JP2004123463A - Process for removing ammonia from concrete - Google Patents

Process for removing ammonia from concrete Download PDF

Info

Publication number
JP2004123463A
JP2004123463A JP2002291054A JP2002291054A JP2004123463A JP 2004123463 A JP2004123463 A JP 2004123463A JP 2002291054 A JP2002291054 A JP 2002291054A JP 2002291054 A JP2002291054 A JP 2002291054A JP 2004123463 A JP2004123463 A JP 2004123463A
Authority
JP
Japan
Prior art keywords
concrete
external electrode
ammonia
electrode
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002291054A
Other languages
Japanese (ja)
Other versions
JP4468627B2 (en
Inventor
Takayuki Higuchi
樋口 隆行
Minoru Morioka
盛岡 実
Kiminobu Ashida
芦田 公伸
Akira Shichizawa
七沢 章
Tsumoru Ishida
石田 積
Katsumi Yanagida
柳田 克巳
Ryoichi Kamimoto
神本 良一
Eriko Wakui
涌井 絵里子
Mizue Sawada
澤田 瑞恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Denka Co Ltd
Original Assignee
Kajima Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Denki Kagaku Kogyo KK filed Critical Kajima Corp
Priority to JP2002291054A priority Critical patent/JP4468627B2/en
Publication of JP2004123463A publication Critical patent/JP2004123463A/en
Application granted granted Critical
Publication of JP4468627B2 publication Critical patent/JP4468627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical treatment process of concrete, especially a process for inhibiting generation of ammonia from a concrete structure by removing ammonium ions from the concrete. <P>SOLUTION: In the process for applying electric current between an external electrode used as a negative electrode and an internal electrode used as a positive electrode wherein the former is an electrode established on the concrete surface and the latter is a steel material positioned inside the concrete. Preferably, a material holding an electrolyte solution is placed between the concrete surface and the external electrode to evaporate the ammonium ions inside the concrete structure as ammonia gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、コンクリートの電気化学的な処理方法、特にコンクリート中のアンモニウムイオンを除去し、コンクリート構造物からのアンモニアの発生を抑制する方法に関する。
【0002】
【従来の技術と課題】
美術館や博物館などでは新設のコンクリート構造物に収納された油絵、染色品、絹類などの文化財の変色が問題となっている。この原因としてコンクリートから発生するアンモニアガスが指摘され、コンクリートの原料であるセメント、骨材、水などに含まれる窒素化合物が関連していることが確認されている(例えば、非特許文献1参照)。
【0003】
アンモニアはコンクリート構造物完成初期に発生するため、建物の竣工後6ケ月から1年間にわたり放置する、いわゆる「木枯らし期間」を設け、アンモニアの発散が収まるのを待ってから文化財を収納する措置が取られている。しかしながら、この「木枯らし期間」中の時間的損失が大きいことからアンモニアガスの発生を抑制する方法が種々検討されている。
【0004】
最も一般的な方法として、早強セメント、及び加熱処理した骨材及び水を使用したコンクリートが提案されている(例えば、特許文献1参照)。普通セメントには重量の5%以下の範囲内で、窒素分を含んだ高炉水砕スラグや石灰石微粉末等の混合材が認められているが、早強セメントには混合材が使用されていない。また、骨材や水も加熱処理により窒素分が除去されるため、アンモニアガス発生量の少ないコンクリートを調製することが可能になる。しかしながら、骨材や水の加熱には多大な労力とコストがかかるため経済的でない。しかも完全にアンモニアガスの発生を抑制するのは難しいという課題があった。
【0005】
また、コンクリートの表面にアンモニアを吸収する特殊シートを貼り付ける工法が提案されている(例えば、非特許文献2参照)。しかしながら、この方法は積極的にアンモニアガスの発生を促していないため、ガスの吸収に時間がかかり、更に完全に除去できないという課題がある。
【0006】
更に、空調機にアンモニア吸着材を取り付ける方法も検討されている(例えば、非特許文献3参照)。しかしながら、この方法も、シートによる方法同様、アンモニアガスの吸収に時間がかかり、また完全に除去できないという課題を有している。
そこで、本発明者らは前記課題に対し種々検討を重ねた結果、既設のコンクリートからアンモニウムイオンを除去し、短期間でアンモニアフリーのコンクリートが調製可能であることを見出し本発明を完成するに至った。
【0007】
【特許文献1】
特開平10−287462号公報
【非特許文献1】
岸谷孝一、黒坂五馬著、「コンクリートから出る空中遊離物質が他の物質に及ぼす影響」日本建築学会関東支部研究報告集、1976年、p.357−360
【非特許文献2】
三谷一房、岩波洋ほか著、「美術館、博物館におけるアンモニア抑制工法の開発」大林組技術研究所報No.53、1996年、p.99−104
【非特許文献3】
小塩良次、松田弘一ほか著、「美術空調設備、第9回空気清浄とコンタミネーションコントロール研究大会」平成2年5月、p.117−120
【0008】
【課題を解決するための手段】
本発明は上記課題を解決することを目的とし、その構成は、コンクリートの表面に設置した電極を外部電極とし、コンクリートの内部の鋼材を内部電極とし外部電極と内部電極間に電流を流す方法において、内部電極を陽極、外部電極を陰極として通電し、好ましくはコンクリート表面と外部電極との間に電解質溶液を保持する保持材を配置し、コンクリート構造物中のアンモニウムイオンをアンモニアガスとして揮散させることを特徴とする。
【0009】
すなわち、本発明は打設されたコンクリートの鋼材を陽極とし、コンクリートの表面に外部電極を好ましくは網状に設けて陰極とし、内部電極と外部電極の間に電流を流すものである。その結果、コンクリートの表面にアンモニウムイオンが移動し、アンモニアガスとして空中に揮散させるものである。好ましくは電解質溶液を保持することができる保持材に電解質溶液を含浸させ、コンクリート表面の外部電極との間に配置することにより一層の効果を期待することができる。
【0010】
【発明の実施の形態】
本発明で使用する内部電極としては、コンクリート内部の鋼材、例えば鉄筋等が使用されている。
外部電極とは、コンクリートの表面に設置した電極であり、材質としては導電性を示すものであれば特に限定しない。電気的腐食に対する抵抗性が高いものが好ましく、具体的にはチタン、チタン合金、白金及び金、またはこれらでメッキされた金属、炭素繊維、炭素棒等の炭素、並びに体積電気抵抗率が103 Ω・cm以下の導電性を有する有機高分子等である。これらのうち、炭素や導電性を有する有機高分子は電気的な腐食に対して安定であるので好ましく、チタンや白金は更に安定性が高いのでより好ましい。
【0011】
外部電極はコンクリート表面全体に均等に配置されることが好ましく、網状にして構造体を覆う。
なお、通常のコンクリートの体積電気抵抗率は103 〜104 Ω・cm程度であるので、導電性を有する有機高分子材料としてはその値以下、すなわち103 Ω・cm以下であり、102 Ω・cm以下が好ましく、10Ω・cm以下がより好ましい。
【0012】
本発明では、外部電極とコンクリート表面との間に後述する電解質溶液を保持できる柔軟な保持材を接着、粘着、溶着、押圧等の方法により貼りつけて固定し、コンクリート表面と保持材と外部電極を密着させることができる。保持材をコンクリート表面と外部電極の間に固定又は配置することにより、電気化学的手法によってコンクリート表面に取り出したカチオンを吸収させ、通電後取り外すことによって、再びコンクリート内へ浸透するのを防止することができる。
本発明においては、アンモニウムイオンはアンモニアガスとして直接揮散するので理論上、保持材を必要としない。しかしながら、コンクリート表面と外部電極とを間隙を残さずに導電性物質を介して密着させるためには、何らかのクッション材を介して密着させることが好ましい。更に保持材を用いることによりコンクリート表面に移動した有害なナトリウム等のカチオンが保持材中に吸収され、除去される効果も有する。
【0013】
本発明で使用する保持材とは、外部電極とコンクリート表面との間に挟まれ、かつ、圧縮又は加熱されることにより変形し、外部電極やコンクリート表面と密着し、外部電極とコンクリート表面の間に電解質溶液を保持できれば特に限定しない。具体的には、ウレタンゴム、シリコンゴム、水膨潤性ゴム、自己融着性ゴム等のゴム質材料、及び発泡ウレタン、発泡ポリエチレン、発泡ポリスチレン等の高分子発泡材料が挙げられる。
【0014】
本発明では、コンクリートの電気化学的処理の目標が達成された段階で、コンクリート表面から外部電極や保持材等を取り外して、コンクリート表面の仕上げをする。
本発明においては、保持材、外部電極の外側に補強材として板を設置し、コンクリート表面に押しつけてボルトやアンカー等で固定すると、保持材及び外部電極をコンクリート表面に確実に密着させることができる。
【0015】
使用する板は特に限定はないが、作業性や曲げ強さの面から、軽量で強度のある材質が好ましい。具体的には、チタン、チタン合金、白金、又はこれらでメッキされた金属材料; 塩化ビニル樹脂、ポリエチレン、アクリル樹脂、ポリカーボネート、ベークライト、FRP、及び各種ゴム等の有機材料; セラミックス、レンガ、タイル及びガラス等の窯業材料: 合成木板、合板紙等の木質系材料等が挙げられる。また、これらに耐腐食処理を施したものも使用できる。そして、これらに導電性を有する有機高分子材料を塗布したものも使用できる。また、チタン、チタン合金及び白金等又はこれらでメッキされた金属の使用は、板と外部電極を共用できるものであれば更に好ましい。板は曲面でもよいが、平面が作業性の面で優れる。
非金属製の平板の例として塩化ビニル板、アクリル板、セメント板、合板等が挙げられる。板の厚さは1〜20mmが好ましい。1mm未満では強度的に弱く割れ易くなる傾向があり、20mmを超えると板自体の重量が大きくなり取付け作業が困難になる。
【0016】
保持材には電解質溶液を供給する。電解質溶液とはコンクリート中に浸透させることにより、コンクリートの電気抵抗を下げて電気を流れ易くするために用いる溶液であり、溶液中に多くのカチオンやアニオンが存在している溶液である。電解質溶液は中性又は塩基性が好ましいが、pH5以上の弱酸性でも使用可能である。具体的には井戸水、水道水、海水等も使用できるが、各種のアルカリ金属塩やアルカリ土類金属塩、水酸化カルシウム、水酸化リチウム等の塩基等の水溶液を用いることが好ましい。また、亜硝酸塩を用いると、塩害等によるコンクリート中の鉄筋腐食を防止する観点から好ましい。
【0017】
【実施例】
以下、実施例を挙げて本発明を具体的に説明する。
実施例1
セメント 330  kg/m3 
単位水量 180  kg/m3 
細骨材  756  kg/m3 
粗骨材  989  kg/m3 
減水剤    1.1kg/m3 
上記の配合で高さ2m×横5m×厚み0.2mの鉄筋コンクリート壁を打設した。このコンクリートを7日間養生した後、保持材aとして発泡ポリエチレンを、外部電極としてチタンメッシュ(エルテックインターナショナルコーポレーション社製、商品名「エルガードメッシュ」)をコンクリート表面にボルトで固定し、更に電解質溶液アとして飽和水酸化カルシウム溶液を使用した。このコンクリート内部の鉄筋を内部電極(陽極)として電源に接続し、コンクリート表面積あたり1A/m2 の電流を出力電圧25Vにて通電した。なお、電解質溶液は2回/週の割合で補充した。
【0018】
通電時間が10、20、30日の時点で10cm×10cm×10cmの各コンクリートブロックを鉄筋コンクリート壁から採取して供試体とした。なお、比較例として通電しないコンクリートブロックも採取して供試体とした。これらコンクリートブロックからのアンモニア発生速度を測定し表1に示した。表1より明らかな通り、通電を実施した本発明のコンクリートはアンモニアの発生速度が極端に減少していることが理解される。
【0019】
コンクリートブロックから採取した供試体から発生するアンモニアガスの発生速度の測定は、下記の方法で行った。
すなわち、ブロックを入れたデシケータ内に一端から清浄化されたアンモニアを含有しない空気を連続的に流入させ、同時に他端からデシケータ中の空気を連続的に排出させ、その排出空気をアンモニア捕集用インピジャー中の純水に導入させ、純水中のアンモニウムイオン量をイオンクロマトグラフィーによって経時的に測定した。
【0020】
<使用材料>
セメント: 市販普通ポルトランドセメント
細骨材 : 新潟県姫川産 川砂 比重2.62
粗骨材 : 新潟県姫川産 砂利 比重2.64
減水剤 : 市販AE減水剤
電解質材料ア : 水酸化カルシウム、市販品試薬 1級
水 : 水道水
【0021】
【表1】

Figure 2004123463
【0022】
実施例2
コンクリート表面積あたりに通電する電流を表2に示すように変化させた以外は実施例1と同様の試験を行った。
なお、アンモニア発生速度の測定は通電期間20日で実施した。その結果を表2に示す。通電する電流は1A前後が効率よくアンモニアを除去し、0.5から5Aの範囲が好ましくアンモニアの発生を抑制することが可能である。
【0023】
【表2】
Figure 2004123463
【0024】
実施例3
試験に使用する保持材、電解質溶液の種類を表3に示すように変化させた以外は、実施例1と同様にして試験を行った。なお、電解質溶液イ、ウの濃度は0.1 mol/lとし、アンモニア発生速度の測定は通電期間20日間で実施した。その結果を表3に示した。
【0025】
<使用材料>
保持材a: 発泡ポリエチレン、市販品
保持材b: 発泡ポリスチレン、市販品
保持材c: ウレタンゴム、市販品
電解質材料ア: 水酸化カルシウム、市販品、試薬1級、
電解質材料イ: 水酸化リチウム、市販品、試薬1級、
電解質材料ウ: 亜硝酸リチウム、市販品
【0026】
【表3】
Figure 2004123463
【0027】
実施例4
セメント砂比が1/2、水セメント比が0.6で、セメントに対して2%の塩化ナトリウムを配合したモルタルを調製した。このモルタルを40×40×160mmに成型し、その中央部にφ2mmの鉄筋を配置した供試体を作成した。このモルタルにアルミシールを貼り、20℃、湿度60%の室内で28日間養生した。その後、アルミシールを剥がし、供試体の鉄筋と平行な1面に保持材aとして発泡ポリエチレンを、外部電極としてチタンメッシュを固定し、更に電解質溶液アとして飽和水酸化カルシウム水溶液を使用した。このモルタル内部の鉄筋を内部電極(陽極)として電源に接続し、モルタル表面積あたり1A/m2 の電流を出力電圧25Vにて通電した。なお、電解質溶液は2回/週の割合で補充した。通電期間が5、10、20日の時点で通電をやめ、搾り出し器を用いて硬化体の細孔溶液を取り出し、ICP発光分析法によりナトリウムイオン濃度を測定した。結果を表4に示した。なお、比較例として、通電を実施しない以外は実施例4と同様に行った同一材齢のモルタルも同様に分析し、結果を表4に併記した。
【0028】
【表4】
Figure 2004123463
【0029】
本実施例より、本発明はアンモニウムイオンを除去するばかりでなく、有害なナトリウムイオンも同時に除去できることが理解される。
【0030】
【発明の効果】
本発明により、コンクリート構造物からアンモニウムイオンを短期間に除去し、アンモニアガスの発生しない新設のコンクリート構造物を提供することができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to an electrochemical treatment method for concrete, and more particularly, to a method for removing ammonium ions in concrete and suppressing generation of ammonia from the concrete structure.
[0002]
[Prior art and issues]
In art museums and museums, discoloration of cultural properties such as oil paintings, dyed goods and silk housed in new concrete structures is a problem. As a cause of this, ammonia gas generated from concrete is pointed out, and it has been confirmed that nitrogen compounds contained in cement, aggregate, water, etc., which are raw materials of concrete, are related (for example, see Non-Patent Document 1). .
[0003]
Since ammonia is generated in the early stage of concrete construction, there is a so-called “tree withering period” that is left for 6 months after the completion of the building, and there is a measure to store cultural assets after waiting for the release of ammonia to settle. Has been taken. However, various methods for suppressing the generation of ammonia gas have been studied because of the large time loss during this “tree withering period”.
[0004]
As the most general method, early-strength cement, and concrete using heat-treated aggregate and water have been proposed (see, for example, Patent Document 1). Ordinary cement contains a mixture of nitrogen-containing blast furnace granulated slag and fine limestone powder within 5% or less of the weight, but early-strength cement does not use any mixture. . In addition, since the nitrogen content of aggregate and water is also removed by heat treatment, it is possible to prepare concrete with a small amount of ammonia gas generation. However, heating of aggregate and water is not economical because it takes a lot of labor and cost. Moreover, there is a problem that it is difficult to completely suppress the generation of ammonia gas.
[0005]
Moreover, the construction method which affixes the special sheet | seat which absorbs ammonia on the surface of concrete is proposed (for example, refer nonpatent literature 2). However, since this method does not actively promote the generation of ammonia gas, it takes time to absorb the gas, and there is a problem that it cannot be completely removed.
[0006]
Furthermore, a method of attaching an ammonia adsorbent to an air conditioner has been studied (for example, see Non-Patent Document 3). However, this method also has the problem that it takes time to absorb ammonia gas and cannot be completely removed, like the sheet method.
Accordingly, as a result of various studies on the above problems, the present inventors have found that ammonia ions can be removed from existing concrete and ammonia-free concrete can be prepared in a short period of time, and the present invention has been completed. It was.
[0007]
[Patent Document 1]
JP-A-10-287462 [Non-patent Document 1]
Kishiya Koichi, Kurosaka Goma, "Effects of airborne free materials from concrete on other materials" Kanto Branch, Architectural Institute of Japan, 1976, p. 357-360
[Non-Patent Document 2]
Mitani Ichifusa, Iwanami Hiroshi et al., “Development of Ammonia Suppression Method in Art Museums, Museums” Obayashi Technical Research Institute Report No. 53, 1996, p. 99-104
[Non-Patent Document 3]
Ryoji Oshio, Koichi Matsuda et al., “Art Air Conditioning Equipment, 9th Air Cleaning and Contamination Control Research Conference”, May 1990, p. 117-120
[0008]
[Means for Solving the Problems]
An object of the present invention is to solve the above-described problems, and the configuration thereof is a method in which an electrode installed on a concrete surface is an external electrode, a steel material inside the concrete is an internal electrode, and a current is passed between the external electrode and the internal electrode. Current is passed with the internal electrode as the anode and the external electrode as the cathode, preferably a holding material for holding the electrolyte solution is disposed between the concrete surface and the external electrode, and ammonium ions in the concrete structure are volatilized as ammonia gas. It is characterized by.
[0009]
That is, in the present invention, the cast concrete steel material is used as an anode, and an external electrode is provided on the concrete surface, preferably in a net shape, as a cathode, and a current is passed between the internal electrode and the external electrode. As a result, ammonium ions move to the concrete surface and volatilize in the air as ammonia gas. Preferably, a further effect can be expected by impregnating the electrolyte solution into a holding material capable of holding the electrolyte solution and disposing it between the external electrode on the concrete surface.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As the internal electrode used in the present invention, a steel material inside concrete, such as a reinforcing bar, is used.
The external electrode is an electrode installed on the surface of concrete, and the material is not particularly limited as long as it exhibits conductivity. Those having high resistance to electrical corrosion are preferable. Specifically, titanium, titanium alloy, platinum and gold, or metal plated with these metals, carbon fiber, carbon such as carbon rod, and volume electric resistivity is 10 3. Organic polymers having conductivity of Ω · cm or less. Of these, carbon and conductive organic polymers are preferable because they are stable against electrical corrosion, and titanium and platinum are more preferable because they are more stable.
[0011]
The external electrodes are preferably arranged evenly over the entire concrete surface, and are netted to cover the structure.
Since usually the volume electrical resistivity of concrete is 10 3 ~10 4 Ω · cm or so, the value or less as the organic polymer material having conductivity, i.e. less 10 3 Ω · cm, 10 2 Ω · cm or less is preferable, and 10 Ω · cm or less is more preferable.
[0012]
In the present invention, a flexible holding material capable of holding an electrolyte solution, which will be described later, is bonded and fixed between the external electrode and the concrete surface by a method such as adhesion, adhesion, welding, or pressing, and the concrete surface, the holding material, and the external electrode are fixed. Can be adhered. By fixing or placing the holding material between the concrete surface and the external electrode, the cations taken out to the concrete surface by the electrochemical method can be absorbed and removed after being energized to prevent it from penetrating into the concrete again. Can do.
In the present invention, ammonium ions are volatilized directly as ammonia gas, so no holding material is theoretically required. However, in order to bring the concrete surface and the external electrode into close contact with each other through the conductive material without leaving a gap, it is preferable to make close contact with some kind of cushioning material. Further, the use of the holding material also has an effect that harmful cations such as sodium which have moved to the concrete surface are absorbed into the holding material and removed.
[0013]
The holding material used in the present invention is sandwiched between the external electrode and the concrete surface, and is deformed by being compressed or heated, is in close contact with the external electrode or the concrete surface, and between the external electrode and the concrete surface. There is no particular limitation as long as the electrolyte solution can be retained. Specific examples include rubber materials such as urethane rubber, silicon rubber, water-swellable rubber, and self-bonding rubber, and polymer foam materials such as urethane foam, polyethylene foam, and polystyrene foam.
[0014]
In the present invention, at the stage where the electrochemical treatment target of the concrete is achieved, the external surface and holding material are removed from the concrete surface to finish the concrete surface.
In the present invention, if a plate is installed as a reinforcing material on the outside of the holding material and the external electrode, and pressed against the concrete surface and fixed with bolts, anchors, etc., the holding material and the external electrode can be securely adhered to the concrete surface. .
[0015]
The plate to be used is not particularly limited, but a lightweight and strong material is preferable in terms of workability and bending strength. Specifically, titanium, titanium alloy, platinum, or a metal material plated with these; organic materials such as vinyl chloride resin, polyethylene, acrylic resin, polycarbonate, bakelite, FRP, and various rubbers; ceramics, bricks, tiles, and the like Ceramic materials such as glass: Wood-based materials such as synthetic wood board and plywood are listed. Also, those subjected to corrosion resistance treatment can be used. And what apply | coated the organic polymer material which has electroconductivity to these can also be used. Further, the use of titanium, titanium alloy, platinum or the like or a metal plated with these is more preferable as long as the plate and the external electrode can be shared. The plate may be a curved surface, but a flat surface is excellent in terms of workability.
Examples of non-metallic flat plates include vinyl chloride plates, acrylic plates, cement plates, and plywood. The thickness of the plate is preferably 1 to 20 mm. If it is less than 1 mm, it tends to be weak and easily cracked, and if it exceeds 20 mm, the weight of the plate itself becomes large and the mounting operation becomes difficult.
[0016]
An electrolyte solution is supplied to the holding material. The electrolyte solution is a solution used to lower the electrical resistance of the concrete by making it penetrate into the concrete so that the electricity can easily flow, and is a solution in which many cations and anions are present in the solution. The electrolyte solution is preferably neutral or basic, but can be used even with weak acidity of pH 5 or higher. Specifically, well water, tap water, seawater, and the like can be used, but it is preferable to use an aqueous solution of a base such as various alkali metal salts, alkaline earth metal salts, calcium hydroxide, or lithium hydroxide. Moreover, when nitrite is used, it is preferable from the viewpoint of preventing reinforcement corrosion in concrete due to salt damage or the like.
[0017]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
Cement 330 kg / m 3
Unit water volume 180 kg / m 3
Fine aggregate 756 kg / m 3
Coarse aggregate 989 kg / m 3
Water reducing agent 1.1kg / m 3
A reinforced concrete wall having a height of 2 m, a width of 5 m, and a thickness of 0.2 m was placed using the above composition. After curing the concrete for 7 days, polyethylene foam as the holding material a and titanium mesh as the external electrode (trade name “Elgard Mesh”, manufactured by Eltech International Corporation) are fixed to the concrete surface with bolts, and the electrolyte solution As a saturated calcium hydroxide solution was used. The reinforcing steel inside the concrete was connected to a power source as an internal electrode (anode), and a current of 1 A / m 2 per concrete surface area was applied at an output voltage of 25V. The electrolyte solution was replenished at a rate of 2 times / week.
[0018]
When the energization time was 10, 20, and 30 days, each 10 cm × 10 cm × 10 cm concrete block was sampled from the reinforced concrete wall and used as a specimen. In addition, the concrete block which does not supply electricity as a comparative example was extract | collected, and it was set as the test body. The ammonia generation rate from these concrete blocks was measured and shown in Table 1. As is apparent from Table 1, it can be understood that the ammonia generation rate is extremely reduced in the concrete of the present invention that was energized.
[0019]
Measurement of the generation rate of ammonia gas generated from the specimen collected from the concrete block was performed by the following method.
That is, air containing no ammonia that has been cleaned from one end is continuously flowed into a desiccator containing a block, and at the same time, air in the desiccator is continuously discharged from the other end, and the discharged air is used for ammonia collection. It was introduced into pure water in the impinger, and the amount of ammonium ions in the pure water was measured over time by ion chromatography.
[0020]
<Materials used>
Cement: Commercial ordinary Portland cement fine aggregate: River sand from Himekawa, Niigata Prefecture Specific gravity 2.62
Coarse aggregate: Gravel from Himekawa, Niigata Prefecture 2.64 specific gravity
Water reducing agent: Commercial AE water reducing agent electrolyte material A: Calcium hydroxide, commercially available reagent First grade water: Tap water [0021]
[Table 1]
Figure 2004123463
[0022]
Example 2
The same test as in Example 1 was performed except that the current applied per concrete surface area was changed as shown in Table 2.
The measurement of the ammonia generation rate was carried out with an energization period of 20 days. The results are shown in Table 2. The current to be energized is about 1A to efficiently remove ammonia, and the range of 0.5 to 5A is preferable, and generation of ammonia can be suppressed.
[0023]
[Table 2]
Figure 2004123463
[0024]
Example 3
The test was performed in the same manner as in Example 1 except that the type of holding material and electrolyte solution used in the test was changed as shown in Table 3. The concentrations of the electrolyte solutions (a) and (c) were 0.1 mol / l, and the ammonia generation rate was measured over a period of 20 days. The results are shown in Table 3.
[0025]
<Materials used>
Holding material a: Polyethylene foam, commercially available product holding material b: Expanded polystyrene, commercially available product holding material c: Urethane rubber, commercial product electrolyte material A: calcium hydroxide, commercial product, reagent grade 1,
Electrolyte material A: Lithium hydroxide, commercial product, reagent grade 1,
Electrolyte material C: Lithium nitrite, commercial product
[Table 3]
Figure 2004123463
[0027]
Example 4
A mortar having a cement sand ratio of 1/2 and a water cement ratio of 0.6 and 2% sodium chloride in the cement was prepared. This mortar was molded into 40 × 40 × 160 mm, and a specimen having a φ2 mm rebar placed at the center was prepared. The mortar was affixed with an aluminum seal and cured for 28 days in a room at 20 ° C. and 60% humidity. Thereafter, the aluminum seal was peeled off, foamed polyethylene was fixed as the holding material a on one surface parallel to the reinforcing bar of the specimen, titanium mesh was fixed as the external electrode, and a saturated calcium hydroxide aqueous solution was used as the electrolyte solution. The rebar inside the mortar was connected to a power source as an internal electrode (anode), and a current of 1 A / m 2 per mortar surface area was applied at an output voltage of 25V. The electrolyte solution was replenished at a rate of 2 times / week. When the energization period was 5, 10, and 20 days, the energization was stopped, the pore solution of the cured product was taken out using a squeezer, and the sodium ion concentration was measured by ICP emission analysis. The results are shown in Table 4. As a comparative example, a mortar of the same age, which was performed in the same manner as in Example 4 except that no energization was performed, was similarly analyzed, and the results are also shown in Table 4.
[0028]
[Table 4]
Figure 2004123463
[0029]
From this example, it can be seen that the present invention not only removes ammonium ions, but can also remove harmful sodium ions at the same time.
[0030]
【The invention's effect】
According to the present invention, it is possible to provide a new concrete structure in which ammonium ions are removed from a concrete structure in a short time and ammonia gas is not generated.

Claims (3)

コンクリートの表面に設置した電極を外部電極とし、コンクリートの内部の鋼材を内部電極とし、外部電極と内部電極間に電流を流す方法において、内部電極を陽極、外部電極を陰極として通電し、コンクリート構造物中のアンモニウムイオンをアンモニアガスとして揮散させることを特徴とするコンクリートのアンモニア除去方法。In the method in which the electrode installed on the surface of the concrete is used as the external electrode, the steel material inside the concrete is used as the internal electrode, and current flows between the external electrode and the internal electrode, the internal electrode is used as the anode and the external electrode is used as the cathode. A method for removing ammonia from concrete, comprising volatilizing ammonium ions in a material as ammonia gas. コンクリート表面と外部電極との間に、電解質溶液を保持することができる保持材を配置することを特徴とする請求項1記載のコンクリートのアンモニア除去方法。The method for removing ammonia from concrete according to claim 1, wherein a holding material capable of holding the electrolyte solution is disposed between the concrete surface and the external electrode. 電解質溶液が中性又は塩基性であることを特徴とする請求項2記載のコンクリートのアンモニア除去方法。The method for removing ammonia from concrete according to claim 2, wherein the electrolyte solution is neutral or basic.
JP2002291054A 2002-10-03 2002-10-03 Method for removing ammonia from concrete Expired - Fee Related JP4468627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291054A JP4468627B2 (en) 2002-10-03 2002-10-03 Method for removing ammonia from concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291054A JP4468627B2 (en) 2002-10-03 2002-10-03 Method for removing ammonia from concrete

Publications (2)

Publication Number Publication Date
JP2004123463A true JP2004123463A (en) 2004-04-22
JP4468627B2 JP4468627B2 (en) 2010-05-26

Family

ID=32282749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291054A Expired - Fee Related JP4468627B2 (en) 2002-10-03 2002-10-03 Method for removing ammonia from concrete

Country Status (1)

Country Link
JP (1) JP4468627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001533A (en) * 2006-06-20 2008-01-10 Shimizu Corp Method for suppressing evolution of ammonia from mortar/concrete and mortar/concrete member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001533A (en) * 2006-06-20 2008-01-10 Shimizu Corp Method for suppressing evolution of ammonia from mortar/concrete and mortar/concrete member

Also Published As

Publication number Publication date
JP4468627B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
Cañón et al. Feasibility of electrochemical chloride extraction from structural reinforced concrete using a sprayed conductive graphite powder–cement paste as anode
US8636887B2 (en) Method for electrokinetic decontamination of a porous solid medium
Dhouibi et al. The application of electrochemical impedance spectroscopy to determine the long-term effectiveness of corrosion inhibitors for steel in concrete
Saraswathy et al. Extraction of chloride from chloride contaminated concrete through electrochemical method using different anodes
JP5889221B2 (en) Concrete (composition) and method for producing concrete
Chang et al. Effects of stirrups on electrochemical chloride removal efficiency
Green et al. Electrochemical changes in chloride-contaminated reinforced concrete following cathodic polarisation
Herrera et al. Electro-chemical chloride extraction: Influence of C3A of the cement on treatment efficiency
JP4468627B2 (en) Method for removing ammonia from concrete
Zhao et al. Preparation of graphene-cement paste anode for chloride extraction from marine reinforced concrete structures
JP4034633B2 (en) Method for electrochemical treatment of concrete
JP3438960B2 (en) How to repair concrete
JP2003129262A (en) Electric protection part for corrosion prevention of concrete steel material
CN105237035B (en) The method for laying electrochemical desalting external anode using magnesium phosphate cement and carbon cloth
JP4003947B2 (en) Electrochemical treatment of ready-mixed concrete
JPH0688435A (en) Repairing method for concrete structure
JP2001049867A (en) Hydration reaction promotion method of hydraulic substance and promotion curing method of molding using hydraulic substance
JP2013044529A (en) Testing method for accelerating reinforcement corrosion
Cervantes et al. Conductive cement pastes with carbon fibers as anodes in the electrochemical chloride extraction
JP3253448B2 (en) Electrochemical treatment of concrete
JPH09142959A (en) Method for regenerating concrete structure
JP3521095B2 (en) Concrete reforming treatment method
JPH05294758A (en) Repairing method for concrete containing salt
JP3361387B2 (en) Electrolyte material for concrete regeneration and its regeneration method
JP2017014567A (en) Monitoring method for sacrificial anode construction method in concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Ref document number: 4468627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees