JP2004122620A - Method for electrochemical treatment of ready mixed concrete - Google Patents

Method for electrochemical treatment of ready mixed concrete Download PDF

Info

Publication number
JP2004122620A
JP2004122620A JP2002291058A JP2002291058A JP2004122620A JP 2004122620 A JP2004122620 A JP 2004122620A JP 2002291058 A JP2002291058 A JP 2002291058A JP 2002291058 A JP2002291058 A JP 2002291058A JP 2004122620 A JP2004122620 A JP 2004122620A
Authority
JP
Japan
Prior art keywords
concrete
mixed concrete
ready
cathode
ready mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002291058A
Other languages
Japanese (ja)
Other versions
JP4003947B2 (en
Inventor
Takayuki Higuchi
樋口 隆行
Minoru Morioka
盛岡 実
Kiminobu Ashida
芦田 公伸
Tsumoru Ishida
石田 積
Yasuyuki Nakanishi
中西 泰之
Katsumi Yanagida
柳田 克巳
Ryoichi Kamimoto
神本 良一
Eriko Wakui
涌井 絵里子
Mizue Sawada
澤田 瑞恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Denka Co Ltd
Original Assignee
Kajima Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Denki Kagaku Kogyo KK filed Critical Kajima Corp
Priority to JP2002291058A priority Critical patent/JP4003947B2/en
Publication of JP2004122620A publication Critical patent/JP2004122620A/en
Application granted granted Critical
Publication of JP4003947B2 publication Critical patent/JP4003947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a newly built concrete structure which does not generate ammonia gas by removing an ammonium ion by turning on electricity under a ready mixed concrete state and to provide a technique capable of suppressing an alkali aggregate reaction also. <P>SOLUTION: At least two electrodes are inserted into the not-solidified ready mixed concrete containing a setting retarder, at least one electrode is made an anode and at least one electrode is made a cathode. A holding material capable of holding an electrolyte solution is arranged around the cathode and an electric current is applied to remove an alkali material, especially ammonia gas in the ready mixed concrete. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、コンクリートの電気化学的な処理方法、特に未だ固まらないレディーミクストコンクリート中のアンモニウムイオンを除去し、コンクリート構造物からのアンモニアの発生を抑制する方法に関する。
【0002】
【従来の技術と課題】
美術館や博物館などでは新設のコンクリート構造物に収納された油絵、染色品、絹類などの文化財の変色が問題となっている。この原因としてコンクリートから発生するアンモニアガスが指摘され、コンクリートの原料であるセメント、骨材、水などに含まれる窒素化合物が関連していることが確認されている(例えば、非特許文献1参照)。
【0003】
アンモニアはコンクリート構造物完成初期に発生するため、建物の竣工後6ケ月から1年間にわたり放置する、いわゆる「木枯らし期間」を設け、アンモニアの発散が収まるのを待ってから文化財を収納する措置が取られている。しかしながら、この「木枯らし期間」中の時間的損失が大きいことからアンモニアガスの発生を抑制する方法が種々検討されている。
【0004】
最も一般的な方法として、早強セメント、及び加熱処理した骨材及び水を使用したコンクリートが提案されている(例えば、特許文献1参照)。普通セメントには重量の5%以下の範囲内で、窒素分を含んだ高炉水砕スラグや石灰石微粉末等の混合材が認められているが、早強セメントには混合材が使用されていない。また、骨材や水も加熱処理により窒素分が除去されるため、アンモニアガス発生量の少ないコンクリートを調製することが可能になる。しかしながら、骨材や水の加熱には多大な労力とコストがかかるため経済的でない。しかも完全にアンモニアガスの発生を抑制するのは難しいという課題があった。
【0005】
また、コンクリートの表面にアンモニアを吸収する特殊シートを貼り付ける工法が提案されている(例えば、非特許文献2参照)。しかしながら、この方法は積極的にアンモニアガスの発生を促していないため、ガスの吸収に時間がかかり、更に完全に除去できないという課題がある。
【0006】
更に、空調機にアンモニア吸着材を取り付ける方法も検討されている(例えば、非特許文献3参照)。しかしながら、この方法も、シートによる方法同様、アンモニアガスの吸収に時間がかかり、また完全に除去できないという課題を有している。
【0007】
又、コンクリートの耐久性の観点からアルカリ骨材反応が問題となっている。アルカリ骨材反応とは、コンクリート材料として用いる骨材の中に、例えばASTM C 295に示されているクリストバライト、トリジマイト、微小石英、微小雲母、シリカ成分等の反応性鉱物を多く含有する反応性骨材とセメント中に含まれるナトリウムやカリウム等のアルカリ成分が反応し、体積膨張を起こす現象であり、アルカリ−シリカ反応とも呼ばれている。
【0008】
このアルカリ骨材反応を抑制する方法としては、反応性骨材を使用しないこと、低アルカリ型セメントを使用すること、或いはアルカリ骨材反応抑制効果のある高炉セメントB種やC種等の混合セメントを用いるなどの方法が実施されている。しかしながら、日本の骨材事情は厳しく、無害でない骨材を使用することも多い。
【0009】
そこで、本発明者らは前記課題に対し種々検討を重ねた結果、未硬化のレディーミクストコンクリートからアンモニウムイオンを除去し、同時にナトリウムイオンも除去し、短時間でアンモニアフリー、アルカリフリーのコンクリートが調製可能であることを見出し本発明を完成するに至った。
【0010】
【特許文献1】
特開平10−287462号公報
【非特許文献1】
岸谷孝一、黒坂五馬著、「コンクリートから出る空中遊離物質が他の物質に及ぼす影響」日本建築学会関東支部研究報告集、1976年、p.357−360
【非特許文献2】
三谷一房、岩波洋ほか著、「美術館、博物館におけるアンモニア抑制工法の開発」大林組技術研究所報No.53、1996年、p.99−104
【非特許文献3】
小塩良次、松田弘一ほか著、「美術空調設備、第9回空気清浄とコンタミネーションコントロール研究大会」平成2年5月、p.117−120
【0011】
【課題を解決するための手段】
本発明は上記課題を解決することを目的とし、その構成は、練混ぜ後の固まっていない凝結遅延剤を含有するレディーミクストコンクリート中に、少なくとも2つの電極を挿入し、少なくとも1つを陽極、少なくとも1つを陰極とし、陰極の周囲に電解質溶液を保持することができる保持材を配置して通電し、レディーミクストコンクリート中のアルカリ物質を除去することを特徴とする。
【0012】
すなわち、本発明は混り混ぜられて打設する以前の未だ流動性を有するコンクリートに、少なくとも1つの陽極と少なくとも1つの陰極を挿入し、短時間で陰極に集まるアンモニウムイオンをアンモニアガスとして放出するものである。未硬化のレディーミクストコンクリートは自由水が多く、高電流も加え易く、短時間でイオンの移動を完了させることができる。
また、電極の周囲に電解質溶液を保持することができる保持材を配置しておくと、保持材中にナトリウム、カリウム等のイオンが集まり、電極と共に保持材を除去するとアルカリもフリーなレディーミクストコンクリートを得ることができる。しかしながら、処理中にコンクリートの凝結が開始されるおそれがあるため、予めレディーミクストコンクリートに凝結遅延剤を含有させておくことが好ましい。
【0013】
【発明の実施の形態】
電極とは、鉄をはじめとして導電性を示すものであれば特に限定されるものではないが、本発明では電気的腐食に対し抵抗性の高いものが好ましい。具体的には、チタン、チタン合金、白金及び金、又はこれらでメッキされた金属: 炭素繊維、炭素棒等の炭素: 及び体積電気抵抗率が103 Ω・cm以下の導電性を有する有機高分子等である。
なお、通常のコンクリートの体積電気抵抗率は103 〜104 Ω・cm程度であるので、導電性を有する有機高分子材料としてはその値以下、すなわち103 Ω・cm以下であり、102 Ω・cm以下が好ましく、10Ω・cm以下がより好ましい。
【0014】
本発明では陽極及び陰極は1個に限定されるものでなく、中央を陽極、両端を陰極としたり、複数の陽極及び陰極を交互に配置する等の方法がある。
陽極と陰極の間に流す電流はコンクリート断面積あたり0.1〜20A/m2 であり、好ましくは5〜15A/m2 である。0.1A/m2 未満では電気化学的処理効果がほとんど認められず、20A/m2 を超えると電極が電食するおそれがある。
【0015】
本発明では、電極、特に陰極の周囲にカチオンを保持できる柔軟な保持材を配置し、電気化学的手法によって陰極周辺に集めたカチオンを吸収させ、通電後取り外すことによって、再びコンクリート内へ浸透するのを防止することができる。アンモニウムイオンは保持材がなくともアンモニアガスとして揮散する。
本発明で使用する保持材とは、カチオンを保持できるものであれば特に限定はなく、ウレタンゴム、シリコンゴム、水膨潤性ゴム、自己融着性ゴム等のゴム質材料、及び発泡ウレタン、発泡ポリエチレン、発泡ポリスチレン等の発泡材料が挙げられる。
【0016】
本発明では、コンクリートの電気化学的処理の目標が達成された段階で、電極や保持材を取外し、コンクリートを運搬、打設する。
コンクリートの電気化学的処理を行い、打設する時間を通じてコンクリートの凝結を防ぎ、フレッシュコンクリートの状態に維持する必要がある。その間、凝結遅延剤を添加することが好ましい。
凝結遅延剤としては、グルコン酸、クエン酸、酒石酸のようなオキシカルボン酸系化合物又はその塩、グルコース、ショ糖、乳糖のような糖類、アミノトリメチレンホスホン酸のようなアミノホスホン酸系化合物及びその塩、リグニンスルホン酸又はその塩系の化合物で促進作用を有しないもの、ケイフッ化物等が挙げられる。
通電処理後は凝結促進剤を混合してコンクリートの硬化を促進してもよい。
【0017】
【実施例】
以下、実施例を挙げて本発明を具体的に説明する。
実施例1
セメント 330  kg/m3 
単位水量 180  kg/m3 
細骨材  756  kg/m3 
粗骨材  989  kg/m3 
減水剤    1.1kg/m3 
遅延剤    0.3kg/m3 
【0018】
上記の配合でコンクリート1m3 を調製し、1m×1m×1mのホッパーに流し込んだ。このホッパーの両端に1m×1mのチタンメッシュ電極を配設し、一方を陽極、一方を陰極として、コンクリート1m2 あたり5Aを1時間、2時間及び3時間通電した。チタンメッシュはエルテックインターナショナルコーポレーション社製、商品名「エルガードメッシュ」を用いた。
通電終了後、コンクリートを型枠に流し込み、1週間養生した後、10cm×10cm×10cmのコンクリートブロックをコンクリート壁から採取して供試体としてアンモニアの発生速度を測定し、表1に示した。
なお、比較例として通電を実施しない以外は実施例1と同様にして打設し、養生し、コンクリートブロックを採取し、供試体としてアンモニアの発生速度を測定し、表1に併記した。
表1より、実施例においてはアンモニアの発生速度が激減していることが判明した。
【0019】
コンクリートブロックから採取した供試体から発生するアンモニアガスの発生速度の測定は、下記の方法で行った。
すなわち、ブロックを入れたデシケータ内に一端から清浄化されたアンモニアを含有しない空気を連続的に流入させ、同時に他端からデシケータ中の空気を連続的に排出させ、その排出空気をアンモニア捕集用インピジャー中の純水に導入させ、純水中のアンモニウムイオン量をイオンクロマトグラフィーによって経時的に測定した。
【0020】
<使用材料>
セメント: 市販普通ポルトランドセメント
細骨材 : 新潟県姫川産 川砂 比重2.62
粗骨材 : 新潟県姫川産 砂利 比重2.64
減水剤 : 市販AE減水剤
遅延剤 : クエン酸
水   : 水道水
【0021】
【表1】

Figure 2004122620
【0022】
実施例2
コンクリート断面積あたりに通電する電流を表2に示すように変化させた以外は実施例1と同様の試験を行い、その結果を表2に示した。
なお、アンモニア発生速度の測定は通電2時間でのみ実施した。
【0023】
【表2】
Figure 2004122620
【0024】
実施例3
電気化学的処理後のアルカリ量が、アルカリ骨材反応に与える影響について、モルタルバー法に準じて試験を行った。
セメント600g、反応性骨材1350g、水+水酸化ナトリウム水溶液300mlをモルタルミキサーで充分に練り混ぜた。このフレッシュモルタルをホッパーに流し込み、このホッパーの両端にチタンメッシュ電極を配設し、一方を陽極、他方を陰極としてコンクリート断面積1m2 あたり5Aを2時間通電した。なお、陰極には電極とフレッシュモルタルとの間に飽和水酸化カルシウム水溶液を含浸させた発泡ポリスチレンを保持材として介在させた。
【0025】
反応性骨材には安山岩と粘板岩を用いた。また、水酸化ナトリウム水溶液の濃度はコンクリート中の全アルカリがNa2 O当量で1.2%となるように添加した。通電終了後、縦40×横40×長さ160mmの3連型枠に詰め、試験体とし、温度20℃、湿度80%の室内で24時間養生を行った。その後脱型し、直ちに第1回目の長さ測定を行い、基長とした。次いでこれら試験体を温度40℃湿度95%の状態で6ケ月間保管した後に膨張率の測定を行い、3本の平均値をとり、その結果を表3に示した。
なお、比較例として通電を行わなかった以外は実施例3と同様にして試験を行い、その結果を表3に併記した。
【0026】
【表3】
Figure 2004122620
【0027】
骨材として安山岩を使用し、保持材の種類を表4に示すように変化させたこと以外は実施例3と同様にして試験を行った。その結果を表4に併記した。
【0028】
【表4】
Figure 2004122620
【0029】
【発明の効果】
本発明により、レディーミクストコンクリートの状態での短時間の通電で、アンモニウムイオンを除去して、アンモニアガスの発生しない新設のコンクリート構造物を提供することができ、又、アルカリ骨材反応も抑制することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for electrochemically treating concrete, and more particularly to a method for removing ammonium ions in ready-mixed concrete that has not yet solidified, thereby suppressing the generation of ammonia from concrete structures.
[0002]
[Prior art and problems]
In art museums and museums, the discoloration of oil paintings, dyed goods, silk and other cultural properties stored in newly built concrete structures has become a problem. As the cause, ammonia gas generated from concrete is pointed out, and it has been confirmed that nitrogen compounds contained in cement, aggregate, water, etc., which are the raw materials of concrete, are related (for example, see Non-Patent Document 1). .
[0003]
Since ammonia is generated in the early stage of the completion of a concrete structure, a so-called “wood blight period” is set aside for one year from six months after the completion of the building, and measures to store cultural assets after waiting for the release of ammonia to subside are taken. Has been taken. However, various methods for suppressing the generation of ammonia gas have been studied due to a large time loss during the “wood blight period”.
[0004]
As the most common method, concrete using early-strength cement and heat-treated aggregate and water has been proposed (for example, see Patent Document 1). Mixed materials such as granulated blast furnace slag and limestone fine powder containing nitrogen within 5% or less of the weight are recognized in ordinary cement, but no mixed materials are used in early-strength cement. . In addition, since the nitrogen content is also removed from the aggregate and water by the heat treatment, it is possible to prepare concrete with a small amount of ammonia gas generated. However, heating aggregate and water requires a great deal of labor and cost and is not economical. Moreover, there is a problem that it is difficult to completely suppress the generation of ammonia gas.
[0005]
Also, a method of attaching a special sheet that absorbs ammonia to the surface of concrete has been proposed (for example, see Non-Patent Document 2). However, since this method does not actively promote the generation of ammonia gas, there is a problem that it takes time to absorb the gas and it cannot be completely removed.
[0006]
Further, a method of attaching an ammonia adsorbent to an air conditioner has been studied (for example, see Non-Patent Document 3). However, this method also has a problem that it takes a long time to absorb the ammonia gas and cannot be completely removed as in the case of the sheet method.
[0007]
In addition, alkali-aggregate reaction is a problem from the viewpoint of durability of concrete. Alkali-aggregate reaction refers to reactive bone which contains a large amount of reactive minerals such as cristobalite, tridymite, microquartz, micromica, silica components, etc. as described in ASTM C 295 in the aggregate used as a concrete material. This is a phenomenon in which a material and an alkali component such as sodium and potassium contained in cement react with each other to cause volume expansion, which is also called an alkali-silica reaction.
[0008]
As a method of suppressing the alkali-aggregate reaction, no reactive aggregate is used, a low-alkali type cement is used, or a blast furnace cement B or C-type mixed cement having an alkali-aggregate reaction suppressing effect is used. And other methods have been implemented. However, the aggregate situation in Japan is severe and often uses non-harmless aggregate.
[0009]
Thus, the present inventors have conducted various studies on the above problem, and as a result, removed ammonium ions from uncured ready-mixed concrete and simultaneously removed sodium ions, thereby preparing ammonia-free and alkali-free concrete in a short time. The inventors have found that this is possible, and have completed the present invention.
[0010]
[Patent Document 1]
JP-A-10-287462 [Non-Patent Document 1]
Koichi Kishitani and Goma Kurosaka, "Effects of Airborne Matter from Concrete on Other Materials," Journal of Architectural Institute of Japan, Kanto Branch, 1976, p. 357-360
[Non-patent document 2]
Ichifus Mitani, Hiroshi Iwanami et al., "Development of Ammonia Control Method in Art Museums and Museums" 53, 1996, p. 99-104
[Non-Patent Document 3]
Ryoji Oshio, Koichi Matsuda et al., "Art Air Conditioning Equipment, 9th Air Purification and Contamination Control Research Conference", May 1990, p. 117-120
[0011]
[Means for Solving the Problems]
An object of the present invention is to solve the above-described problem, and the configuration is such that at least two electrodes are inserted into ready-mixed concrete containing a non-solidified setting retarder after kneading, and at least one is an anode, At least one is a cathode, and a holding material capable of holding an electrolyte solution is arranged around the cathode, and electricity is supplied to remove an alkaline substance in the ready-mixed concrete.
[0012]
That is, according to the present invention, at least one anode and at least one cathode are inserted into concrete having fluidity before being mixed and poured, and ammonium ions collected at the cathode are released as ammonia gas in a short time. Things. Uncured ready-mixed concrete has a lot of free water, is easy to apply a high current, and can complete the transfer of ions in a short time.
In addition, if a holding material that can hold the electrolyte solution is placed around the electrodes, ions such as sodium and potassium will collect in the holding material, and if the holding material is removed together with the electrodes, alkali-free ready-mixed concrete will be removed. Can be obtained. However, there is a possibility that the setting of the concrete may be started during the treatment. Therefore, it is preferable that the ready-mixed concrete contains a setting retarder in advance.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The electrode is not particularly limited as long as it exhibits conductivity, such as iron, but in the present invention, an electrode having high resistance to electrical corrosion is preferable. Specifically, titanium, a titanium alloy, platinum and gold, or a metal plated with these: carbon such as carbon fiber, carbon rod, and the like; and an organic conductive material having a volume electric resistivity of 10 3 Ω · cm or less. Molecules.
Since usually the volume electrical resistivity of concrete is 10 3 ~10 4 Ω · cm or so, the value or less as the organic polymer material having conductivity, i.e. less 10 3 Ω · cm, 10 2 Ω · cm or less is preferable, and 10 Ω · cm or less is more preferable.
[0014]
In the present invention, the number of anodes and cathodes is not limited to one, and there are methods such as using an anode at the center and cathodes at both ends, and alternately arranging a plurality of anodes and cathodes.
Current flowing between the anode and the cathode are concrete cross-sectional area per 0.1~20A / m 2, preferably 5~15A / m 2. If it is less than 0.1 A / m 2 , almost no electrochemical treatment effect is recognized, and if it exceeds 20 A / m 2 , the electrode may be electrolytically eroded.
[0015]
In the present invention, a flexible holding material capable of holding cations is arranged around the electrodes, particularly the cathode, and the cations collected around the cathode are absorbed by an electrochemical method, and the cations are removed after energization, so that the cations permeate the concrete again. Can be prevented. Ammonium ions volatilize as ammonia gas without a holding material.
The holding material used in the present invention is not particularly limited as long as it can hold cations. Rubber materials such as urethane rubber, silicone rubber, water-swellable rubber, and self-fusing rubber, and urethane foam, foam Foamed materials such as polyethylene and foamed polystyrene can be used.
[0016]
In the present invention, when the target of the electrochemical treatment of the concrete is achieved, the electrode and the holding material are removed, and the concrete is transported and poured.
It is necessary to carry out the electrochemical treatment of the concrete, to prevent the setting of the concrete throughout the casting time, and to maintain the state of the fresh concrete. Meanwhile, it is preferable to add a setting retarder.
As the setting retarder, gluconic acid, citric acid, oxycarboxylic acid compounds such as tartaric acid or salts thereof, glucose, sucrose, sugars such as lactose, aminophosphonic acid compounds such as aminotrimethylene phosphonic acid and Examples thereof include salts thereof, ligninsulfonic acid or a salt-based compound having no accelerating action, and silicon fluoride.
After the energization treatment, a setting accelerator may be mixed to accelerate the hardening of the concrete.
[0017]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
Example 1
Cement 330 kg / m 3
Unit water volume 180 kg / m 3
Fine aggregate 756 kg / m 3
Coarse aggregate 989 kg / m 3
Water reducing agent 1.1kg / m 3
Retarder 0.3 kg / m 3
[0018]
1 m 3 of concrete was prepared with the above composition and poured into a 1 m × 1 m × 1 m hopper. Titanium mesh electrodes of 1 m × 1 m were arranged at both ends of the hopper, and one was used as an anode and the other was used as a cathode, and 5 A was supplied for 1 hour, 2 hours and 3 hours per 1 m 2 of concrete. The titanium mesh used was Elgard Mesh, trade name, manufactured by Eltec International Corporation.
After the completion of the energization, the concrete was poured into a mold and cured for one week, and then a concrete block of 10 cm × 10 cm × 10 cm was sampled from the concrete wall, and the ammonia generation rate was measured as a test sample.
It should be noted that, as a comparative example, the casting and curing were carried out in the same manner as in Example 1 except that no current was applied, a concrete block was collected, and the ammonia generation rate was measured as a test sample.
From Table 1, it was found that the generation rate of ammonia was drastically reduced in the examples.
[0019]
The measurement of the generation rate of ammonia gas generated from the specimen collected from the concrete block was performed by the following method.
That is, the purified ammonia-free air is continuously flowed into the desiccator containing the block from one end, and the air in the desiccator is continuously discharged from the other end at the same time. It was introduced into pure water in an impinger, and the amount of ammonium ions in the pure water was measured over time by ion chromatography.
[0020]
<Material used>
Cement: Commercially available ordinary Portland cement fine aggregate: Specific gravity 2.62 from Kawasame, Himekawa, Niigata
Coarse aggregate: Gravel from Himekawa, Niigata Prefecture Specific gravity 2.64
Water reducing agent: Commercial AE water reducing agent Delaying agent: Citric acid water: Tap water [0021]
[Table 1]
Figure 2004122620
[0022]
Example 2
The same test as in Example 1 was performed except that the current passed per concrete cross-sectional area was changed as shown in Table 2, and the results are shown in Table 2.
Note that the measurement of the ammonia generation rate was performed only for 2 hours of energization.
[0023]
[Table 2]
Figure 2004122620
[0024]
Example 3
The effect of the amount of alkali after the electrochemical treatment on the alkali-aggregate reaction was tested according to the mortar bar method.
600 g of cement, 1350 g of reactive aggregate, and 300 ml of water + aqueous sodium hydroxide solution were sufficiently kneaded with a mortar mixer. The fresh mortar was poured into a hopper, the titanium mesh electrode arranged at both ends of the hopper and one was positive, energizing 2 hours concrete cross sectional area 1 m 2 per 5A and the other as a cathode. In addition, the polystyrene impregnated with the saturated calcium hydroxide aqueous solution was interposed between the electrode and the fresh mortar as a holding material for the cathode.
[0025]
Andesite and slate were used as reactive aggregates. Further, the concentration of the sodium hydroxide aqueous solution was added such that the total alkali in the concrete became 1.2% in Na 2 O equivalent. After the energization was completed, the test pieces were packed in a triple frame having a length of 40 x width 40 x length 160 mm, and cured in a room at a temperature of 20 ° C and a humidity of 80% for 24 hours. Thereafter, the mold was removed, and the first length measurement was immediately performed to obtain a base length. Next, these test specimens were stored for 6 months at a temperature of 40 ° C. and a humidity of 95%, and the expansion rates were measured. The average value of the three specimens was taken, and the results are shown in Table 3.
As a comparative example, a test was performed in the same manner as in Example 3 except that no current was applied, and the results are also shown in Table 3.
[0026]
[Table 3]
Figure 2004122620
[0027]
The test was performed in the same manner as in Example 3 except that andesite was used as the aggregate and the type of the holding material was changed as shown in Table 4. The results are shown in Table 4.
[0028]
[Table 4]
Figure 2004122620
[0029]
【The invention's effect】
According to the present invention, it is possible to provide a new concrete structure that does not generate ammonia gas by removing ammonium ions by short-time energization in the state of ready-mixed concrete, and also suppresses alkali-aggregate reaction. be able to.

Claims (4)

練混ぜ後の固まっていないレディーミクストコンクリート中に少なくとも2つの電極を挿入し、少なくとも1つを陽極、少なくとも1つを陰極として通電し、レディーミクストコンクリート中のアルカリ物質を除去することを特徴とするレディーミクストコンクリートの電気化学的処理方法。At least two electrodes are inserted into the unmixed ready-mixed concrete after kneading, and at least one is used as an anode and at least one is used as a cathode to remove alkaline substances in the ready-mixed concrete. Electrochemical treatment of ready-mixed concrete. アルカリ物質がアンモニウムイオンであることを特徴とする請求項1記載のレディーミクストコンクリートの電気化学的処理方法。The method for electrochemically treating ready-mixed concrete according to claim 1, wherein the alkaline substance is ammonium ion. レディーミクストコンクリート中に凝結遅延剤を含有することを特徴とする請求項1又は2記載のレディーミクストコンクリートの電気化学的処理方法。The method for electrochemically treating ready-mixed concrete according to claim 1 or 2, wherein the ready-mixed concrete contains a setting retarder. 陰極の周囲に電解質溶液を保持することができる保持材を配置することを特徴とする請求項1ないし3のいずれかに記載するレディーミクストコンクリートの電気化学的処理方法。The method for electrochemically treating ready-mixed concrete according to any one of claims 1 to 3, wherein a holding material capable of holding an electrolyte solution is arranged around the cathode.
JP2002291058A 2002-10-03 2002-10-03 Electrochemical treatment of ready-mixed concrete Expired - Fee Related JP4003947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291058A JP4003947B2 (en) 2002-10-03 2002-10-03 Electrochemical treatment of ready-mixed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291058A JP4003947B2 (en) 2002-10-03 2002-10-03 Electrochemical treatment of ready-mixed concrete

Publications (2)

Publication Number Publication Date
JP2004122620A true JP2004122620A (en) 2004-04-22
JP4003947B2 JP4003947B2 (en) 2007-11-07

Family

ID=32282753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291058A Expired - Fee Related JP4003947B2 (en) 2002-10-03 2002-10-03 Electrochemical treatment of ready-mixed concrete

Country Status (1)

Country Link
JP (1) JP4003947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184355A (en) * 2012-03-07 2013-09-19 Denki Kagaku Kogyo Kk Method of passing electric current through concrete
JP2015074578A (en) * 2013-10-08 2015-04-20 鹿島建設株式会社 Method for improving quality of reinforced concrete structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184355A (en) * 2012-03-07 2013-09-19 Denki Kagaku Kogyo Kk Method of passing electric current through concrete
JP2015074578A (en) * 2013-10-08 2015-04-20 鹿島建設株式会社 Method for improving quality of reinforced concrete structure

Also Published As

Publication number Publication date
JP4003947B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
Hasholt et al. Chloride migration in concrete with superabsorbent polymers
Saraswathy et al. Influence of activated fly ash on corrosion-resistance and strength of concrete
Najimi et al. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan
Madani et al. Chloride penetration and electrical resistivity of concretes containing nanosilica hydrosols with different specific surface areas
Ha et al. Accelerated short-term techniques to evaluate the corrosion performance of steel in fly ash blended concrete
JP5889221B2 (en) Concrete (composition) and method for producing concrete
KR100737488B1 (en) Composition of quick setting cement
Zhu et al. Effect of silica fume and fly ash on the stability of bound chlorides in cement mortar during electrochemical chloride extraction
JP6147194B2 (en) Rapid hardening cement
US4298392A (en) Accelerator for setting of cements
JP4003947B2 (en) Electrochemical treatment of ready-mixed concrete
Kushartomo et al. The application of sodium acetate as concrete permeability-reducing admixtures
JP2013044529A (en) Testing method for accelerating reinforcement corrosion
Paglia et al. An evaluation of the sulfate resistance of cementitious material accelerated with alkali-free and alkaline admixtures: Laboratory vs. field
TWI768210B (en) Cement-based cementitious material and its forming method
Zhao et al. Preparation of graphene-cement paste anode for chloride extraction from marine reinforced concrete structures
JP3718697B2 (en) High strength shotcrete cement and high strength shotcrete
JP2006232559A (en) Electrolytic corrosion protection method of concrete
Zhang et al. Research on chloride ion diffusivity of concrete subjected to CO2 environment
Yang et al. An electrochemical method for accelerated chloride migration test in cement-based materials
JP4468627B2 (en) Method for removing ammonia from concrete
JP2001049867A (en) Hydration reaction promotion method of hydraulic substance and promotion curing method of molding using hydraulic substance
WO2019047426A1 (en) Lightweight conductive mortar material, preparation method therefor and use thereof
JP4034633B2 (en) Method for electrochemical treatment of concrete
Rajasekar et al. Durability of ultra high strength concrete with Waste Granite Sand as partial substitute for aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

R150 Certificate of patent or registration of utility model

Ref document number: 4003947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees