JP2004122218A - Device and method for manufacturing grain oriented electrical steel sheet superior in magnetic characteristic - Google Patents

Device and method for manufacturing grain oriented electrical steel sheet superior in magnetic characteristic Download PDF

Info

Publication number
JP2004122218A
JP2004122218A JP2002293548A JP2002293548A JP2004122218A JP 2004122218 A JP2004122218 A JP 2004122218A JP 2002293548 A JP2002293548 A JP 2002293548A JP 2002293548 A JP2002293548 A JP 2002293548A JP 2004122218 A JP2004122218 A JP 2004122218A
Authority
JP
Japan
Prior art keywords
steel sheet
irradiation
laser beam
laser
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293548A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Sakai
坂井 辰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002293548A priority Critical patent/JP2004122218A/en
Publication of JP2004122218A publication Critical patent/JP2004122218A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser irradiation device that can deal with high moving speed of a steel sheet in the manufacturing technique of a grain oriented electrical steel sheet in which magnetic characteristics are improved by laser irradiation. <P>SOLUTION: In the device and method for manufacturing a grain oriented electrical steel sheet that excels in the magnetic characteristics; the device is constituted of N independent beam irradiation units that divide a laser beam outputted from one laser generator into N beams at equal intervals timewise and that simultaneously scan and emit the beam; the beam irradiation units are arranged so that each beam scanning position is aligned at the same position along the rolling direction; and a distance D(m) between the irradiation position of a first beam irradiation device arranged most upstream in the rolling direction and that of the m-th beam irradiation device following it satisfies a relation below. D(m)=N×k(m)×P1+(m-1)×P1, assuming that m is an integer fulfilling 2≤m≤N, that k(x) is 0 or an arbitrary positive integer, and that k(x1)<k(x2) is expressed if x1<x2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁気特性の優れた方向性電磁鋼板の製造装置と方法に係わる。
【0002】
【従来の技術】
従来、特許文献1等に開示されるように、方向性電磁鋼板の製造方法において、鋼板表面にグラス皮膜を形成し、更に絶縁コーティングを施した後に鋼板表面に力学的応力歪みを導入し、局所的還流磁区を形成することで180 °磁区を細分化し、鉄損を減少させる方法が記載されている。
【0003】
この手法における装置のポイントは、圧延方向の鋼板移動速度にあわせて、圧延方向に概垂直な方向に高速でレーザビームを繰り返し走査照射し、圧延方向の照射間隔Plが一定になるようにすることにある。これを実現するために従来、特許文献2に開示されるものは、レーザビームを回転ビームスプリットミラーで時間的に二等分割して、それを板幅方向に沿って配置された照射装置で鋼板に走査照査されている。
【0004】
この方法におけるレーザ走査パラメータの関係を図4を用いて説明する。図4において圧延方向の鋼板移動速度をVl(mm/s)、板幅方向の走査速度をVs(mm/s)、圧延方向走査線間隔をPl(mm)、分割された一つのビーム照射装置当たりの走査幅をWs’とすると、この方法はビームの2等分割法であるため、1ビームによる走査幅Ws=2×Ws’である。また分割された一つのビームの走査時間をtsとすると、2ビーム合計の板幅方向走査時間Ts=2×tsである。時間Ts内での鋼板圧延方向の合計移動量がPlに相当することから、これらのパラメータは以下の関係式で結ばれる。
【0005】
Ts=2×ts=2×(Ws’/Vs)=Ws/Vs ・・・・・(1)
Pl=Ts×Vl=(Ws/Vs)×Vl ・・・・・(2)
またTsはビームの走査繰り返し周期であることから、その逆数がビームの走者繰り返し周波数Fsである。
【0006】
Fs=1/Ts=Vl/Pl ・・・・・(3)
ここで、単位時間当たりの生産量を増加させるため、鋼板の圧延方向移動速度Vlを増加させることを考える。その場合でも線状走査線間隔Plは磁気特性に大きく影響するため変更することができないため、(2)式より、ビーム走査時間Tsを小さくする必要がある。その結果、(3)式よりビームの走査繰り返し周波数FsがVlに比例して増大する。例えば圧延方向移動速度で300m/分に相当するVl=5000mm/sにおいて、電磁鋼板の磁区制御にて一般的に用いられるPl=5mmを達成しようとすると、Fs=1000Hzとなる。
【0007】
ところで、ビームの走査方法は、特許文献2に開示されるように、ガルバノモータによるミラー振動、あるいは特許文献3に開示されるように、多角形ミラーの回転により実現されている。しかしガルバノモータの場合、長時間安定して制御可能な周波数はせいぜい100Hz程度であり、前述のような高速走査には使用できない。また多角形ミラーの場合の周波数は、ミラー面数hと回転速度Vr(rps)の積に相当する。ここで多角形ミラーの一枚のミラーを一辺がaの正方形に仮定し、また多角形ミラーの外接円半径をRとすると、次式により多角形ミラーの概略設計が可能である。
【0008】
Fs=h×Vr ・・・・・(4)
R=a/sin(2π/h) ・・・・・(5)
仮に回転速度として現実的な値であるVr=50rpsを選ぶと(4)式よりh=20となり、二十面体の多角形ミラーとなる。ミラーサイズaとしては、集光前のレーザビーム径20〜30mm程度のビームを受光するに十分な有効幅a=40mmと仮定すると、Fs=1000Hzを実現するには(5)式より半径R=130mmとなり、大型の多角形ミラーが必要となり、ミラー面数、モータ容量、制御性を考慮すると、装置が大型化し、高価になるという問題がある。またモータ回転速度Vrは走査速度Vsに比例する。
【0009】
比較的低出力のレーザを用いる場合はVlが大きくなると単位面積当たりの入熱量が減少するため、鉄損改善効果が激減する。その結果、Vlの増加には限界があり、すなわちVrはあまり大きくできないという制限が発生する。その場合、(4)式より多角形ミラーの面数は増加し、(5)式よりその半径はより大型化するという問題がある。従って多角形ミラーを用いる走査方法でも、従来の照射方法では鋼板移動速度を増加させ、生産量の増加に対応するには限界があった。
【0010】
【特許文献1】
特公昭58−26405号公報
【特許文献2】
特開昭63−83227号公報
【特許文献3】
特開平10−204533号公報
【0011】
【発明が解決しようとする課題】
本発明は、レーザ照射により磁気特性を改善する方向性電磁鋼板の製造技術において、高速の鋼板移動速度に対応できるレーザ照射装置を提供する。
【0012】
【課題を解決するための手段】
本発明は、鋼板の圧延方向に対して概垂直で、且つ一定間隔Plでレーザビームを走査照射して鉄損特性を改善する方向性電磁鋼板の製造装置において、一台のレーザ装置から出力されたレーザビームを時間的に等間隔でN分割するビーム分割装置と、分割された各ビームを受光して、ビーム分割器と同期してビームを一定の線幅Wsで走査照射するN台の独立したビーム照射装置から構成され、ビーム走査位置が圧延方向に沿って同じ位置に並ぶようにビーム照射装置が配置され、圧延方向の最上流に配置された第1番目のビーム照射装置の照射位置と、それに続く第m番目のビーム照射装置の照射位置との間隔D(m)が以下の関係を満たすことを特徴とする磁気特性の優れた方向性電磁鋼板の製造装置である。
【0013】
D(m)=N×k(m)×Pl+(m−1)×Pl
ただし、mは2≦m≦Nを満たす正の整数である。また、k(x)は0または任意の正の整数で、x1<x2においてk(x1)<k(x2)である。
【0014】
また、本発明は、前記レーザビーム分割装置が、レーザビームを反射させる回転円盤であり、円盤の中心角に依存してレーザビーム反射角度が周期的に変化するレーザビーム反射ミラーを備えることを特徴とする磁気特性の優れた方向性電磁鋼板の製造装置である。
【0015】
さらに、本発明は、鋼板の圧延方向に対して概垂直で、且つ一定間隔でレーザビームを走査照射して鉄損特性を改善する方向性電磁鋼板の製造方法において、鋼板の圧延方向移動速度とレーザビーム走査速度と照射レーザパワーを連動して変化させることを特徴とする磁気特性の優れた方向性電磁鋼板の製造方法である。
【0016】
【発明の実施の形態及び実施例】
以下に実施例を用いて、本発明を詳細に説明する。
【0017】
本発明者らは、鋼板移動速度Vlの増加によっても走査周波数Fsを増加させなくてもすむように、すなわちTsを減少させなくてもすむように、(2)式より、等価的にPlを増加させる方法を検討し、以下に示す装置の発明に至った。
【0018】
すなわち、本発明のポイントは、従来、一台のレーザ装置から出力されたレーザビームを時間的に等分割し、それを圧延方向に沿って配置したレーザ照射装置に分配することにある。更に照射位置の配置間隔を所望のPlとビーム分割数Nで決まる位置関係に固定し、且つ各照射装置の走査照射間隔はN×Plにすることで、照射装置間で照射位置の制御を一切行うことなく、自動的に上流側の装置で照射した走査線間を埋めるように下流側の装置にて走査照射が行われ、最下流側の装置での照射の後は、所望の走査間隔Plでの照射成されるものである。この作用について図1を参照して以下に説明する。
【0019】
図1は本発明による装置の模式図であり、Nが3の場合の実施例である。レーザ装置14から出力されたレーザビームB0はビーム分割装置1により時間的にB1,B2,B3の三つのビームに等分割される。ビーム分割装置1は図3に示されるように、回転モータ2とそれにより回転する反射円盤ミラー3により構成される。反射円盤ミラー3はレーザビームを反射させる回転円盤であり、円盤の中心角に依存してレーザビーム反射角度が周期的に変化する構造である。つまり、円盤の傾斜部を、中心角が等しくなるように扇状に等分割し、各扇状部に配した反射角度が、ステップ状に変更されている構造である。レーザビームの入射点は固定されているので、図示するように円盤の回転によりレーザビームの反射角度が変化し、本実施例ではビームを三方向に時間分割することができる。また円盤のビーム反射点に円周方向に周期的なスリットをあわせて設けることで、透過レーザビームも分割ビームとして使用可能となる。
【0020】
分割されたビームは図1に示すように、それぞれ照射装置4,5,6で受光される。レーザビームは反射ミラー7を介してモータ8で回転する多角形ミラー9で走査される。ここで各照射装置に分割ビームが分配される瞬間に多角形ミラーが所望の方向を向くようにモータ2と8は同期装置13により位相同期されている。走査されたビームは放物面ミラー10で集光され、平面ミラー11で反射され、鋼板12へ照射される。各照射装置4,5,6は同じ構造であり、走査位置が圧延方向に沿った同じ位置になるように配置されている。
【0021】
次に、照射ビームの走査点の移動と照射位置の配置について図2を用いて説明する。鋼板の移動方向の最上流側に配置された第一の照射装置4の照射位置を図中の実線で示すL1とし、走査線の出発点をS1、終点をE1とする。下流側に配置された第二、第三の照射装置5,6についても同様に図示するようにL2(点線)、S2、E2、およびL3(一点破線)、S3、E3とする。この場合、ビーム分割器1と照射装置4,5,6の作用により、照射点はS1→E1→S2→E2→S3→E3→S1→E1・・・の順に繰り返し走査される。ここで走査位置は、L1とLmとの間隔Dmが以下の(6)式の関係を満たすように配置される。
D(m)=N×k(m)×Pl+(m−1)×Pl ・・・・・(6)
ここで、mは2≦m≦Nを満たす整数、すなわち本実施例ではm=2、3である。k(x)は0または任意の正の整数であり、x1<x2においてk(x1)<k(x2)であり、本実施例ではk(2)=2、k(3)=4を選んだ。またPl=6mmである。従って(6)式よりD1=38mm、D2=76mmである。この様な配置を行い、更に所望の間隔をPl、ビーム分割数をNとした時、各々の装置の照射間隔がN×Pl、すなわち3×6=18mmとなる様な走査周波数で走査することにより、図示するように上流側で照射された走査線の間を、下流側に配置された照射装置の走査線で順次埋められていくことになる。その結果、最下流側の照射装置を通過した後は所望のPl=6mmが実現されることになる。
【0022】
本発明による装置では、各照射装置の実効照射間隔はPlのN倍となり、従って従来技術の(2)式に相当する式は下の(7)式となる。
【0023】
Pl=Ts×Vl/N ・・・・・(7)
またFsとTsの関係から、以下の(8)式が得られる。
【0024】
Fs=1/Ts=Vl/Pl/N ・・・・・(8)
(8)式を(3)式と比較して、本発明では同じ照射間隔、鋼板移動速度では走査周波数を1/Nに削減することが可能であることがわかり、すなわち走査装置として用いられるガルバノモータや多角形ミラーの負荷が少なくて済む。また言い換えると、同じ走査周波数でもN倍の鋼板移動速度まで対応することが可能である。
【0025】
また本発明の特徴として鋼板の圧延方向移動速度Vlと走査線速度Vs、および照射レーザパワーPを連動させて増減させる制御装置15を備えることにある。Vlが何らかの要因で増減する際もVsが連動して増減されれば、(2)式より磁気特性の影響度の大きいPlもほぼ一定に保たれるためであり、またVsの増減に連動してレーザパワーPも増減することで単位面積当たりのパワー密度は不変であるため、同じ熱歪みを与えることが可能となり、常に安定した磁区制御が行える。
【0026】
【発明の効果】
本発明によれば、高速の鋼板移動に対応できるレーザ照射が可能なり、磁気特性の優れた方向性電磁鋼板の大量生産が可能となる。
【図面の簡単な説明】
【図1】本発明による装置構成の説明図である。
【図2】本発明による装置におけるビーム照射位置に関する説明図である。
【図3】ビーム分割装置の模式図である。
【図4】従来の装置におけるビーム照射位置に関する説明図である。
【符号の説明】
1…ビーム分割装置
2…ビーム分割回転円盤用モータ
3…ビーム分割回転円盤
4、5、6…第一、二、三のビーム照射装置
7、11…平面反射ミラー
8…多角形ミラー回転用モータ
9…多角形ミラー
10…放物面ミラー
12…方向性電磁鋼板
13…モータ同期装置
14…レーザ装置
15…鋼板移動速度、ビーム走査速度、レーザパワー比例増減装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
[0002]
[Prior art]
Conventionally, as disclosed in Patent Document 1 and the like, in a method of manufacturing a grain-oriented electrical steel sheet, a glass film is formed on the surface of the steel sheet, and after applying an insulating coating, mechanical stress strain is introduced into the steel sheet surface, A method is described in which a magnetic reflux magnetic domain is formed to subdivide the 180 ° magnetic domain and reduce iron loss.
[0003]
The point of the apparatus in this method is that the laser beam is repeatedly scanned and irradiated at a high speed in a direction substantially perpendicular to the rolling direction in accordance with the moving speed of the steel sheet in the rolling direction so that the irradiation interval Pl in the rolling direction becomes constant. It is in. In order to realize this, conventionally disclosed in Patent Document 2 is that a laser beam is divided into two equal parts in time by a rotating beam split mirror, and the steel plate is irradiated by an irradiation device arranged along the plate width direction. Has been scanned.
[0004]
The relationship of laser scanning parameters in this method will be described with reference to FIG. In FIG. 4, one divided beam irradiation apparatus in which the steel plate moving speed in the rolling direction is Vl (mm / s), the scanning speed in the plate width direction is Vs (mm / s), the scanning line interval in the rolling direction is Pl (mm). When the hit scanning width is Ws ′, since this method is a beam bisection method, the scanning width of one beam is Ws = 2 × Ws ′. If the scanning time of one divided beam is ts, the total scanning time Ts = 2 × ts of the two beams. Since the total movement amount in the steel sheet rolling direction within the time Ts corresponds to Pl, these parameters are connected by the following relational expression.
[0005]
Ts = 2 × ts = 2 × (Ws ′ / Vs) = Ws / Vs (1)
Pl = Ts × Vl = (Ws / Vs) × Vl (2)
Since Ts is the scanning repetition period of the beam, the reciprocal thereof is the beam runner repetition frequency Fs.
[0006]
Fs = 1 / Ts = Vl / Pl (3)
Here, in order to increase the production amount per unit time, it is considered to increase the rolling direction moving speed Vl of the steel sheet. Even in this case, the linear scanning line interval Pl greatly affects the magnetic characteristics and cannot be changed. Therefore, it is necessary to reduce the beam scanning time Ts from the equation (2). As a result, the beam scanning repetition frequency Fs increases in proportion to Vl from the equation (3). For example, when Vl = 5000 mm / s corresponding to 300 m / min in the rolling direction moving speed, when trying to achieve Pl = 5 mm generally used in the magnetic domain control of the electromagnetic steel sheet, Fs = 1000 Hz.
[0007]
By the way, the beam scanning method is realized by mirror vibration by a galvano motor as disclosed in Patent Document 2 or by rotation of a polygon mirror as disclosed in Patent Document 3. However, in the case of a galvano motor, the frequency that can be stably controlled for a long time is at most about 100 Hz, and cannot be used for the high-speed scanning as described above. The frequency in the case of a polygonal mirror corresponds to the product of the number of mirror surfaces h and the rotational speed Vr (rps). Here, assuming that one mirror of the polygon mirror is a square with one side a, and the circumscribed circle radius of the polygon mirror is R, the polygon mirror can be roughly designed by the following equation.
[0008]
Fs = h × Vr (4)
R = a / sin (2π / h) (5)
If Vr = 50 rps, which is a realistic value, is selected as the rotation speed, h = 20 is obtained from the equation (4), resulting in a icosahedron polygon mirror. Assuming that the mirror width a is an effective width a = 40 mm sufficient to receive a beam having a laser beam diameter of about 20 to 30 mm before focusing, in order to realize Fs = 1000 Hz, the radius R = from the equation (5). There is a problem that the size becomes 130 mm, and a large polygonal mirror is required. In consideration of the number of mirror surfaces, motor capacity, and controllability, the apparatus becomes large and expensive. The motor rotation speed Vr is proportional to the scanning speed Vs.
[0009]
When using a relatively low power laser, the heat input per unit area decreases as Vl increases, and the iron loss improvement effect is drastically reduced. As a result, there is a limit to the increase in Vl, that is, there is a restriction that Vr cannot be increased too much. In that case, there is a problem that the number of polygon mirrors increases from the equation (4), and the radius becomes larger than the equation (5). Therefore, even in the scanning method using a polygon mirror, the conventional irradiation method has a limit in increasing the steel plate moving speed and responding to the increase in production.
[0010]
[Patent Document 1]
Japanese Patent Publication No. 58-26405 [Patent Document 2]
JP-A-63-83227 [Patent Document 3]
Japanese Patent Laid-Open No. 10-204533
[Problems to be solved by the invention]
The present invention provides a laser irradiation apparatus that can cope with a high steel plate moving speed in a technology for producing a grain-oriented electrical steel sheet that improves magnetic properties by laser irradiation.
[0012]
[Means for Solving the Problems]
The present invention is an apparatus for producing a grain-oriented electrical steel sheet that improves the iron loss characteristics by scanning and irradiating a laser beam substantially perpendicular to the rolling direction of the steel sheet at a constant interval Pl, and is output from one laser device. A beam splitting device that splits the laser beam into N at regular intervals in time, and N independent lasers that receive each split beam and perform scanning irradiation with a constant line width Ws in synchronization with the beam splitter. The beam irradiation device is arranged so that the beam scanning position is aligned at the same position along the rolling direction, and the irradiation position of the first beam irradiation device arranged at the uppermost stream in the rolling direction is Then, the apparatus for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that the distance D (m) from the irradiation position of the subsequent m-th beam irradiation apparatus satisfies the following relationship.
[0013]
D (m) = N * k (m) * Pl + (m-1) * Pl
However, m is a positive integer satisfying 2 ≦ m ≦ N. K (x) is 0 or an arbitrary positive integer, and k (x1) <k (x2) when x1 <x2.
[0014]
According to the present invention, the laser beam splitting device is a rotating disk that reflects a laser beam, and includes a laser beam reflecting mirror whose laser beam reflection angle periodically changes depending on the center angle of the disk. It is an apparatus for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
[0015]
Furthermore, the present invention relates to a method of manufacturing a grain-oriented electrical steel sheet that improves the iron loss characteristics by scanning and irradiating a laser beam at a regular interval substantially perpendicular to the rolling direction of the steel sheet. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, wherein the laser beam scanning speed and the irradiation laser power are changed in conjunction with each other.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using examples.
[0017]
The present inventors increase Pl equivalently from equation (2) so that it is not necessary to increase the scanning frequency Fs even when the steel plate moving speed Vl is increased, that is, it is not necessary to decrease Ts. The inventors have studied the method and have arrived at the invention of the apparatus shown below.
[0018]
That is, the point of the present invention is that, conventionally, a laser beam output from one laser device is equally divided in time and distributed to laser irradiation devices arranged along the rolling direction. Furthermore, by fixing the arrangement position of the irradiation positions to a positional relationship determined by the desired Pl and the number of beam divisions N, and by setting the scanning irradiation interval of each irradiation apparatus to N × Pl, it is possible to completely control the irradiation positions between the irradiation apparatuses. Without being performed, scanning irradiation is performed by the downstream apparatus so as to automatically fill the gap between the scanning lines irradiated by the upstream apparatus. After irradiation by the most downstream apparatus, a desired scanning interval Pl The irradiation is performed at This operation will be described below with reference to FIG.
[0019]
FIG. 1 is a schematic diagram of an apparatus according to the present invention, which is an embodiment in which N is 3. FIG. The laser beam B0 output from the laser device 14 is equally divided into three beams B1, B2, and B3 in terms of time by the beam splitter 1. As shown in FIG. 3, the beam splitting apparatus 1 is composed of a rotary motor 2 and a reflecting disk mirror 3 rotated by the rotary motor 2. The reflection disk mirror 3 is a rotating disk that reflects the laser beam, and has a structure in which the laser beam reflection angle changes periodically depending on the center angle of the disk. In other words, the inclined portion of the disk is equally divided into a fan shape so that the central angles are equal, and the reflection angle arranged on each fan portion is changed to a step shape. Since the incident point of the laser beam is fixed, the reflection angle of the laser beam changes as the disk rotates as shown in the figure, and in this embodiment, the beam can be time-divided in three directions. Further, by providing a periodic slit in the circumferential direction at the beam reflection point of the disk, a transmitted laser beam can be used as a split beam.
[0020]
As shown in FIG. 1, the divided beams are received by the irradiation devices 4, 5, and 6, respectively. The laser beam is scanned by a polygon mirror 9 that is rotated by a motor 8 via a reflection mirror 7. Here, the motors 2 and 8 are phase-synchronized by the synchronizer 13 so that the polygon mirror faces a desired direction at the moment when the divided beams are distributed to the irradiation devices. The scanned beam is collected by the parabolic mirror 10, reflected by the plane mirror 11, and irradiated onto the steel plate 12. Each irradiation device 4, 5 and 6 has the same structure, and is arranged so that the scanning position is the same position along the rolling direction.
[0021]
Next, the movement of the scanning point of the irradiation beam and the arrangement of the irradiation position will be described with reference to FIG. The irradiation position of the first irradiation device 4 arranged on the most upstream side in the moving direction of the steel plate is L1 indicated by a solid line in the drawing, the starting point of the scanning line is S1, and the end point is E1. Similarly, the second and third irradiation devices 5 and 6 arranged on the downstream side are denoted by L2 (dotted line), S2, E2, and L3 (single-dotted line), S3, and E3. In this case, the irradiation point is repeatedly scanned in the order of S 1 → E 1 → S 2 → E 2 → S 3 → E 3 → S 1 → E 1. Here, the scanning positions are arranged so that the distance Dm between L1 and Lm satisfies the relationship of the following expression (6).
D (m) = N × k (m) × Pl + (m−1) × Pl (6)
Here, m is an integer satisfying 2 ≦ m ≦ N, that is, m = 2 and 3 in this embodiment. k (x) is 0 or any positive integer, and in x1 <x2, k (x1) <k (x2), and in this embodiment, k (2) = 2 and k (3) = 4 are selected. It is. In addition, Pl = 6 mm. Therefore, D1 = 38 mm and D2 = 76 mm from the equation (6). With such an arrangement, when the desired interval is Pl and the number of beam divisions is N, scanning is performed at a scanning frequency such that the irradiation interval of each apparatus is N × P1, that is, 3 × 6 = 18 mm. Thus, as shown in the figure, the scanning lines irradiated on the upstream side are sequentially filled with the scanning lines of the irradiation device arranged on the downstream side. As a result, a desired Pl = 6 mm is achieved after passing through the irradiation device on the most downstream side.
[0022]
In the apparatus according to the present invention, the effective irradiation interval of each irradiation apparatus is N times Pl, so that the expression corresponding to the expression (2) in the prior art is the following expression (7).
[0023]
Pl = Ts × Vl / N (7)
Further, from the relationship between Fs and Ts, the following equation (8) is obtained.
[0024]
Fs = 1 / Ts = Vl / Pl / N (8)
Comparing equation (8) with equation (3), it can be seen that in the present invention, the scanning frequency can be reduced to 1 / N at the same irradiation interval and steel plate moving speed, that is, a galvano used as a scanning device. Less load on the motor and polygon mirror. In other words, even with the same scanning frequency, up to N times the steel plate moving speed can be handled.
[0025]
Further, as a feature of the present invention, there is provided a control device 15 that increases or decreases the rolling direction moving speed Vl and scanning line speed Vs of the steel sheet and the irradiation laser power P in conjunction with each other. This is because even if Vl increases or decreases for some reason, if Vs increases or decreases in conjunction with it, Pl that has a large influence on the magnetic characteristics from equation (2) is maintained substantially constant, and also increases or decreases in accordance with the increase or decrease in Vs. Since the power density per unit area is not changed by increasing / decreasing the laser power P, the same thermal strain can be applied, and stable magnetic domain control can always be performed.
[0026]
【The invention's effect】
According to the present invention, it is possible to perform laser irradiation that can cope with high-speed steel sheet movement, and mass production of grain-oriented electrical steel sheets having excellent magnetic properties becomes possible.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus configuration according to the present invention.
FIG. 2 is an explanatory diagram relating to a beam irradiation position in an apparatus according to the present invention.
FIG. 3 is a schematic diagram of a beam splitter.
FIG. 4 is an explanatory diagram regarding a beam irradiation position in a conventional apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Beam splitting device 2 ... Beam splitting rotating disk motor 3 ... Beam splitting rotating discs 4, 5, 6 ... First, second and third beam irradiation devices 7, 11 ... Planar reflecting mirror 8 ... Polygon mirror rotating motor DESCRIPTION OF SYMBOLS 9 ... Polygon mirror 10 ... Parabolic mirror 12 ... Directional electromagnetic steel plate 13 ... Motor synchronizer 14 ... Laser apparatus 15 ... Steel plate moving speed, beam scanning speed, laser power proportional increase / decrease device

Claims (3)

鋼板の圧延方向に対して垂直で、且つ一定間隔Plでレーザビームを走査照射して鉄損特性を改善する方向性電磁鋼板の製造装置において、一台のレーザ装置から出力されたレーザビームを時間的に等間隔でN分割するビーム分割装置と、分割された各ビームを受光して、ビーム分割器と同期してビームを一定の線幅Wsで走査照射するN台の独立したビーム照射装置から構成され、ビーム走査位置が圧延方向に沿って同じ位置に並ぶようにビーム照射装置が配置され、圧延方向の最上流に配置された第1番目のビーム照射装置の照射位置と、それに続く第m番目のビーム照射装置の照射位置との間隔D(m)が以下の関係を満たすことを特徴とする磁気特性の優れた方向性電磁鋼板の製造装置。
D(m)=N×k(m)×Pl+(m−1)×Pl
ただし、mは2≦m≦Nを満たす正の整数。
k(x)は0または任意の正の整数で、x1<x2においてk(x1)<k(x2)。
In a directional electrical steel sheet manufacturing apparatus that improves the iron loss characteristics by scanning and irradiating a laser beam at a constant interval Pl perpendicular to the rolling direction of the steel sheet, the laser beam output from one laser apparatus is timed. A beam splitter that divides the beam into N at regular intervals, and N independent beam irradiators that receive each of the divided beams and scan and irradiate the beam with a constant line width Ws in synchronization with the beam splitter. The beam irradiation device is arranged such that the beam scanning position is aligned at the same position along the rolling direction, and the irradiation position of the first beam irradiation device arranged at the uppermost stream in the rolling direction, and the m-th subsequent to it. An apparatus for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that a distance D (m) from the irradiation position of the second beam irradiation apparatus satisfies the following relationship.
D (m) = N * k (m) * Pl + (m-1) * Pl
However, m is a positive integer satisfying 2 ≦ m ≦ N.
k (x) is 0 or any positive integer, and k (x1) <k (x2) when x1 <x2.
前記レーザビーム分割装置が、レーザビームを反射させる回転円盤であり、円盤の中心角に依存してレーザビーム反射角度が周期的に変化するレーザビーム反射ミラーを備えることを特徴とする請求項1に記載の磁気特性の優れた方向性電磁鋼板の製造装置。2. The laser beam splitting device according to claim 1, wherein the laser beam splitting device is a rotating disk that reflects the laser beam, and includes a laser beam reflecting mirror that periodically changes the laser beam reflection angle depending on the center angle of the disk. An apparatus for producing a grain-oriented electrical steel sheet having excellent magnetic properties. 鋼板の圧延方向に対して垂直で、且つ一定間隔でレーザビームを走査照射して鉄損特性を改善する方向性電磁鋼板の製造方法において、鋼板の圧延方向移動速度とレーザビーム走査速度と照射レーザパワーを連動して変化させることを特徴とする磁気特性の優れた方向性電磁鋼板の製造方法。In a method for manufacturing a grain-oriented electrical steel sheet that improves the iron loss characteristics by scanning and irradiating a laser beam at regular intervals with respect to the rolling direction of the steel sheet, the moving speed of the steel sheet in the rolling direction, the laser beam scanning speed, and the irradiation laser A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by changing power in conjunction.
JP2002293548A 2002-10-07 2002-10-07 Device and method for manufacturing grain oriented electrical steel sheet superior in magnetic characteristic Pending JP2004122218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293548A JP2004122218A (en) 2002-10-07 2002-10-07 Device and method for manufacturing grain oriented electrical steel sheet superior in magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293548A JP2004122218A (en) 2002-10-07 2002-10-07 Device and method for manufacturing grain oriented electrical steel sheet superior in magnetic characteristic

Publications (1)

Publication Number Publication Date
JP2004122218A true JP2004122218A (en) 2004-04-22

Family

ID=32284420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293548A Pending JP2004122218A (en) 2002-10-07 2002-10-07 Device and method for manufacturing grain oriented electrical steel sheet superior in magnetic characteristic

Country Status (1)

Country Link
JP (1) JP2004122218A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547403A (en) * 2011-06-03 2014-01-29 新日铁住金株式会社 Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
CN103596720A (en) * 2011-06-01 2014-02-19 新日铁住金株式会社 Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
WO2016032065A1 (en) * 2014-08-28 2016-03-03 주식회사 포스코 Magnetic domain refinement method for grain-oriented electrical steel sheet, magnetic domain refinement apparatus, and grain-oriented electrical steel sheet manufactured by means of same
JP2021030230A (en) * 2019-08-13 2021-03-01 日本製鉄株式会社 Laser irradiation apparatus and processing system of steel plate
US11060163B2 (en) 2016-01-22 2021-07-13 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596720A (en) * 2011-06-01 2014-02-19 新日铁住金株式会社 Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
CN103596720B (en) * 2011-06-01 2016-03-23 新日铁住金株式会社 The manufacturing installation of grain-oriented magnetic steel sheet and the manufacture method of grain-oriented magnetic steel sheet
CN103547403A (en) * 2011-06-03 2014-01-29 新日铁住金株式会社 Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
CN103547403B (en) * 2011-06-03 2015-04-22 新日铁住金株式会社 Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
WO2016032065A1 (en) * 2014-08-28 2016-03-03 주식회사 포스코 Magnetic domain refinement method for grain-oriented electrical steel sheet, magnetic domain refinement apparatus, and grain-oriented electrical steel sheet manufactured by means of same
US11060163B2 (en) 2016-01-22 2021-07-13 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor
JP2021030230A (en) * 2019-08-13 2021-03-01 日本製鉄株式会社 Laser irradiation apparatus and processing system of steel plate
JP7323792B2 (en) 2019-08-13 2023-08-09 日本製鉄株式会社 Laser irradiation equipment and steel plate processing system

Similar Documents

Publication Publication Date Title
US11780161B2 (en) Additive manufacturing apparatus and methods
US7883586B2 (en) Method for production and apparatus for production of grain-oriented electrical steel sheet excellent in magnetic properties
US20110210105A1 (en) Link processing with high speed beam deflection
US4500771A (en) Apparatus and process for laser treating sheet material
WO2012164702A1 (en) Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
CN112313079B (en) Apparatus and method for manufacturing three-dimensional objects
US20080007811A1 (en) Scanning apparatus and method
WO2012116226A2 (en) Predictive link processing
JP2004122218A (en) Device and method for manufacturing grain oriented electrical steel sheet superior in magnetic characteristic
JPH08227048A (en) Control method of spot contour by using noninteger interlacecoefficient in polyhedral mirror raster output scanner
JP5606923B2 (en) Magnetic domain refinement apparatus and method for grain-oriented electrical steel sheet
CN102621695A (en) Pulse laser beam combining method
CN101492765A (en) Apparatus and method for refining magnetic domain of electrical steel sheet
KR20180007468A (en) Scanning micromirror
KR20120073914A (en) Apparatus and method for refining magnetic domain of a grain-oriented electrical steel sheets
US20110297851A1 (en) Laser processing with oriented sub-arrays
CN106471141B (en) Laser processing device
JP7323792B2 (en) Laser irradiation equipment and steel plate processing system
JP2002121618A (en) Manufacturing apparatus for grain-oriented silicon steel plate excellent in magnetic characteristic
WO2012164746A1 (en) Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
KR102113184B1 (en) Device for shaping groove of surface
KR20100058929A (en) Method for miniaturizing magnetic domain with electromagnetic steel plate and electromagnetic steel plate thereof
KR101037160B1 (en) Apparatus and method for miniaturizing magnetic domain with electromagnetic steel plate
WO2023140363A1 (en) Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet manufacturing device, and grain-oriented electrical steel sheet manufacturing method
CN202482373U (en) Multi-level focusing mirror nicking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617