JP2004123442A - Process for purifying gallium solution - Google Patents

Process for purifying gallium solution Download PDF

Info

Publication number
JP2004123442A
JP2004123442A JP2002289447A JP2002289447A JP2004123442A JP 2004123442 A JP2004123442 A JP 2004123442A JP 2002289447 A JP2002289447 A JP 2002289447A JP 2002289447 A JP2002289447 A JP 2002289447A JP 2004123442 A JP2004123442 A JP 2004123442A
Authority
JP
Japan
Prior art keywords
gallium
liquid
solution
metal
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002289447A
Other languages
Japanese (ja)
Other versions
JP4119960B2 (en
Inventor
Tetsuo Doi
土肥 哲雄
Junichi Niwano
庭野 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2002289447A priority Critical patent/JP4119960B2/en
Publication of JP2004123442A publication Critical patent/JP2004123442A/en
Application granted granted Critical
Publication of JP4119960B2 publication Critical patent/JP4119960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple process for removing or reducing impurities to obtain a desired metal from a used electrolyte containing the desired metal which was used in electrolysis of a metal. <P>SOLUTION: In the process for purifying the gallium solution, the liquid which was used for electrolysis is cooled and stirred to achieve a high flow rate of the liquid inside a tank to inhibit crystal growth and deposit a crystal containing the impurities for obtaining the desired metal (e.g. gallium) in the residual liquid. The process for purifying the gallium solution comprises a step wherein the alkaline solution containing gallium and a group 5 metal is stirred and cooled and a step wherein solid-liquid separation is performed to separate the solid containing the group 5 metal and the residual liquid containing gallium. The process further comprises a step wherein another solid-liquid separation is performed after adding a calcium salt to the residual liquid after the first solid-liquid separation to remove or reduce other metals. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、金属の電解製錬に属し、金属の電解製錬にて使用される電解液の作液、または使用済みとなった電解液から有価金属以外の不純物を除去、軽減する技術分野に属する。さらには、ガリウム、インジウム等、5族金属(砒素、燐等)が含まれる電解液の作液、不純物の除去または軽減に関するものである。
【0002】
【従来の技術】
金属を電解により不純物の少ない金属を得る電解製錬の場合、用いられる電解用の電解液は、電解液の組成等の変化により新たな電解液と交換することが多い。電解採取では、所望の金属の濃度が下がれば、経済的理由から電解液の使用は中止され、使用済みの電液として管理される。しかし、この使用済み電解液にあっても所望の金属が含まれていることから、さらにその使用済み液から直接金属の回収することや、不純物の除去または軽減処置をした液の作液により再び工程内で利用し、実質的に金属を回収する方法が種々提案されている。本発明における浄液とは、このようにガリウム溶液から所望の金属以外の金属またはその他元素を除去、軽減処置を施した液を言う。
【0003】
たとえば、硫化水素を用いて砒素を除去する方法があり(特許文献1参照)、金属のガリウムの精製方法としては、溶融ガリウムを固化させながらガリウム中の不純物を偏析除去する方法(特許文献2参照)が提案されている。
しかし、新たに添加剤を加えることは、その添加剤を加えことにより、添加物の除去、化合物の除去等、あらたな弊害が生じる可能性があった。また液状である電解液では、金属の凝固のように必ずしも偏析するとは限らず、その他の元素である不純物の挙動も不明であった。
【特許文献1】
特開昭57−32786号公報(第2ページ 左上欄 19行目)
【特許文献2】
特開平6−136467号公報(第1頁 0010〜0018段)
【0004】
【発明が解決しようとする課題】
電解製錬等に用いる電解液で、特に使用済み電解液(以下、尾液)に含まれる有価金属の回収のため、該尾液から不純物を除去、軽減する簡便な方法が望まれていた。
【0005】
【課題を解決する手段】
本発明者は、尾液を冷却しながら撹拌することで、尾液を投入した槽内で液の流速を高速化し、結晶成長を抑制し、析出した結晶に不純物を含有させ、残った液側に所望の金属(例えば、ガリウム)を得るガリウム溶液の浄液方法を見出した。
すなわち、本発明は、ガリウムと5族金属を含むアルカリ溶液に撹拌と冷却を施す工程と、5族元素を固化したものに含まれ、残液にガリウムが含まれ、ついで固液分離を施す工程を含むことによりガリウム溶液を精製することを特徴とする。さらに他の金属元素を除去または低減するために、該固液分離後の該残液にカルシウム塩を添加し、固液分離する工程により固化成分とろ液と分離され、ろ液にガリウムを含むこ特徴とする。また、撹拌における撹拌機のインペラーの回転速度を100rpmより高い回転数で行うことによりアルカリ溶液からの析出された結晶の成長を制御可能となった。この際、アルカリ溶液が、苛性ソーダを含む溶液であればさらに好ましい。本発明の実施にあたり、用いる装置は、槽内に撹拌部を有する装置において、撹拌部より側壁側に冷却部を配置し、該冷却部に槽内の液を通液する通液部を有することにを特徴とするガリウム溶液の浄液装置である。
【0006】
【発明の実施の形態】
ガリウムなどの金属を電解により不純物の少ない金属を得る電解製錬の場合、用いられる電解用の電解液は、電解液の組成等の変化により液を交換することが多い。ガリウムはアルカリ溶液にて溶解した電解液を使用する。電解採取を行うと、電解液のガリウム濃度は通電とともに徐々に減少する、一方、電解液中のガリウム元素以外の不純物の濃度は、ガリウム濃度と相対比が上昇するため所望の純度のガリウムを得られなくなる。したがってここで使用済みの電解液(すなわち尾液)は一旦、系外に排出される。
しかし、該尾液にはガリウム等も若干ふくまれている。このため新たに作液した電解液に投入するが、該尾液には不純物が濃縮されて含まれているため、新たに作液した電解液にこれを投入することは不純物を単に増加せしめることになり、電解採取には好ましいことではない。従って該尾液中の不純物を除去する必要がある。
本発明においては、尾液を撹拌し、流速を与え、乱流を発生させながら液を冷却することで液を結晶析出させ、結晶に不純物を移行させ、残った液にはガリウムが残り、不純物を除去する。
【0007】
本発明に用いる装置を説明する。
図2にあるように、上方が開放された槽1に、略中心部に撹拌部2を配置し、その周辺に冷却部3を配置する。液温を観測する撹拌機のインペラー4は、槽1の寸法、液量とで適宜選択すればよいが、タービン型のものが特に有効である。これはタービン型の方が撹拌部2の中心部から外側に向う方向(側壁方向)への撹拌力が強く、槽内の液流の速度が向上し、なおかつ乱流が発生するため、液が冷却され結晶化される際にその結晶の成長を妨げ、適宜な結晶成長の制御機能を有する。また周辺にある冷却部3と液との接触の効率が向上する。冷却部3は、管などによるコイルタイプなどでよい。管によるジャケットの場合、ジャケット管の間に隙間により、該隙間に通液でき、槽内の撹拌の妨げが少ないからである。また、該管内に通液する液温により冷却はもとより、加熱も可能であり槽内の液温の多様な制御が可能となる。
【0008】
アルカリ溶液であるガリウムの尾液には、ガリウムのほかに含まれる金属元素は、砒素、燐、アルミニウムが主にある。また、アルカリ剤として苛性ソーダを用いている場合は、室温では固化している場合もあり、一旦60〜80℃まで加熱し、液状とする。この加熱した尾液を槽内に導入する。導入後は、速やかに撹拌機を稼動させ、尾液の撹拌を実施する。同時に冷却部3の稼動も同時に実施する。冷却部3は、冷却部の接液部の温度が20℃程度になるように制御する。なお、この冷却温度は、低いほど良いが、20℃より低いと冷却部3で瞬時に結晶生成してしまい好ましくない。
【0009】
この際撹拌は、強い撹拌が好ましく、具体的には、インペラー4をタービン型とした場合、100rpm以上の回転数が望ましく、さらには400rpm以上が良い。強撹拌では、冷却部3により冷却され尾液から結晶が生成される時、結晶成長が抑制されより細かく結晶化するため、尾液から結晶化し固化するものと液状として残るものとの分離性が向上するためである。また、槽内での液の循環速度が高いため、尾液と冷却機との接触量が増え、前記の結晶が細かいため冷却機表面の被覆も少なく、冷却効率が向上する。冷却しながら撹拌後、結晶固化し残った残液が20℃程度となれば、撹拌機、冷却機を停止する。停止後は、槽内の残液を抜き出し、浄化した浄液を得る。
【0010】
前記残液において、アルミニウムが含有されている場合、さらに該残液にカルシウム塩、例えば水酸化カルシウムを添加し、さらには撹拌すれば良く、該カルシウム塩を添加したことにより生成した固化物と液と固液分離を施し、カルシウムとアルミニウムの含有固化物とろ液とになれば、ろ液においてはさらに純度の高いガリウムの浄液がの浄化が得られる。
【0011】
この精製液では、特に砒素の除去に著しく効果があり、尾液の状態とくらべ80%以上除去可能である。さらには、アルミニウム等の他の元素を含む場合であってもカルシウム塩を添加することでさらに浄化が可能であり、尾液に含まれる元素により柔軟に対応可能である。このようにして得た浄液は、電解液を作液する工程にて、抜き出した液を使用すれば良い。他には、抜き出した液を他の槽等に投入、保管し、これを繰り返して一定量となったら電解液として用いても良い。
【0012】
【実施例】
(実施例1)
槽内に冷却ジャケットを配置した。
槽の中央部には撹拌部を配置した。
この層の中に、苛性ソーダ溶液に溶解したガリウム溶液を10L(リットル)投入した。 この際の成分は、Ga(ガリウム) 3.0g/L、As(砒素)13.1g/L、Al(アルミニウム)6.0g/Lであった。
【表1】尾液中の各組成の濃度

Figure 2004123442
投入時は、液温 80℃とした。投入後、すぐにかくはん機を作動させ、400rpmの回転数にてかくはんを開始し、ジャケットに20℃の冷却水を導入した。液温が50℃前後になるとガリウム溶液が結晶析出が始まり、20℃に達したとき撹拌を停止した。この間に経過した時間は、100分であった。
この後、結晶析出物と液を分離するため液を底抜きした。このときの液の組成を表2に示す。 このように成分は、 Ga(ガリウム) 3.0g/L、As(砒素)2.0g/L、Al(アルミニウム) 6.0g/Lであった。
【表2】残液の各組成の濃度。
Figure 2004123442
表3のとおり、ガリウム以外の不純物分離可能となった。
しかし、アルミニウムがわずかにあるため、水酸化カルシウムを添加し、澱物と固液分離をおこなった。その際の液組成を表3に示す。このように成分は、 Ga(ガリウム) 3.0g/L、As(砒素)2.0g/L、Al(アルミニウム)1.0g/Lであった。表3のとおりアルミニウムを除去でき、ガリウム溶液の精製が可能となった。
【表3】カルシウム塩添加後の残液の各組成の濃度。
Figure 2004123442
【0013】
(比較例1)
実施例1において撹拌機の回転数を100rpmとした以外は、同様に実施した。その結果、100分間経過したが液温は30℃あり、20℃まで冷却不可能であった。また結晶析出が始まると壁面に固着し、徐々に撹拌が困難となり、結晶析出物と液との分離が困難とであった。
【0014】
【発明の効果】
本発明により、電解液、特にガリウムを含む溶液において簡便にガリウム以外の金属を除去できることが可能となった。ガリウム電解における尾液からのガリウムの回収が可能になる
【図面の簡単な説明】
【図1】本発明の工程のフローにおける概略図。
【図2】本発明に用いる装置の概略図。
【符号の説明】
1 槽
2 撹拌部
3 撹拌部2におけるインペラー
4 冷却部
5 槽の側壁部[0001]
[Industrial applications]
The present invention belongs to the metal smelting and refining of metals, and removes impurities other than valuable metals from the used electrolyte or the used electrolyte in the metal smelting or refining of metals, and reduces the amount of impurities other than valuable metals. Belong. Further, the present invention relates to the preparation of an electrolytic solution containing a Group V metal (arsenic, phosphorus, etc.) such as gallium and indium, and to the removal or reduction of impurities.
[0002]
[Prior art]
In the case of electrolytic smelting that obtains a metal with few impurities by electrolysis, the electrolytic solution used for electrolysis is often replaced with a new electrolytic solution due to a change in the composition of the electrolytic solution. In the electrowinning, when the concentration of a desired metal decreases, use of the electrolytic solution is stopped for economic reasons, and the electrolytic solution is managed as a used electrolytic solution. However, even in this used electrolyte, the desired metal is contained, so that the metal can be directly recovered from the used liquid or a liquid prepared by removing or reducing impurities can be used again. Various methods have been proposed for utilizing metals in the process and substantially recovering metals. The term “purified liquid” in the present invention refers to a liquid obtained by removing and reducing metals other than the desired metal or other elements from the gallium solution.
[0003]
For example, there is a method of removing arsenic using hydrogen sulfide (see Patent Document 1). As a method of purifying metallic gallium, a method of segregating and removing impurities in gallium while solidifying molten gallium (see Patent Document 2). ) Has been proposed.
However, adding a new additive may cause new adverse effects such as removal of the additive and removal of the compound by the addition of the additive. Further, in the case of a liquid electrolyte, segregation was not always performed like solidification of metal, and the behavior of impurities as other elements was unknown.
[Patent Document 1]
JP-A-57-32786 (page 19, upper left column, line 19)
[Patent Document 2]
JP-A-6-136467 (page 1, 0010 to 0018)
[0004]
[Problems to be solved by the invention]
There has been a demand for a simple method of removing and reducing impurities from an electrolytic solution used for electrolytic smelting and the like, particularly for recovering valuable metals contained in a used electrolytic solution (hereinafter, a tail solution).
[0005]
[Means to solve the problem]
The inventor stirred the tail liquid while cooling it, thereby increasing the flow rate of the liquid in the tank into which the tail liquid was charged, suppressing crystal growth, causing the precipitated crystals to contain impurities, and removing the remaining liquid. Have found a method of purifying a gallium solution to obtain a desired metal (for example, gallium).
That is, the present invention provides a step of stirring and cooling an alkaline solution containing gallium and a Group 5 metal, and a step of containing gallium in a solidified Group 5 element and then performing a solid-liquid separation. Wherein the gallium solution is purified by containing In order to further remove or reduce other metal elements, a calcium salt is added to the remaining liquid after the solid-liquid separation, and the solidified component and the filtrate are separated by a solid-liquid separation step, and the filtrate contains gallium. Features. Further, by performing the rotation speed of the impeller of the stirrer in the stirring at a rotation speed higher than 100 rpm, the growth of crystals precipitated from the alkaline solution can be controlled. At this time, it is more preferable that the alkaline solution is a solution containing caustic soda. In the practice of the present invention, the apparatus used in the apparatus having a stirring unit in the tank, a cooling unit is disposed on the side wall side of the stirring unit, and the cooling unit has a liquid passing unit for passing the liquid in the tank. A gallium solution purifying apparatus characterized in that:
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
In the case of electrolytic smelting for obtaining a metal with few impurities by electrolysis of a metal such as gallium, the electrolytic solution used for electrolysis is often changed due to a change in the composition or the like of the electrolytic solution. Gallium uses an electrolytic solution dissolved in an alkaline solution. When electrowinning is performed, the gallium concentration of the electrolytic solution gradually decreases with energization, while the concentration of impurities other than the gallium element in the electrolytic solution increases the relative ratio to the gallium concentration, so that gallium of a desired purity is obtained. Can not be. Therefore, the used electrolyte solution (that is, the tail solution) is once discharged out of the system.
However, the tail fluid contains some gallium and the like. For this reason, it is added to the newly prepared electrolyte solution, but since the tail solution contains concentrated impurities, it is necessary to simply add it to the newly prepared electrolyte solution simply to increase the impurities. This is not preferable for electrolytic sampling. Therefore, it is necessary to remove impurities in the tail liquid.
In the present invention, the tail liquid is agitated, the flow rate is given, and the liquid is crystallized by cooling the liquid while generating turbulence, and the impurities are transferred to the crystals. Is removed.
[0007]
An apparatus used in the present invention will be described.
As shown in FIG. 2, a stirrer 2 is disposed at a substantially central portion of a tank 1 having an open top, and a cooling unit 3 is disposed around the stirrer 2. The impeller 4 of the stirrer for monitoring the liquid temperature may be appropriately selected depending on the size of the tank 1 and the amount of liquid, but a turbine type is particularly effective. This is because the turbine type has a stronger stirring force in the direction from the center of the stirring unit 2 to the outside (side wall direction), increases the speed of the liquid flow in the tank, and generates turbulence. When cooled and crystallized, it hinders the growth of the crystal and has an appropriate crystal growth control function. Further, the efficiency of contact between the liquid and the cooling unit 3 in the periphery is improved. The cooling unit 3 may be a coil type using a tube or the like. This is because, in the case of a jacket using a pipe, the gap between the jacket pipes allows the liquid to pass through the gap, and hinders the stirring in the tank. In addition, not only cooling but also heating is possible by the temperature of the liquid passing through the pipe, and various controls of the liquid temperature in the tank are possible.
[0008]
The gallium tail solution, which is an alkaline solution, mainly contains arsenic, phosphorus, and aluminum as metal elements contained in addition to gallium. When caustic soda is used as the alkaline agent, it may be solidified at room temperature, and is once heated to 60 to 80 ° C. to be in a liquid state. This heated tail solution is introduced into the tank. After the introduction, the stirrer is operated immediately to stir the tail liquid. At the same time, the operation of the cooling unit 3 is performed at the same time. The cooling unit 3 controls the temperature of the liquid contact part of the cooling unit to be about 20 ° C. The lower the cooling temperature, the better. However, if the cooling temperature is lower than 20 ° C., crystals are instantaneously generated in the cooling unit 3, which is not preferable.
[0009]
At this time, strong stirring is preferable. Specifically, when the impeller 4 is a turbine type, the rotation speed is preferably 100 rpm or more, and more preferably 400 rpm or more. In the strong stirring, when the crystal is generated from the tail liquid by cooling by the cooling unit 3, the crystal growth is suppressed and the crystal is finely crystallized. It is to improve. In addition, since the circulation rate of the liquid in the tank is high, the amount of contact between the tail liquid and the cooler increases, and since the crystals are fine, the surface of the cooler is less coated and the cooling efficiency is improved. After stirring while cooling, when the remaining liquid solidified and crystallized reaches about 20 ° C., the stirrer and the cooler are stopped. After the stop, the residual liquid in the tank is drawn out to obtain a purified liquid.
[0010]
When aluminum is contained in the residual liquid, a calcium salt, for example, calcium hydroxide may be further added to the residual liquid, and the mixture may be further stirred, and the solidified product formed by adding the calcium salt and the liquid may be added. Then, solid-liquid separation is performed to obtain a solid containing calcium and aluminum and a filtrate, so that a purified gallium solution with higher purity can be obtained from the filtrate.
[0011]
This purified solution is particularly effective in removing arsenic, and can be removed by 80% or more compared to the state of the tail solution. Furthermore, even when other elements such as aluminum are included, purification can be further performed by adding a calcium salt, and it is possible to flexibly respond to the elements contained in the tail liquor. As the purified liquid thus obtained, a liquid extracted in the step of preparing an electrolytic solution may be used. Alternatively, the extracted liquid may be charged and stored in another tank or the like, and may be used as an electrolytic solution when a certain amount is obtained by repeating this.
[0012]
【Example】
(Example 1)
A cooling jacket was placed in the bath.
A stirring section was arranged at the center of the tank.
10 L (liter) of a gallium solution dissolved in a caustic soda solution was charged into this layer. The components at this time were Ga (gallium) 3.0 g / L, As (arsenic) 13.1 g / L, and Al (aluminum) 6.0 g / L.
[Table 1] Concentration of each composition in tail fluid
Figure 2004123442
At the time of introduction, the liquid temperature was 80 ° C. Immediately after the charging, the stirring machine was operated, stirring was started at a rotation speed of 400 rpm, and cooling water at 20 ° C. was introduced into the jacket. When the liquid temperature reached about 50 ° C., the gallium solution began to crystallize, and when the temperature reached 20 ° C., the stirring was stopped. The time elapsed during this period was 100 minutes.
Thereafter, the liquid was drained to separate the crystal precipitate from the liquid. Table 2 shows the composition of the liquid at this time. Thus, the components were Ga (gallium) 3.0 g / L, As (arsenic) 2.0 g / L, and Al (aluminum) 6.0 g / L.
[Table 2] The concentration of each composition of the residual liquid.
Figure 2004123442
As shown in Table 3, impurities other than gallium can be separated.
However, due to the small amount of aluminum, calcium hydroxide was added to perform solid-liquid separation from the precipitate. Table 3 shows the liquid composition at that time. Thus, the components were Ga (gallium) 3.0 g / L, As (arsenic) 2.0 g / L, and Al (aluminum) 1.0 g / L. As shown in Table 3, aluminum could be removed, and the gallium solution could be purified.
[Table 3] The concentration of each composition of the residual solution after the addition of the calcium salt.
Figure 2004123442
[0013]
(Comparative Example 1)
Example 1 was repeated except that the rotation speed of the stirrer was set to 100 rpm. As a result, 100 minutes passed, but the liquid temperature was 30 ° C., and it was impossible to cool down to 20 ° C. Further, when the precipitation of crystals started, they were fixed to the wall surface, and it became difficult to stir gradually, and it was difficult to separate the crystals from the precipitate.
[0014]
【The invention's effect】
According to the present invention, it has become possible to easily remove metals other than gallium from an electrolytic solution, particularly a solution containing gallium. Gallium can be recovered from tail solution in gallium electrolysis [Brief description of drawings]
FIG. 1 is a schematic view of a process flow of the present invention.
FIG. 2 is a schematic view of an apparatus used in the present invention.
[Explanation of symbols]
Reference Signs List 1 tank 2 stirring section 3 impeller in stirring section 2 cooling section 5 side wall of tank

Claims (5)

ガリウムと5族元素を含むアルカリ溶液に撹拌と冷却を施す工程と、固化成分と残液とに固液分離する工程を含むガリウム溶液の浄液方法。A method for purifying a gallium solution, comprising a step of stirring and cooling an alkaline solution containing gallium and a group V element, and a step of solid-liquid separation into a solidified component and a residual liquid. ガリウムと5族元素と他の金属元素を含むアルカリ溶液に撹拌と冷却を施す工程と、固化成分と残液とに固液分離する工程と、該残液にカルシウム塩を添加する工程と、ついで固液分離する工程を含むガリウム溶液の浄液方法。A step of stirring and cooling the alkaline solution containing gallium, a group V element, and another metal element; a step of solid-liquid separation into a solidified component and a residual liquid; and a step of adding a calcium salt to the residual liquid. A method for purifying a gallium solution including a step of solid-liquid separation. 前記撹拌における撹拌機のインペラーの回転速度を100rpmより高い回転数で行うことを特徴とする請求項1または2に記載のガリウム溶液の浄液方法。The method for purifying a gallium solution according to claim 1, wherein the rotation speed of the impeller of the stirrer in the stirring is higher than 100 rpm. 前記アルカリ溶液が、苛性ソーダを含む溶液であることを特徴とする請求項1から3に記載のガリウム溶液の浄液方法。4. The method for purifying a gallium solution according to claim 1, wherein the alkaline solution is a solution containing caustic soda. 前記他の金属がアルミニウムであることを特徴とする請求項2または3に記載のガリウム溶液の浄液方法。4. The method for purifying a gallium solution according to claim 2, wherein the other metal is aluminum.
JP2002289447A 2002-10-02 2002-10-02 Purification method of gallium solution Expired - Fee Related JP4119960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289447A JP4119960B2 (en) 2002-10-02 2002-10-02 Purification method of gallium solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289447A JP4119960B2 (en) 2002-10-02 2002-10-02 Purification method of gallium solution

Publications (2)

Publication Number Publication Date
JP2004123442A true JP2004123442A (en) 2004-04-22
JP4119960B2 JP4119960B2 (en) 2008-07-16

Family

ID=32281613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289447A Expired - Fee Related JP4119960B2 (en) 2002-10-02 2002-10-02 Purification method of gallium solution

Country Status (1)

Country Link
JP (1) JP4119960B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063044A (en) * 2005-08-30 2007-03-15 Dowa Holdings Co Ltd Method for recovering gallium
CN108588449A (en) * 2018-05-29 2018-09-28 中铝矿业有限公司 A kind of crystallization apparatus and method of high purity gallium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063044A (en) * 2005-08-30 2007-03-15 Dowa Holdings Co Ltd Method for recovering gallium
CN108588449A (en) * 2018-05-29 2018-09-28 中铝矿业有限公司 A kind of crystallization apparatus and method of high purity gallium
CN108588449B (en) * 2018-05-29 2023-10-27 中铝矿业有限公司 Crystallization device and method for high-purity gallium

Also Published As

Publication number Publication date
JP4119960B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP5400782B2 (en) Method for treating silicon powder to obtain silicon crystals
AU2005229082B2 (en) Method for the purification of a molten metal
JP3909364B2 (en) Method and apparatus for purifying gallium
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
CN103397190B (en) Method for producing high-purity gold and copper sulphate from gold-bearing copper sludge
CN105755296A (en) Method for removing calcium from zinc sulfate solution of zinc hydrometallurgy production
JP5066025B2 (en) Method for producing copper sulfate
JP4119960B2 (en) Purification method of gallium solution
US9676632B2 (en) Method for purifying silicon
US6090341A (en) Method and system for extracting and refining gold from ores
JP2003183871A (en) Electrolytic refining method for producing high-purity tin, and apparatus therefor
TWI465577B (en) Method to purify aluminum and use of purified aluminum to purify silicon
JP3784331B2 (en) Method for purifying gold-containing gallium and method for collecting gold from gallium containing gold
JP2009280918A (en) Method for refining aluminum, high purity aluminum material, method for producing aluminum material for electrode of electrolytic capacitor and aluminum material for electrode of electrolytic capacitor
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JP2009024234A (en) Continuous refining system for high purity aluminum
JP2002105685A (en) Preliminary treatment method of electrolyte for electrolytic refining of zinc, and electrolytic refining method of zinc using the preliminary treatment method
JP2000226623A (en) METHOD FOR PURIFYING Ca-CONTAINING SOLUTION
CN113584324B (en) Method for assisting precipitation of arsenic-containing crystals in copper electrolyte by ultrasonic external field
JP2009013448A (en) Continuous refining system for high-purity aluminum
KR100222210B1 (en) Utilizing method of aluminium drawers
JP6746383B2 (en) Material purification method and apparatus, continuous purification system for high-purity substances
JP2024055649A (en) Method for producing refined aluminum
JP3784332B2 (en) Purification method of gallium
Sillekens et al. Refining aluminium scrap by means of fractional crystallisation: Status and prospects for development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees