応じて、さらに、例えばトルエン、キシレン等の芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;又はテトラヒドロフラン、ジブチルエーテル等のエーテル系溶媒といった中から選ばれる任意の有機溶媒を再結晶溶媒として使用し、再結晶精製してから単離してもよい。
【0033】
また、必要に応じて、更に結晶に付着する母液を洗浄するあるいは、再結晶精製を実施する等の操作を実施してもよい。反応液には目的とするジグリコシル化没食子酸誘導体の他に数種の副生物、中間体であるモノグリコシル化没食子酸誘導体等が含有し、更にジグリコシル化没食子酸誘導体のなかでも置換部位の異なる異性体(α,α結合体、α,β結合体)が含有するが、上記晶析操作により選択率よくβ,β結合を有するジグリコシル化没食子酸誘導体が得られる。
【0034】
また、上記で得られるジグリコシル化没食子酸誘導体の糖水酸基の保護基は、その保護記の種類によって一般的な脱保護反応、例えば、アセチル基の場合には塩基による加水分解反応、ベンジル基の場合には水素添加反応等といった公知の反応を行うことにより、除去すればよい。
【0035】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明は下記実施例に限定されるものではない。
実施例1
滴下ロート、ディーンスターク管、ジムロート冷却管、温度計を付した50mLフラスコに、没食子酸メチル1.25g(6.8mmol)、ペンタアセチル−β−D−グルコース11.0g(28.2mmol)、トルエン27mLを仕込み、室温で撹拌した。三フッ化ホウ素ジエチルエーテル錯体8μL(0.063mmol)を加え、油浴により内温80℃まで昇温し、同温で2時間撹拌した。その後、内温を110℃まで上げると酢酸とトルエンの共沸混合物が留出した。留出速度は約0.4mL/分の速度であった。30分ごとに反応器にトルエン12mLを添加しながら、同温で2時間反応させた。撹拌しながら室温まで冷却し得られた反応液に、種晶として純品の3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル3mgを添加し、同温で1時間撹拌したところ白色沈殿が析出した。沈殿をろ取し、少量のトルエンで洗浄した後、減圧乾燥し、3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル2.58g(3.05mmoL)を白色結晶として得た。収率45%。純度95.3%(LC面積%)であった。
【0036】
【表1】
Figure 2004123699
【0037】
3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステルの物理化学的性状を以下に示す。
MS(m/e):843(MH−)、513,182(FAB−)
1H−NMR(400MHz,d6−DMSO,δppm):
1.95,1.98,2.04(S,24H,8×CH3CO−)、3.80(S,3H,CH3OCO−)、4.0−4.2(m,4H,H6/H6`)、4.21(m,2H,H5/H5`)、4.9−5.1、5.35−5.42(m,6H,H4/H4`,H2/H2`,H3/H3`)、5.52(d、J=7.6Hz,H1/H1`)、7.47(S,2H,ArH)、9.64(br−S,1H,OH)13C−NMR(400MHz,d6−DMSO,δppm):
20.2,20.3,20.4(8×CH3CO−)、52.07(CH3OCO−)、61.75(C6/C6`)、67.94(C4/C4`)、70.82,70.89(C2/C2`,C5/C5`)、71.99(C3/C3`)、98.55(C1/C1`)、113.79,119.33,143.18,144.97(arom−C)、165.32(arom−C=O)、168.85,169.20,169.39,169.85(8×acetyl−C=O)
【0038】
比較例1
溶媒として1,2−ジクロロエタン27mLを用いた以外は実施例1と同様の操作で仕込んだ。油浴により内温80℃まで昇温し、同温で8時間撹拌し、その間、経時的にHPLCで追跡したところ、モノグルコシル体とジグルコシル体の面積比が45/55から変化せず、モノ置換体で反応が停止していることが分かった。また反応停止後、撹拌しながら室温まで冷却し得られた反応液に、種晶として純品の3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル3mgを添加し、同温で5時間撹拌したが、結晶の析出は観察されなかった。
【0039】
実施例2
滴下ロート、ディーンスターク管、ジムロート冷却管、温度計を付した200mLフラスコに、没食子酸メチル6.25g(33.9mmol)、ペンタアセチル−β−D−グルコース34.4g(88.1mmol)、トルエン135mLを仕込み、室温で撹拌した。三フッ化ホウ素ジエチルエーテル錯体40μL(0.32mmol)を加え、油浴により内温を110℃まで上げると酢酸とトルエンの共沸混合物が留出した。留出速度は約1mL/分の速度であった。30分ごとに反応器にトルエン30mLを添加しながら、同温で6時間反応させた。撹拌しながら室温まで冷却し、さらに同温で15時間撹拌したところ白色沈殿が析出した。沈殿をろ取し、少量のトルエンで洗浄した後、減圧乾燥し、3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル9.16g(10.8mmoL)を白色結晶として得た。収率32%。純度95.5%(LC面積%)であった。
【0040】
この結晶5gに酢酸エチル10mLおよびn−ヘキサン60mLを加え、40℃に加温して完溶させた。室温まで放冷し、析出した結晶をろ取し少量のヘキサンで洗浄、減圧乾燥して3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステルの白色結晶4.72gを得た。再結晶回収率94.4%、純度98.0%(LC面積%)であった。
【0041】
実施例3
滴下ロート、ディーンスターク管、ジムロート冷却管、温度計を付した1Lフラスコに、没食子酸メチル31.25g(169.7mmol)、ペンタアセチル−β−D−グルコース132.6g(339.7mmol)、トルエン675mLを仕込み、室温で撹拌した。三フッ化ホウ素ジエチルエーテル錯体200μL(1.6mmol)を加え、油浴により内温を110℃まで上げると酢酸とトルエンの共沸混合物が留出した。留出速度は約5mL/分の速度であった。10分ごとに反応器にトルエン50mLを添加しながら、同温で8時間反応させた。撹拌しながら室温まで冷却し得られた反応液に、種晶として純品の3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル3mgを添加し、同温で1時間撹拌したところ白色沈殿が析出した。さらに同温で12時間撹拌した後、沈殿をろ取し、少量のトルエンで洗浄した後、減圧乾燥し、3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル35.8g(42.4mmoL)を白色結晶として得た。収率25%。純度94.2%(LC面積%)であった。
【0042】
実施例4
滴下ロート、ディーンスターク管、ジムロート冷却管、温度計を付した50mLフラスコに、没食子酸メチル1.25g(6.8mmol)、ペンタアセチル−β−D−グルコース11.0g(28.2mmol)、トルエン27mLを仕込み、室温で撹拌した。三フッ化ホウ素酢酸錯体9.5μL(0.068mmol)を加え、油浴により内温110℃まで上げると酢酸とトルエンの共沸混合物が留出した。留出速度は約0.5mL/分の速度であった。30分ごとに反応器にトルエン15mLを添加しながら、同温で5時間反応させた。撹拌しながら室温まで冷却し得られた反応液に、種晶として純品の3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル1mgを添加し、同温で1時間撹拌したところ白色沈殿が析出した。沈殿をろ取し、少量のトルエンで洗浄した後、減圧乾燥し、3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル1.78g(2.1mmoL)を白色結晶として得た。収率31%。純度94.9%(LC面積%)であった。
【0043】
実施例5
ト字管の留出ライン(リービッヒ冷却管及び受器含む)、減圧ライン(真空ポンプ及び減圧調整器を含む)、温度計、大型回転子を備えた300mlの丸底フラスコに、没食子酸メチル9.2g(50mmol)、ペンタアセチル−β−D−グルコース48.8g(125mmol:2.5モル比)、m−キシレン195mlを仕込み、室温で攪拌した。三フッ化ホウ素ジエチルエーテル錯体70mg(0.5mmol:1mol%)を加え、油浴により内温80℃まで昇温し、同温で2時間攪拌した。その後、減圧条件13kPa(約100torr)とし、内温80℃のまま酢酸とm−キシレンの共沸混合物を留去させた。約30ml/hrの速度で留去を行い、1hrごとのサンプリングとともに内液量が減少しないよう留出分の溶媒を逐次追加した。その間、経時的に反応の進行をHPLCにより追跡したが、10時間程度から反応の進行が鈍り、12時間で反応を停止し冷却操作を実施した。反応液での目的物:3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル[β,β体]の収率はおよそ60%であった。攪拌下室温まで冷却する途中結晶の析出が観察された。室温下(20℃)で濾過を実施し、90mlの溶媒で洗浄を行い白色の結晶を得た。減圧乾燥後、21.9gの目的物:3,5−ビス−O−(2,3,4,6−テトラアセチルグルコシル)没食子酸メチルエステル[β,β体](25.6mmol)が得られた。収率51%、純度98.7%(LC面積%)であった。
【0044】
実施例6
反応温度を100℃に設定し、減圧条件27kPa(約200torr)を変更した以外は実施例5と同様な操作を実施し、経時的な反応の変化を観察した。減圧反応7時間程度から反応の進行が鈍ってくるとともに、LC分析上多種の不明ピークが増加傾向にあった。10時間で反応を停止したところ反応収率46%であった。その後、実施例5と同様の後処理操作を実施し、16.4g(18.8mmol)の目的物を得た。収率38%で、純度97%(LC面積%)であった。
【0045】
実施例7
反応溶媒を混合キシレンに変更し、反応スケールを上げて反応を実施した。没食子酸メチル95.0g(516mmol)、ペンタアセチル−β−D−グルコース503g(1.28mol:2.5モル比)、混合キシレン2000mlを仕込み、室温でアンカー型の攪拌翼にて攪拌した。三フッ化ホウ素ジエチルエーテル錯体730mg(5mmol:1mol%)を加え、実施例5と同様の反応温度及び減圧条件で反応を実施した。約250ml/hrの速度で留去を行い、1hrごとのサンプリングとともに内液量が減少しないよう留出分の溶媒を逐次追加した。更に、減圧反応の途中(2時間目)に三フッ化ホウ素ジエチルエーテル錯体370mg(2.5mmol:0.5mol%)を添加することで反応時間の短縮が図れ、減圧反応5時間後に反応収率61%を達成した。その後、実施例5と同様な後処理操作を実施し、237g(273mmol)の目的物を得た。収率53%で、純度97%(LC面積%)であった。
【0046】
実施例8
5段の棚段(オルダーショウ型)精留塔とその上部に還流比がコントロールできるよう電磁弁を設けた留出ライン(リービッヒ冷却管及び受器含む)、減圧ライン(真空ポンプ及び減圧調整器を含む)、温度計、大型回転子を備えた1000mlの丸底フラスコに、没食子酸メチル14.7g(80mmol)、ペンタアセチル−β−D−グルコース78.1g(200mmol:2.5モル比)、m−キシレン480mlを仕込み、室温で攪拌した。三フッ化ホウ素ジエチルエーテル錯体110mg(0.8mmol:1mol%)を加え、油浴により内温80℃まで昇温し、同温で2時間攪拌した。その後、減圧条件13kPa(約100torr)とし、内温80℃のまま酢酸とm−キシレンの共沸混合物を留去させた。還流器で還流比をコントロールし、反応後期には留去量を絞り反応時間20時間で合計約160ml留去を実施した。このときの反応収率は59%であった。この実験では、反応途中及び反応後に溶媒を追加することなく後処理の晶析操作を実施した。実施例5と同様に濾過、洗浄、減圧乾燥等の後処理操作を行い、37.1g(43.1mmol)の目的物を得た。収率54%で、純度98%(LC面積%)であった。
【0047】
【発明の効果】
本発明によれば、工業上簡便な操作により、高収率かつ高純度でジグリコシル化没食子酸誘導体を製造することが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a diglycosylation reaction of a gallic acid derivative. Diglycosylated gallic acid derivatives are useful compounds in the fields of hair cosmetics and skin external preparations.
[0002]
[Prior art]
In recent years, gallic acid derivatives have been expected to be applied to fields such as skin external preparations such as creams and emulsions, and hair treatment agents such as hair makeup agents and gels. Among them, gallic acid derivatives having a glycosyl group are known as compounds having excellent stability and few restrictions on the composition (for example, see Patent Document 1) JP-A-2000-319116.
[0003]
However, when the production examples of the above publication were additionally tested, the reaction yield was low, and the amount of saccharide used was excessively large, and the isolation of the target product was carried out industrially, for example, using column chromatography. It has been found that the production is complicated and unfavorable.
[0004]
[Patent Document 1] JP-A-2000-319116
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing a diglycosylated gallic acid derivative by industrially simple operation using a reagent which is easy to use industrially.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and have found that in condensing a gallic acid derivative with a 1-acetylated saccharide, a diglycosylated gallic acid derivative can be easily produced by reacting while distilling off by-produced acetic acid out of the reaction system. The present inventors have found that the desired product can be easily isolated without contamination by impurities by performing crystallization operation, and a simple and efficient process for producing a diglycosylated gallic acid derivative has been completed. That is, the gist of the present invention is represented by the following general formula (1)
[0007]
Embedded image
Figure 2004123699
[0008]
(Wherein, R represents a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium salt, an alkyl group, an aralkyl group, an alkenyl group, or an aryl group); and a gallic acid derivative represented by the following general formula (2)
[0009]
Embedded image
Y-1-OAc (2)
(In the formula (2), Y represents a monosaccharide, disaccharide, or oligosaccharide residue, and Ac represents an acetyl group) while distilling acetic acid produced as a by-product with the saccharide to the outside of the reaction system. After performing the condensation reaction and completing the reaction, the following general formula (3)
[0010]
Embedded image
Figure 2004123699
[0011]
(Wherein R ′ represents a hydrogen atom, an alkyl group, an aralkyl group, an alkenyl group or an aryl group, and Y has the same meaning as in the general formula (2)). And a method for producing a diglycosylated gallic acid derivative.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
(Gallic acid derivative)
The gallic acid derivative represented by the above general formula (1) is produced by a known method such as salt formation or esterification using a gallic acid derivative extracted from natural products such as quintet, genoshoko, gallic and cod as a raw material. It is also possible to use a commercially available product as it is.
[0013]
R represents a hydrogen atom; an alkali metal such as lithium, sodium and potassium; an alkaline earth metal such as magnesium, calcium and barium; an ammonium salt such as ammonium, methylammonium, dimethylammonium, trimethylammonium and tetramethylammonium; Alkyl groups such as ethyl, n-propyl, i-propyl, n-butyl, 2-butyl, i-butyl and t-butyl; aralkyl groups such as benzyl and 2-phenylethyl; alkenyl groups such as allyl, methallyl and vinyl Or an aryl group such as phenyl and naphthyl. The alkyl group, aralkyl group, alkenyl group and aryl group preferably have 20 or less carbon atoms.
[0014]
Among them, R is preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a phenyl group, and more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
(Sugars)
The saccharide used in this reaction is a saccharide in which the hydroxyl group at position 1 is acetylated as represented by the above general formula (2).
[0015]
Here, examples of Y include monosaccharides such as glucose, mannose, galactose, and ribose; disaccharides such as maltose, cellobiose, and lactose; and oligosaccharide residues such as amylose and cellulose. Of these, preferred are monosaccharides. And more preferably hexoses.
These saccharides have a plurality of hydroxyl groups other than the 1-position, and these hydroxyl groups preferably have a protecting group.
[0016]
The hydroxyl-protecting group is not particularly limited as long as it is a general hydroxyl-protecting group. Specifically, acetyl, benzoyl, trimethylacetyl, chloroacetyl, levulinoyl (CH 3 COCH 2 CH 2 Acyl groups such as CO-); and various protecting groups such as methyl, benzyl, p-methoxybenzyl, allyl, trityl, t-butyldimethylsilyl, t-butyldiphenylsilyl, trimethylsilylethyl, and trichloroethyl. Further, a plurality of these may be bonded to each other to form a ring like a cyclic acetal group such as benzylidene and isopropylidene.
[0017]
Of these, while the protective group is easily attached and detached and easily derivatized, a methyl group, a benzyl group or an acyl group is preferable as the protective group that does not leave in the condensation reaction, and more preferably a methyl group, an acetyl group or a benzoyl group. And particularly preferably the same acetyl group as the protecting group at the 1-position.
In addition, since these saccharides have a plurality of asymmetric carbons in the molecule, there are many stereoisomers, but the stereochemistry is not particularly limited in this reaction, and all stereoisomers are used. be able to. Regarding the stereoisomer at the 1-position of the sugar, either the α-form or the β-form isomer can be used in this reaction.
[0018]
Among them, Y is preferably a monosaccharide in which all hydroxyl groups are protected, and Y-1-OAc is more preferably pentaacetyl-β-D-glucose. Therefore, the steric structure of the saccharide-binding portion (anomeric position) of the gallic acid derivative preferably obtained is β, β.
(Condensation reaction)
In the reaction between the gallic acid derivative represented by the general formula (1) and the saccharide represented by the general formula (2), the theoretical amount of the saccharide to the gallic acid derivative is 2 molar ratio. It is not preferable because the yield is reduced. On the other hand, when a large excess of saccharides is used as described in the related art (Japanese Patent Application Laid-Open No. 2000-319116), the reaction yield tends to increase, but a large amount of unreacted saccharides remains in the reaction system, and As a result, the purity of the target product obtained by an operation such as crystallization decreases, which is not preferable from the viewpoint of cost and purification and separation. The amount of the saccharide used relative to the gallic acid derivative is usually 0.05 mol or more, preferably 0.1 mol or more, and more preferably 2 mol or more, based on 1 mol of the gallic acid derivative. Further, it is used in an amount of usually 20 mol or less, preferably 5 mol or less, more preferably 4 mol or less, particularly preferably 3 mol or less.
[0019]
This reaction is usually performed in the presence of an acid. Examples of the acid include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, hydrofluoric acid, sulfuric acid, nitric acid, and phosphoric acid; acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, and benzenesulfonic acid. , Organic acids such as toluenesulfonic acid, etc .; protonic acids such as heteropoly acids, solid acids such as strongly acidic ion exchange resins; or boron trifluoride diethyl ether complex, boron trifluoride tetrahydrofuran complex, boron trifluoride acetic acid complex, Examples thereof include Lewis acids such as tin tetrachloride, tin dichloride, zinc dichloride, zinc dibromide, titanium tetrachloride, and tetraethoxy titanium.
[0020]
Among them, preferred acids are Lewis acids, and more preferred are boron trifluoride diethyl ether complex, boron trifluoride tetrahydrofuran complex, and boron trifluoride acetic acid complex.
The amount of the acid to be used is generally 0.001 mol or more, preferably 0.005 mol or more, per 1 mol of the gallic acid derivative. Further, it is usually at most 10 mol, preferably at most 1 mol.
[0021]
In this reaction, by-product acetic acid is removed from the reaction system by distillation under normal pressure or reduced pressure to increase the reactivity between the gallic acid derivative and the saccharide, thereby improving the yield of the diglycosylated gallic acid derivative.
In particular, under reduced pressure conditions, acetic acid produced as a by-product can be distilled off at a relatively low temperature, which is industrially preferable. When performing a condensation reaction under reduced pressure, a method of using a solvent having a higher boiling point than acetic acid and distilling off only acetic acid as a by-product, or using a solvent that forms an azeotropic mixture with acetic acid and distilling off as an azeotropic composition Any method may be used, such as the method of performing.
[0022]
If the reaction temperature is too high, the decomposition reaction of the target substance is promoted, so that the by-product acetic acid can be easily distilled off, and the pressure and temperature conditions are adjusted so that the heat energy required for the reaction can be secured. It is important to set.
The pressure condition of the condensation reaction is usually lower than or equal to normal pressure, preferably higher than or equal to 11 kPa (about 80 torr) and lower than or equal to 67 kPa (about 500 torr).
This does not necessarily mean that it is preferable to carry out the entire reaction in a reduced pressure system. The goal is achieved by leaving.
[0023]
The reaction temperature depends on the reaction pressure, but is not particularly limited as long as acetic acid can be distilled off, and is usually 65 ° C. or higher, preferably 70 ° C. or higher, more preferably 75 ° C. or higher. It may be raised stepwise. The upper limit of the reaction temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower in the case of normal pressure. In the case of reduced pressure, the temperature is preferably 110 ° C or lower, more preferably 100 ° C or lower.
[0024]
The solvent used at this time may be any solvent as long as it is inactive under the present reaction conditions, but from the viewpoint of securing the temperature of the condensation reaction, a solvent having a boiling point of 70 ° C. or higher at the pressure during the condensation reaction is preferable. Alternatively, a solvent having a boiling point of 100 ° C. or higher at normal pressure or capable of forming an azeotropic mixture with acetic acid is preferable.
For example, specific examples of the solvent having a boiling point of 100 ° C. or higher at normal pressure include dioxane, polyethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, and the like, and solvents capable of forming an azeotropic mixture with acetic acid include hexane and heptane. And hydrocarbon solvents such as cyclohexane, octane, toluene, xylene, mesitylene, ethylbenzene and chlorobenzene.
[0025]
Among them, a solvent that forms an azeotrope with acetic acid and has a boiling point of 60 to 116 ° C. at normal pressure is preferable, and toluene or xylene is more preferable.
Further, toluene or xylene is preferable also from the viewpoint that the solvent has a large solubility difference when the target product is obtained by crystallization or the like after the reaction, and that the acetic acid concentration is high due to the azeotropic composition with acetic acid.
The above solvents may be used alone or as a mixed solvent.
The amount of the solvent to be used is not particularly limited as long as it can be stirred in the reaction and subsequent removal operations such as crystallization, but is usually 0.01 to 100 times, preferably 0.1 to 100 times the weight of the gallic acid derivative. It is 0.5 to 30 times.
When the reaction is carried out with a solvent that forms an azeotrope, the solvent is distilled off together with the acetic acid distillation.However, a larger amount of the solvent should be used from the beginning of the reaction so that the amount of the solvent that can be stirred after the reaction is secured. Alternatively, a solvent corresponding to the distillation amount may be added after or during the reaction.
[0026]
The reaction time depends on the scale of the reaction, but is usually 0.5 hour or more, preferably 1 hour or more.
However, when the reaction is carried out at a temperature of 110 ° C. or higher, it is preferable to avoid prolonged high-temperature treatment because thermal isomerization can occur sequentially at the glycosyl-substituted site (anomeric position) of the diglycosylated gallic acid derivative of the product. Is desirable. Therefore, it is usually carried out in a range of 24 hours or less, preferably 12 hours or less.
[0027]
In this reaction, a reactor capable of performing a reactive distillation operation is used. There is also no particular limitation on the method and order of charging the reaction reagents, and they can be added in any method and order. The reaction is started when the inside of the reactor reaches a predetermined temperature. As a specific preferable reaction mode among them, for example, a batch type reaction vessel equipped with a Dean-Stark tube and a solvent dropping vessel at room temperature, a gallic acid derivative, a saccharide, a solvent and an acid are added, and the temperature is raised while stirring, A method in which an azeotropic mixture of acetic acid and a solvent whose contents reach the boiling point and which is distilled off is withdrawn, and the same amount of fresh solvent is added to carry out the reaction.
[0028]
Further, as another preferable reaction mode, a gallic acid derivative, a saccharide, a solvent and an acid are added to a batch type reaction vessel equipped with a reduced pressure system line and a distillation line, and the temperature is raised while stirring to carry out the reaction at a predetermined temperature. carry out. Acetic acid by-produced by the reaction is distilled off under reduced pressure to promote the reaction. When the amount of the solvent decreases due to azeotropy and the target product is precipitated, or when it is determined that the slurry concentration is high and stirring is difficult in the crystallization after the reaction, it is necessary to add a solvent after or during the reaction. . In order to reduce the amount of the solvent to be distilled off, it is useful to provide a reflux condenser or to provide a rectification column such as an ordered packing or an irregular packing, which is useful for reducing the amount of the solvent in industrial practice. Means.
Confirmation of the product can be performed by analyzing the reaction solution by HPLC or the like, if necessary.
[0029]
(Crystallization)
In the present production method, after reacting for a predetermined time, the desired diglycosylated gallic acid derivative represented by the above general formula (3) is isolated by crystallization. Here, R ′ in the general formula (3) is a hydrogen atom, an alkyl group, an aralkyl group, an alkenyl group, or an aryl group, and these groups are the same as Rs in the general formula (1). is there.
[0030]
As the crystallization method, 1) a method of cooling and crystallizing the reaction solution, 2) a method of crystallizing by adding a seed crystal to the reaction solution, and 3) a method of crystallizing by adding a poor solvent to the reaction solution. A common crystallization method or the like may be used alone or in combination thereof. If necessary, the reaction solution is concentrated, and then the operation is performed by combining any one or a plurality of the methods described in 1) to 3). You may.
The temperature at the time of crystallization varies depending on the concentration of the substrate, the use of seed crystals or the use of a poor solvent, but is generally -50 ° C to 80 ° C, preferably -20 ° C to 50 ° C, and particularly preferably 0 ° C to It is in the range of 40 ° C.
[0031]
Examples of the poor solvent used during crystallization include aliphatic hydrocarbon solvents such as pentane, hexane and heptane. The amount of addition is usually 0.001 to 10 times, preferably 0.005 to 3 times, the weight of the gallic acid derivative.
The degree of concentration in the case of crystallization after concentration of the reaction solution also depends on the substrate concentration in the system, but the amount of the residual solvent after concentration is 20 to 90% with respect to the solvent volume at the time of the reaction preparation. It is preferable to set the degree.
When crystallization is carried out by cooling the reaction solution to 50 ° C. or lower, those having a large difference in solubility of the target compound depending on the temperature are preferable, and examples thereof include aromatic hydrocarbon solvents such as toluene, xylene, and chlorobenzene.
[0032]
The crystals obtained by the above-mentioned crystallization operation can be isolated by a usual post-treatment operation of filtration and drying, but if necessary, furthermore, for example, an aromatic hydrocarbon solvent such as toluene and xylene; acetic acid An arbitrary organic solvent selected from ester solvents such as ethyl and butyl acetate; and ether solvents such as tetrahydrofuran and dibutyl ether may be used as a recrystallization solvent, and may be isolated after recrystallization purification.
[0033]
Further, if necessary, operations such as washing the mother liquor adhering to the crystal or performing recrystallization purification may be performed. The reaction solution contains several by-products and intermediates such as a monoglycosylated gallic acid derivative in addition to the target diglycosylated gallic acid derivative, and isomers having different substitution sites among the diglycosylated gallic acid derivatives. (Α, α-linked, α, β-linked), but the above-mentioned crystallization operation provides a diglycosylated gallic acid derivative having β, β bonds with high selectivity.
[0034]
Further, the protecting group for the sugar hydroxyl group of the diglycosylated gallic acid derivative obtained above may be a general deprotection reaction depending on the type of protection described, for example, a hydrolysis reaction with a base in the case of an acetyl group, a case of a benzyl group. May be removed by performing a known reaction such as a hydrogenation reaction.
[0035]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
Example 1
In a 50 mL flask equipped with a dropping funnel, a Dean-Stark tube, a Dimroth condenser, and a thermometer, 1.25 g (6.8 mmol) of methyl gallate, 11.0 g (28.2 mmol) of pentaacetyl-β-D-glucose, and toluene 27 mL was charged and stirred at room temperature. 8 μL (0.063 mmol) of boron trifluoride diethyl ether complex was added, the temperature was raised to 80 ° C. in an oil bath, and the mixture was stirred at the same temperature for 2 hours. Thereafter, when the internal temperature was raised to 110 ° C., an azeotropic mixture of acetic acid and toluene was distilled off. The distillation rate was about 0.4 mL / min. The reaction was carried out at the same temperature for 2 hours while adding 12 mL of toluene to the reactor every 30 minutes. After cooling to room temperature while stirring, 3 mg of pure 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester was added as a seed crystal to the obtained reaction solution, After stirring at the same temperature for 1 hour, a white precipitate was deposited. The precipitate was collected by filtration, washed with a small amount of toluene, dried under reduced pressure, and 2.58 g of 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester (3.05 mmol) ) Was obtained as white crystals. Yield 45%. The purity was 95.3% (LC area%).
[0036]
[Table 1]
Figure 2004123699
[0037]
The physicochemical properties of 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester are shown below.
MS (m / e): 843 (MH-), 513, 182 (FAB-)
1H-NMR (400 MHz, d6-DMSO, δ ppm):
1.95, 1.98, 2.04 (S, 24H, 8 x CH3CO-), 3.80 (S, 3H, CH3OCO-), 4.0-4.2 (m, 4H, H6 / H6) ), 4.21 (m, 2H, H5 / H5 `), 4.9-5.1, 5.35-5.42 (m, 6H, H4 / H4 `, H2 / H2 `, H3 / H3 `) ), 5.52 (d, J = 7.6 Hz, H1 / H1 `), 7.47 (S, 2H, ArH), 9.64 (br-S, 1H, OH) 13C-NMR (400 MHz, d6 -DMSO, δ ppm):
20.2, 20.3, 20.4 (8 x CH3CO-), 52.07 (CH3OCO-), 61.75 (C6 / C6 `), 67.94 (C4 / C4 `), 70.82 70.89 (C2 / C2 `, C5 / C5 `), 71.99 (C3 / C3 `), 98.55 (C1 / C1 `), 113.79, 119.33, 143.18, 144.97 (Arom-C), 165.32 (arom-C = O), 168.85, 169.20, 169.39, 169.85 (8 × acetyl-C = O)
[0038]
Comparative Example 1
The procedure of Example 1 was repeated except that 27 mL of 1,2-dichloroethane was used as the solvent. The temperature was raised to an internal temperature of 80 ° C. by an oil bath, and the mixture was stirred at the same temperature for 8 hours. During that time, the area ratio between the monoglucosyl form and the diglucosyl form did not change from 45/55. It was found that the reaction was stopped by the substituted product. After stopping the reaction, the reaction solution was cooled to room temperature while stirring, and pure 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester was added as a seed crystal. 3 mg was added and the mixture was stirred at the same temperature for 5 hours, but no precipitation of crystals was observed.
[0039]
Example 2
In a 200 mL flask equipped with a dropping funnel, a Dean-Stark tube, a Dimroth condenser, and a thermometer, 6.25 g (33.9 mmol) of methyl gallate, 34.4 g (88.1 mmol) of pentaacetyl-β-D-glucose, and toluene 135 mL was charged and stirred at room temperature. When 40 μL (0.32 mmol) of boron trifluoride diethyl etherate was added and the internal temperature was raised to 110 ° C. by an oil bath, an azeotropic mixture of acetic acid and toluene was distilled off. The distillation rate was about 1 mL / min. The reaction was carried out at the same temperature for 6 hours while adding 30 mL of toluene to the reactor every 30 minutes. The mixture was cooled to room temperature with stirring, and further stirred at the same temperature for 15 hours, whereby a white precipitate was deposited. The precipitate was collected by filtration, washed with a small amount of toluene, dried under reduced pressure, and 9.16 g (10.8 mmol) of 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester ) Was obtained as white crystals. Yield 32%. The purity was 95.5% (LC area%).
[0040]
Ethyl acetate (10 mL) and n-hexane (60 mL) were added to 5 g of the crystals, and the mixture was heated to 40 ° C. and completely dissolved. The mixture was allowed to cool to room temperature, and the precipitated crystals were collected by filtration, washed with a small amount of hexane, and dried under reduced pressure to give 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester in white color. 4.72 g of crystals were obtained. The recrystallization recovery rate was 94.4% and the purity was 98.0% (LC area%).
[0041]
Example 3
In a 1 L flask equipped with a dropping funnel, a Dean-Stark tube, a Dimroth condenser, and a thermometer, 31.25 g (169.7 mmol) of methyl gallate, 132.6 g (339.7 mmol) of pentaacetyl-β-D-glucose, and toluene 675 mL was charged and stirred at room temperature. 200 μL (1.6 mmol) of boron trifluoride diethyl ether complex was added, and the internal temperature was raised to 110 ° C. by an oil bath, whereby an azeotropic mixture of acetic acid and toluene was distilled off. The distillation rate was about 5 mL / min. The reaction was carried out at the same temperature for 8 hours while adding 50 mL of toluene to the reactor every 10 minutes. After cooling to room temperature while stirring, 3 mg of pure 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester was added as a seed crystal to the obtained reaction solution, After stirring at the same temperature for 1 hour, a white precipitate was deposited. After further stirring at the same temperature for 12 hours, the precipitate was collected by filtration, washed with a small amount of toluene, dried under reduced pressure, and dried with 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic. 35.8 g (42.4 mmol) of acid methyl ester were obtained as white crystals. Yield 25%. Purity was 94.2% (LC area%).
[0042]
Example 4
In a 50 mL flask equipped with a dropping funnel, a Dean-Stark tube, a Dimroth condenser, and a thermometer, 1.25 g (6.8 mmol) of methyl gallate, 11.0 g (28.2 mmol) of pentaacetyl-β-D-glucose, and toluene 27 mL was charged and stirred at room temperature. When 9.5 μL (0.068 mmol) of boron trifluoride acetate complex was added and the internal temperature was raised to 110 ° C. by an oil bath, an azeotropic mixture of acetic acid and toluene was distilled off. The distillation rate was about 0.5 mL / min. The reaction was carried out at the same temperature for 5 hours while adding 15 mL of toluene to the reactor every 30 minutes. After cooling to room temperature with stirring, 1 mg of pure 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester was added as a seed crystal to the resulting reaction solution, After stirring at the same temperature for 1 hour, a white precipitate was deposited. The precipitate was collected by filtration, washed with a small amount of toluene, dried under reduced pressure, and 3,78-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester 1.78 g (2.1 mmol) ) Was obtained as white crystals. Yield 31%. The purity was 94.9% (LC area%).
[0043]
Example 5
Methyl gallate 9 was placed in a 300 ml round bottom flask equipped with a distilling line (including a Liebig condenser and a receiver), a decompression line (including a vacuum pump and a decompression controller), a thermometer, and a large rotor. 0.2 g (50 mmol), 48.8 g (125 mmol: 2.5 mol ratio) of pentaacetyl-β-D-glucose, and 195 ml of m-xylene were charged and stirred at room temperature. 70 mg (0.5 mmol: 1 mol%) of boron trifluoride diethyl ether complex was added, the temperature was raised to 80 ° C. by an oil bath, and the mixture was stirred at the same temperature for 2 hours. Thereafter, an azeotropic mixture of acetic acid and m-xylene was distilled off under reduced pressure conditions of 13 kPa (about 100 torr) and an internal temperature of 80 ° C. The solvent was distilled off at a rate of about 30 ml / hr, and the solvent of the distillate was added sequentially so that the amount of the internal solution did not decrease with sampling every 1 hr. During this time, the progress of the reaction was monitored over time by HPLC, but the progress of the reaction slowed down from about 10 hours, and the reaction was stopped in 12 hours and a cooling operation was performed. The yield of the target product: 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester [β, β form] in the reaction solution was approximately 60%. During cooling to room temperature with stirring, precipitation of crystals was observed. Filtration was performed at room temperature (20 ° C.), and washing was performed with 90 ml of a solvent to obtain white crystals. After drying under reduced pressure, 21.9 g of the target product: 3,5-bis-O- (2,3,4,6-tetraacetylglucosyl) gallic acid methyl ester [β, β form] (25.6 mmol) was obtained. Was. The yield was 51% and the purity was 98.7% (LC area%).
[0044]
Example 6
The same operation as in Example 5 was performed except that the reaction temperature was set to 100 ° C. and the reduced pressure condition was changed to 27 kPa (about 200 torr), and the change of the reaction with time was observed. The reaction progressed slowly from about 7 hours under reduced pressure, and various unknown peaks tended to increase on LC analysis. When the reaction was stopped in 10 hours, the reaction yield was 46%. Thereafter, the same post-treatment operation as in Example 5 was performed to obtain 16.4 g (18.8 mmol) of the desired product. The yield was 38% and the purity was 97% (LC area%).
[0045]
Example 7
The reaction solvent was changed to mixed xylene, and the reaction was carried out by increasing the reaction scale. 95.0 g (516 mmol) of methyl gallate, 503 g (1.28 mol: 2.5 mol ratio) of pentaacetyl-β-D-glucose, and 2000 ml of mixed xylene were charged and stirred at room temperature with an anchor-type stirring blade. 730 mg (5 mmol: 1 mol%) of boron trifluoride diethyl etherate was added, and the reaction was carried out at the same reaction temperature and reduced pressure as in Example 5. The solvent was distilled off at a rate of about 250 ml / hr, and the solvent of the distillate was sequentially added together with the sampling every 1 hr so that the internal liquid volume did not decrease. Furthermore, the reaction time can be shortened by adding 370 mg (2.5 mmol: 0.5 mol%) of boron trifluoride diethyl ether complex in the middle of the reduced pressure reaction (second hour), and the reaction yield is obtained 5 hours after the reduced pressure reaction. Achieved 61%. Thereafter, the same post-treatment operation as in Example 5 was performed to obtain 237 g (273 mmol) of the desired product. The yield was 53% and the purity was 97% (LC area%).
[0046]
Example 8
Five-stage (oldershaw-type) rectification column and a distillation line (including Liebig cooling pipe and receiver) provided with a solenoid valve above the rectification column to control the reflux ratio, and a decompression line (a vacuum pump and a decompression controller) In a 1000 ml round bottom flask equipped with a thermometer and a large rotor, 14.7 g (80 mmol) of methyl gallate, 78.1 g (200 mmol: 2.5 mol ratio) of pentaacetyl-β-D-glucose, 480 ml of m-xylene was charged and stirred at room temperature. 110 mg (0.8 mmol: 1 mol%) of boron trifluoride diethyl ether complex was added, the temperature was raised to an internal temperature of 80 ° C. by an oil bath, and the mixture was stirred at the same temperature for 2 hours. Thereafter, an azeotropic mixture of acetic acid and m-xylene was distilled off under reduced pressure conditions of 13 kPa (about 100 torr) and an internal temperature of 80 ° C. The reflux ratio was controlled with a reflux condenser, and the amount of distillation was reduced in the late stage of the reaction, and a total of about 160 ml of distillation was carried out in a reaction time of 20 hours. At this time, the reaction yield was 59%. In this experiment, a post-treatment crystallization operation was performed without adding a solvent during or after the reaction. Post-treatment operations such as filtration, washing and drying under reduced pressure were performed in the same manner as in Example 5 to obtain 37.1 g (43.1 mmol) of the desired product. The yield was 54% and the purity was 98% (LC area%).
[0047]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture a diglycosylated gallic acid derivative with high yield and high purity by industrially simple operation.

Claims (7)

下記一般式(1)
Figure 2004123699
(式(1)中、Rは、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム塩、アルキル基、アラルキル基、アルケニル基又はアリール基を示す)で表される没食子酸誘導体と、下記一般式(2)
Figure 2004123699
(式(2)中、Yは、単糖類、二糖類又はオリゴ糖類残基を示し、Acはアセチル基を示す)で表される糖類とを副生する酢酸を反応系外へ留去しながら縮合反応を行い、反応終了後、下記一般式(3)
Figure 2004123699
(式(3)中、R′は、水素原子、アルキル基、アラルキル基、アルケニル基又はアリール基を示し、Yは一般式(2)と同意義を示す)で表されるジグリコシル化没食子酸誘導体を晶析により単離することを特徴とするジグリコシル化没食子酸誘導体の製造方法。
The following general formula (1)
Figure 2004123699
(In the formula (1), R represents a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium salt, an alkyl group, an aralkyl group, an alkenyl group or an aryl group); (2)
Figure 2004123699
(In the formula (2), Y represents a monosaccharide, disaccharide, or oligosaccharide residue, and Ac represents an acetyl group) while distilling acetic acid produced as a by-product with the saccharide to the outside of the reaction system. After performing the condensation reaction and completing the reaction, the following general formula (3)
Figure 2004123699
(In the formula (3), R ′ represents a hydrogen atom, an alkyl group, an aralkyl group, an alkenyl group or an aryl group, and Y has the same meaning as in the general formula (2).) Is isolated by crystallization.
前記没食子酸誘導体と前記糖類との縮合反応を、減圧条件下で行うことを特徴とする請求項1に記載のジグリコシル化没食子酸誘導体の製造方法。The method for producing a diglycosylated gallic acid derivative according to claim 1, wherein the condensation reaction between the gallic acid derivative and the saccharide is performed under reduced pressure. 前記没食子酸誘導体と前記糖類との縮合反応を、70℃から110℃の反応温度の範囲内で行うことを特徴とする請求項1又は2に記載のジグリコシル化没食子酸誘導体の製造方法。The method for producing a diglycosylated gallic acid derivative according to claim 1, wherein the condensation reaction between the gallic acid derivative and the saccharide is performed within a reaction temperature range of 70 ° C. to 110 ° C. 4. 酢酸との共沸混合物を形成し、常圧における該共沸混合物の沸点が60〜116℃となるような溶媒の共存下で縮合反応を行うことを特徴とする請求項1乃至3のいずれかに記載の製造方法。4. The condensation reaction is carried out in the presence of a solvent which forms an azeotrope with acetic acid and has a boiling point of 60 to 116 [deg.] C. at normal pressure. Production method described in 1. 糖類がペンタアセチル−β−D−グルコースであることを特徴とする請求項1乃至4のいずれかに記載の製造方法。The method according to any one of claims 1 to 4, wherein the saccharide is pentaacetyl-β-D-glucose. 一般式(2)で示される糖類を一般式(1)で示される没食子酸誘導体に対し、2モル比から3モル比の範囲で反応に供することを特徴とする請求項1乃至5のいずれかに記載のジグリコシル化没食子酸誘導体の製造方法。6. The method according to claim 1, wherein the saccharide represented by the general formula (2) is subjected to the reaction with the gallic acid derivative represented by the general formula (1) in a range of 2 to 3 molar ratio. 3. The method for producing a diglycosylated gallic acid derivative according to 1.). 糖類結合部(アノマー位)の立体構造がβ、βであることを特徴とする請求項1乃至6のいずれかに記載のジグリコシル化没食子酸誘導体製造方法。The method for producing a diglycosylated gallic acid derivative according to any one of claims 1 to 6, wherein the steric structure of the saccharide-binding portion (anomeric position) is β, β.
JP2003132776A 2002-08-01 2003-05-12 Method for producing diglycosylated gallic acid derivative Pending JP2004123699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132776A JP2004123699A (en) 2002-08-01 2003-05-12 Method for producing diglycosylated gallic acid derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002224910 2002-08-01
JP2003132776A JP2004123699A (en) 2002-08-01 2003-05-12 Method for producing diglycosylated gallic acid derivative

Publications (1)

Publication Number Publication Date
JP2004123699A true JP2004123699A (en) 2004-04-22

Family

ID=32300744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132776A Pending JP2004123699A (en) 2002-08-01 2003-05-12 Method for producing diglycosylated gallic acid derivative

Country Status (1)

Country Link
JP (1) JP2004123699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150040A (en) * 2021-03-31 2021-07-23 江南大学 Preparation method of chemically synthesized whitening agent diglucosyl gallic acid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263194A (en) * 1986-05-09 1987-11-16 Nippon Seika Kk Production of tetraacetylarbutin
JPS62263195A (en) * 1986-05-09 1987-11-16 Nippon Seika Kk Production of pentaacetylarubutin
JPH01249796A (en) * 1988-03-30 1989-10-05 Nippon Fine Chem Co Ltd Preparation of phenol glycosides
JPH0551394A (en) * 1991-08-22 1993-03-02 Yoshitomi Pharmaceut Ind Ltd Production of beta-phenylglycoside
JP2000319116A (en) * 1999-04-30 2000-11-21 Lion Corp Stabilized gallic acid derivative and external preparation composition containing the same
JP2002193990A (en) * 2000-12-25 2002-07-10 Mitsui Chemicals Inc Hydrochalcone glycoside and cosmetic formulated with the same as effective component
WO2004007516A1 (en) * 2002-07-11 2004-01-22 Mitsui Chemicals, Inc. Process for producing glycoside

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263194A (en) * 1986-05-09 1987-11-16 Nippon Seika Kk Production of tetraacetylarbutin
JPS62263195A (en) * 1986-05-09 1987-11-16 Nippon Seika Kk Production of pentaacetylarubutin
JPH01249796A (en) * 1988-03-30 1989-10-05 Nippon Fine Chem Co Ltd Preparation of phenol glycosides
JPH0551394A (en) * 1991-08-22 1993-03-02 Yoshitomi Pharmaceut Ind Ltd Production of beta-phenylglycoside
JP2000319116A (en) * 1999-04-30 2000-11-21 Lion Corp Stabilized gallic acid derivative and external preparation composition containing the same
JP2002193990A (en) * 2000-12-25 2002-07-10 Mitsui Chemicals Inc Hydrochalcone glycoside and cosmetic formulated with the same as effective component
WO2004007516A1 (en) * 2002-07-11 2004-01-22 Mitsui Chemicals, Inc. Process for producing glycoside

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150040A (en) * 2021-03-31 2021-07-23 江南大学 Preparation method of chemically synthesized whitening agent diglucosyl gallic acid

Similar Documents

Publication Publication Date Title
TWI482778B (en) Method for the preparation of a crystalline form
EP3148979B1 (en) Process for preparation of canagliflozin
EA022032B1 (en) Process for preparing of glucopyranosyl-substituted benzyl-benzene derivatives
EP2590943B1 (en) Process and intermediates for preparation of an active ingredient
EP3838894B1 (en) Method for producing intermediate useful for synethesis of sglt inhibitor
CN109553610B (en) Preparation method of emtricitabine isomer
WO2019170521A1 (en) Synthesis of obeticholic acid and synthesis intermediate
JP2004123699A (en) Method for producing diglycosylated gallic acid derivative
CN111675660B (en) Preparation method for synthesizing palbociclib intermediate and method for synthesizing palbociclib
US20090112002A1 (en) Process for preparation of aldonic acids and derivatives thereof
CN113045416A (en) Preparation method of (R) -3-hydroxybutyryl- (R) -3-hydroxybutyl ester
US6815559B2 (en) Process for producing 3,3,3-trifluoro-2-hydroxypropionic acid or its derivative
JP2004217540A (en) Method for producing gallic acid glycoside
CN111217709A (en) Preparation method of (1-fluorocyclopropyl) methylamine hydrochloride
CN114213323B (en) New process for synthesizing procaterol hydrochloride
JP3773578B2 (en) Taxol synthetic intermediate
US9073813B2 (en) Process for the preparation of protoescigenin
EP2331549A1 (en) Method for preparing 1,6:2,3-dianhydro-beta-d-mannopyranose
JP2004175694A (en) Method for producing gallic acid glycoside
KR100449317B1 (en) Process for the preparation of arbutin derivatives
EP3252056A1 (en) Method for preparation of mannoside derivatives
CN115124579A (en) Preparation method of torsavide intermediate
CN107304194A (en) The method for preparing Dapagliflozin
CN115124578A (en) Trachelospermol intermediate, preparation method and application thereof
CN112375076A (en) Novel method for synthesizing canagliflozin

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060511

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525