JP2004119142A - Shape memory alloy thin film driving type breaker and its manufacturing method - Google Patents

Shape memory alloy thin film driving type breaker and its manufacturing method Download PDF

Info

Publication number
JP2004119142A
JP2004119142A JP2002279678A JP2002279678A JP2004119142A JP 2004119142 A JP2004119142 A JP 2004119142A JP 2002279678 A JP2002279678 A JP 2002279678A JP 2002279678 A JP2002279678 A JP 2002279678A JP 2004119142 A JP2004119142 A JP 2004119142A
Authority
JP
Japan
Prior art keywords
thin film
shape memory
memory alloy
alloy thin
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002279678A
Other languages
Japanese (ja)
Inventor
Satoru Ikeda
池田 哲
Masataka Okada
岡田 正孝
Shinichi Shimada
島田 眞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OITA KEN
SHIMADA DENSHI KOGYO KK
Oita Prefectural Government
Original Assignee
OITA KEN
SHIMADA DENSHI KOGYO KK
Oita Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OITA KEN, SHIMADA DENSHI KOGYO KK, Oita Prefectural Government filed Critical OITA KEN
Priority to JP2002279678A priority Critical patent/JP2004119142A/en
Publication of JP2004119142A publication Critical patent/JP2004119142A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Manufacture Of Switches (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape memory alloy thin film driving type breaker in which downsizing can be carried out easily, and an overcurrent against a semiconductor integrated circuit is prevented, and in which operating reliability is superior. <P>SOLUTION: The shape memory alloy thin film driving type breaker 10 is constituted by having a non-electroconductive integrated circuit substrate 11 on which a circuit element is mounted, a pair of electroconductive thin films 12, 13 opposedly formed on a face of the integrated circuit substrate 11, and a shape memory alloy thin film 14 in which its base end part side is laminated and connected, and supported on one electroconductive thin film 12, and its other end part side is connected to other electroconductive thin 13, and in which it is separated from the electroconductive thin film 13 by profile recovery at its heating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は形状記憶合金薄膜を駆動材料として用いた形状記憶合金薄膜駆動型ブレーカ及びその製造方法に関する。
【0002】
【従来の技術】
近年、携帯電話機等の小型電子機器に組み込まれた半導体集積回路に過電流が流れたり、または半導体集積回路が過熱されたりするのを防止するためにブレーカおよび過熱検知素子を設置することが行われている。
しかし、従来のブレーカおよび過熱検知素子を小型電子機器に付加して設置することは、その設置容積が大きくなるために電子機器のさらなる小型化の支障となるものであった。そこでブレーカおよび過熱検知素子に形状記憶合金薄膜を駆動材として適用する技術が開発され、例えば、このような技術に関連して以下のようなものが知られている。
非特許文献1には、支持部上に過電流および過熱を検知する形状記憶合金薄膜の一端部が接着され、この他端部に可動素片が接続されたブレーカが開示されている。このブレーカの通常状態では可動素片が電気回路を構成する固定電極部に接続して電流が流されているが、過電流が形状記憶合金薄膜に流れると、この形状記憶合金薄膜の温度が上昇して形状記憶時の状態に復帰変形して可動素片が固定電極部から離れて回路が切断されるようになっている。
【0003】
【非特許文献1】
米国特許No.5,061,914号
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の技術では、以下のような課題があった。
(1)非特許文献1に記載のブレーカは、形状記憶合金薄膜がその先端側に固定電極部と当接して開閉する塊状の可動素片を備えるので、厚みがあり精密加工を要する可動素片を形成させたり、固定電極部を支持部から電気的に切り離して形成させたりする際に基板自体をエッチングや研削等の加工や機械組み立て等の繁雑な工程を要し、製造方法が複雑になり生産性に欠けるという課題があった。
(2)形状記憶合金薄膜がその先端に可動素片を有するので、全体が厚くなって他の回路素子と合わせて基板上に実装させた場合の集積度が低下して、全体を小型化させるのには限界があるという課題があった。
(3)小型化に限界が生じるため、実装密度を密にでき難く、携帯電話等の小型電子機器に適用する際のデザイン性が制約されるという課題があった。
(4)その先端に可動素片を有するので、形状記憶合金薄膜の温度変化に対する応答性が悪くなる場合があり、動作遅れを生じて回路素子が損傷するという課題があった。
(5)形状記憶合金薄膜が成膜時の内部応力による多大な残留応力を有しており、上方へ大きく湾曲する形で動作するので、結果として可動素片が上方へ大きく駆動するので、ブレーカ上方に空間が必要であり、他の回路素子と合わせて基板上に実装させた後に、パッケージ化できないという課題があった。
【0005】
本発明は上記従来の技術が有する課題を解決するものであり、小型化が容易にでき、製造の効率化が図れる形状記憶合金薄膜駆動型ブレーカの提供、及び半導体集積回路に対する過電流を防止して動作信頼性に優れた形状記憶合金薄膜駆動型ブレーカの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の請求項1に記載の形状記憶合金薄膜駆動型ブレーカは、回路素子が搭載された非導電性の集積回路基板と、前記集積回路基板の面上に対向して形成された1対の導電性薄膜と、一方の前記導電性薄膜上にその基端部側が積層接続されて支持され他方の前記導電性薄膜上にその他端部側が当接してその加熱時に形状回復して前記導電性薄膜から離間する形状記憶合金薄膜と、を有して構成されている。
この構成によって、以下の作用を有する。
(1)同一の集積回路基板上に導電性薄膜が形成され、その上面に所定温度で他方の導電性薄膜から離間する形状記憶合金薄膜が積層配置されているので、全体を平面状に形成させることができ、集積回路基板における集積度を高くして小型化を容易にできる。
(2)フォトリソグラフィーなどの公知の集積回路製造プロセス技術を適用して、所定パターンの形状記憶合金薄膜及び導電性薄膜を集積回路基板上に精密に形成させることができるので、生産性に優れた形状記憶合金薄膜駆動型ブレーカを提供できる。
(3)全体が平面状に形成されて構造が単純化されると共に、形状記憶合金薄膜の微小変形により動作するので、温度変化に対する応答性と動作信頼性に優れた形状記憶合金薄膜駆動型ブレーカを提供できる。
(4)集積回路基板上に電気配線用としての金属薄膜と駆動部分となる形状記憶合金薄膜が形成されている単純構造なので、CPUや記憶素子などとしての多様な機能を有する集積回路の保護性を向上させると共に、小型かつ高精度に製造することができる。
【0007】
ここで集積回路基板は使用状態において非導電性の絶縁物であって、金属の導電性薄膜がスパッタリングなどで付着形成される親和性を有すると共に、形状記憶合金薄膜を熱処理する際の約700℃の温度に耐えうる耐熱性を要するので、シリコンウェハ等が用いられる。
導電性薄膜は、集積回路基板上に強固に付着形成される必要があり、また電気的導通を可能にするために、Cu、Ni、Ti、Cr、TiNi等の金属または合金をスパッタリング法、真空蒸着法、化学気相蒸着法(CVD)、メッキ法等の物理的または化学的手法により集積回路基板上に強固に付着される。
【0008】
形状記憶合金薄膜は形状記憶合金を素材として形成され、その基端側が1対の導電性薄膜の片方の上面に積層固定され、他端側が他方の導電性薄膜と接触離脱ができる接点として、形成されている。
形状記憶合金は一般に逆マルテンサイト変態によって変形歪みが元に戻る現象を利用したものであり、オーステナイト相を冷却してマルテンサイト変態開始温度Ms点を通過させると、マルテンサイト相に変態し、逆にこのマルテンサイト相を加熱すると逆マルテンサイト変態によって再びオーステナイト相に戻る性質を有している。このような材料としてはTi−Ni系合金、Ti−Ni−Co系合金、Ti−Ni−Cu系合金等が挙げられ、これを用いたアクチュエータは発生応力を大きくでき、繰り返し機能特性、耐蝕性、耐疲労特性にも優れている。なお、前記各合金系におけるTi、Niなどの成分比を調整して所定温度で形状回復させるときの離間距離や駆動力の大きさを調整することも可能である。
形状記憶合金薄膜は高周波又は直流マグネトロンスパッタリング等の成膜手段により0.1〜2μm、好ましくは0.5〜1.0μmの厚みに成膜される。ここでは、基板を室温に保持するか又は約150°C程度に加熱して、この基板上に非晶質のTiNi合金薄膜を形成し、次にTiNi合金の結晶化温度(500〜550°C)以上の温度で加熱処理(アニール)して結晶化させ、記憶させたい形を保持したままで再度400℃以上の熱処理(時効処理)を行い、形状記憶効果を発現させる。
なお、薄膜生成時における成分調整や成膜速度、温度、真空度等の条件を調整して、TiNi合金の基板面に対する結晶の配向性を高めることにより、逆マルテンサイト変態の際の変位量を大きくして、温度応答性等の動作性に優れた形状記憶合金薄膜駆動型ブレーカとすることができる。
【0009】
このような形状記憶合金薄膜駆動型ブレーカは例えば以下のような工程を順次行なうことで製造することができる。即ち、▲1▼集積回路基板に導電性薄膜を形成する。▲2▼この導電性薄膜の空間を埋め、片方の導電性薄膜上に微小間隔を生成するために、犠牲薄膜等を被覆してエッチングによる微細加工を施す。▲3▼この集積回路基板の導電性薄膜上にポリミイド等からなるダミー薄膜を形成する。▲4▼この基板の導電性薄膜と犠牲薄膜上に形状記憶合金薄膜を形成させる。▲5▼ダミー薄膜をアルカリ溶液等の有機溶媒を用いて溶解させて導電性薄膜と形状記憶合金薄膜との間に例えば0.1〜10μm、好ましくは0.2〜0.5μmの微小間隔を形成させる。▲6▼この微小間隔を有して保持された形状記憶合金薄膜をこの状態で形状記憶させるために、結晶化熱処理および時効処理する。▲7▼形状記憶合金薄膜を加圧又は加熱して他方の導電性薄膜に当接させた通電状態に保持させる。▲8▼導電性薄膜上にワイヤボンディング等で電気配線を取り付ける。
なお、電気的な開閉接点となる形状記憶合金薄膜と導電性薄膜との間の離間距離は0.1〜10μm、好ましくは0.2〜1μmの範囲とすることが望ましい。これは稼動電圧や薄膜の電気特性等にもよるが、離間距離が0.2μmより薄くなるにつれ、加熱時における導電性薄膜と形状記憶合金薄膜との離間距離が短くなって遮断不良が増加する傾向が表れ、逆にこの離間距離が1μmを越えるにつれ、温度変化に対する応答性が鈍くなる傾向が表れ、これらの傾向は0.1μmより小さくなるか、又は10μmより大きくなるとさらに顕著になるからである。
【0010】
請求項2に記載の形状記憶合金薄膜駆動型ブレーカは、請求項1に記載の発明において、形状回復時における前記形状記憶合金薄膜と前記導電性薄膜との離間距離が0.1〜10μmであるように構成されている。
この構成によって、請求項1に記載の作用に加えて以下の作用を有する。
(1)ブレーカ動作時の離間距離が特定範囲に設定されているので、回路の切断不良や誤動作等が防止され、動作信頼性に優れた形状記憶合金薄膜駆動型ブレーカを提供できる。
(2)形状記憶合金薄膜の可動範囲を極めて狭く限定できるので、周囲の回路素子等と干渉させることなく全体をコンパクトに設計できる。
(3)微弱な温度変動にも敏感に作動させることができ、動作応答性に優れている。
ここで、形状回復時における形状記憶合金薄膜と導電性薄膜との離間距離は0.1〜10μm、好ましくは0.2〜1μmの範囲とすることが望ましい。これは稼動電圧や薄膜の電気特性等にもよるが、離間距離が0.2μmより薄くなるにつれ、加熱時における導電性薄膜と形状記憶合金薄膜との離間距離が短くなって遮断不良が増加する傾向が表れ、逆にこの離間距離が1μmを越えるにつれ、温度変化に対する応答性が鈍くなる傾向が表れ、これらの傾向は0.1μmより小さくなるか、又は10μmより大きくなるとさらに顕著になるからである。
【0011】
請求項3に記載の形状記憶合金薄膜駆動型ブレーカの製造方法は、請求項1又は2に記載の形状記憶合金薄膜駆動型ブレーカの製造方法であって、集積回路基板に真空蒸着や化学気相蒸着、スパッタリングにより導電性薄膜を形成させる工程と、前記導電性薄膜に所定パターンの犠牲薄膜を形成させる工程と、前記犠牲薄膜及び前記導電性薄膜に形状記憶合金薄膜を形成させる工程と、前記犠牲薄膜を溶解除去して前記導電性薄膜と前記形状記憶合金薄膜との間に所定間隔を形成させる工程と、を有して構成されている。
この構成によって以下の作用を有する。
(1)集積回路基板に導電性薄膜を形成させる工程により集積回路に接続されたベースとなる導電回路を形成できる。次に、この導電性薄膜に所定パターンの犠牲薄膜を形成させる工程、及び犠牲薄膜及び前記導電性薄膜に形状記憶合金薄膜を形成させる工程を経た後、犠牲薄膜を溶解除去する工程によって導電性薄膜と形状記憶合金薄膜との間に犠牲薄膜の厚み分の間隔を確実に形成させることができる。
(2)犠牲薄膜をエッチング溶液等に溶解させて選択的に除去できるので、数μm単位の極めて狭い間隔で導電性薄膜に対向させて形状記憶合金薄膜を精密に配置させることができ、微弱な温度変化に対する応答性に優れた形状記憶合金薄膜駆動型ブレーカとすることができる。
(3)薄膜の形成に際して公知の半導体製造技術が適用でき、ブレーカ機能を備えた精密で小型の携帯電話等の製造を効率的に行うことができる。
(4)製造工程に機械組み立てが不要となるので、形状記憶合金薄膜駆動型ブレーカの製造の効率化が図れ、生産性や経済性に優れている。
【0012】
ここで、犠牲薄膜は、形状記憶合金薄膜と導電性薄膜との間に所定の空隙を形成するために用いられる。即ち、一方の導電性薄膜上にだけ犠牲薄膜を形成したまま、他方の導電性薄膜の上面に形状記憶合金薄膜を積層させ、その後犠牲薄膜を除去することで導電性薄膜と形状記憶合金薄膜との間に所定の離間距離を形成させることができる。犠牲薄膜は、導電性薄膜上に形成され、エッチング溶液等により微細加工されるので、導電性薄膜と異種材料である必要がある。
なお、犠牲薄膜は導電体でも絶縁体でも構わない。例えば、導電体ならばCu、Ni、Ti、Cr等の金属を、絶縁体ならばSiO、Si等のセラミックスを用いることができる。
ダミー薄膜は形状記憶合金薄膜を微細加工するために用いられる。即ち、所定のパターンにダミー薄膜を形成したまま、導電性薄膜、犠牲薄膜、ダミー薄膜の上面に形状記憶合金薄膜を積層させ、その後ダミー薄膜を除去することでダミー薄膜の上面に形成された形状記憶合金薄膜のみを除去でき、導電性薄膜、犠牲薄膜の上面に微細加工された形状記憶合金薄膜を形成できる。ダミー薄膜は有機溶媒等で溶解可能なレジスト膜材等の有機材料や前述の犠牲薄膜と同様のものが適用できる。
【0013】
【発明の実施の形態】
以下に本発明の一実施の形態に係る形状記憶合金薄膜駆動型ブレーカ及びその製造方法について添付図面を参照しながら説明する。
図1(a)は本発明の実施の形態の形状記憶合金薄膜駆動型ブレーカの模式図であり、図1(b)は過熱時におけるブレーカ作動状態を示す模式図である。
図1において、10は実施の形態の形状記憶合金薄膜駆動型ブレーカ、11はシリコンウェハ等からなる非導電性の集積回路基板、12、13は集積回路基板11の面上に対向して形成された左右1対の導電性薄膜、14は一方の導電性薄膜12上にその基端部側が積層接続されて支持され他方の導電性薄膜13上にその他端部側が接触して略帯状に渡設された形状記憶合金薄膜であり、形状記憶合金薄膜14はその過剰電流が流れる加熱時等に前記他端部側が導電性薄膜13から離間する形状、例えば、その帯状面の曲率半径が小さくなって他端部側が導電性薄膜13から離れて上方に反り返る弓形の形状や、導電性薄膜13との間に段差部を有する積層状の形状等に予め形状記憶処理がなされている。
【0014】
まず、本発明の実施の形態に係る形状記憶合金薄膜駆動型ブレーカ10の動作について説明する。
図1(a)に示すようにシリコンウェハ等からなる集積回路基板11の上面には、電極としてCu、Ni等の導電性薄膜12、13が対向して形成されている。この一対の導電性薄膜12、13の上面には、形状記憶合金薄膜14が両方の導電性薄膜12、13の上面にその導電性薄膜12側が固定され、その導電性薄膜13側が当接して渡設支持され、導電性薄膜12、13の間の空間の上面に浮いた状態で配置されている。
【0015】
この結果、この形状記憶合金薄膜14は、両方の導電性薄膜12、13と電気的に接続されているが、集積回路基板11とは電気的に絶縁されている。このように回路素子が搭載された集積回路基板11、導電性薄膜12、13、形状記憶合金薄膜14が、略平面状に配置された単純構造に形成されているために、非特許文献1のような電気的接点部分を形成させるための可動素片等がなく、製造方法の簡素化が図れると共に、形状記憶合金の形状回復に伴う駆動力が少ない場合でも容易に作動させることができ、形状記憶合金薄膜駆動型ブレーカ10の応答性が高められ、しかも小型化が容易になる。
以上の構成において、外因による異常電圧で過電流が電気配線から導電性薄膜12、13を通じて形状記憶合金薄膜14に流れるか、または外因による異常過熱が発生すると、形状記憶合金薄膜14が予め記憶していた形状に変形して、図1(b)に示すように形状記憶合金薄膜14の他端側が導電性薄膜13から離れ、形状記憶合金薄膜駆動型ブレーカが電気的な開放状態となって回路が遮断される。
【0016】
次に、以上のように構成された形状記憶合金薄膜駆動型ブレーカ10の製造方法について図面を参照しながら説明する。
図2(a)は薄膜形成前の集積回路基板の模式図であり、図2(b)は集積回路基盤の上面を導電性薄膜で被覆した状態を示す模式図であり、図2(c)はエッチングにより導電性薄膜を加工した状態を示す模式図であり、図2(d)は犠牲薄膜で被覆した状態を示す模式図であり、図2(e)は犠牲薄膜をレジストマスクによりエッチング加工した状態を示す模式図であり、図2(f)はダミー薄膜となる有機薄膜を塗布した状態を示す模式図であり、図2(g)はさらにパターンマスクを転写してレジストパターンを形成した状態を示す模式図であり、図2(h)はダミー薄膜である有機薄膜16の上面にTiNiからなる形状記憶合金薄膜を成膜した状態を示す模式図であり、図2(i)は形状記憶合金薄膜の下面のダミー薄膜である有機薄膜をエッチングして除去した状態を示す模式図であり、図2(j)は形状記憶合金薄膜の下面の犠牲薄膜をエッチング液でエッチング加工してすべての犠牲薄膜を除去した状態を示す模式図である。
本実施の形態では、集積回路基板11にシリコンウェハ、導電性薄膜12、13としてCuを、形状記憶合金薄膜14としてTiNiを、犠牲薄膜15としてSiOを、有機薄膜(ダミー薄膜)16としてレジストをそれぞれ用いて製造した例を示す。
【0017】
図2(b)に示すように、その表面がミラー指数(100)の結晶面であるシリコンウェハからなる集積回路基板11の片面に導電性薄膜となるCu膜を0.2〜1.0μm程度の厚さでスパッタリング法により成膜する。これによって、形状記憶合金薄膜14をシリコンウェハに成膜する際にその形状記憶合金薄膜14を特定方向に配向させた状態で積層させることができ、温度変化に対する変位量を大きくしてその応答性を向上させることができる。
このCuからなる導電性薄膜12、13の成膜方法には、スパッタリング法の他、化学気相蒸着法、メッキ法、スパッタリング法等の方法を用いても良い。
そして、このCu膜の残したい部分の上面にレジストパターンを形成し、このレジストパターンをマスクとして導電性薄膜12、13を、例えばFeClエッチング液でエッチングして、マスクで覆われていない導電性薄膜の部分を除去し、続いてCu膜上のレジストを除去すると、図2(c)に示すようになる。
【0018】
次に、図2(d)に示すように、集積回路基板11、導電性薄膜12の上面にSiOからなる犠牲薄膜15を、導電性薄膜12、13の膜厚よりも大きくなるように、0.3〜1.1μm程度の厚さでスパッタリング法により成膜する。この犠牲薄膜15の成膜方法には、真空蒸着法、CVD法等の通常の方法を用いても良い。そして、この犠牲薄膜15の残したい部分の上面にレジストパターンを形成し、このレジストパターンをマスクとして犠牲薄膜15を、例えばHFエッチング液でエッチングして、マスクで覆われていない犠牲薄膜15の部分を除去し、つづいて犠牲薄膜15上のレジストを除去すると、図2(e)に示すようになる。
こうして一対の導電性薄膜12、13のうち、一方の導電性薄膜12は、表面が露出しているが、もう片一方の導電性薄膜13は、犠牲薄膜15に覆われていることになる。これにより後に形状記憶合金薄膜を形成する際に、形状記憶合金薄膜が片方の導電性薄膜12と固定され、もう片方とは所定間隔で離間できるように配置される。
【0019】
次に、図2(f)に示すように、集積回路基板11、導電性薄膜12、13、犠牲薄膜15の上面にダミー薄膜である有機薄膜16を1.5μm程度の厚さで塗布する。この有機薄膜16の残したい部分の上面にパターンマスクを転写し、エッチング液でこのマスクされていない部分を除去して、図2(g)に示すように有機薄膜16からなるレジストパターンを形成する。
【0020】
次に、図2(h)に示すように、導電性薄膜12、13、犠牲薄膜15、有機薄膜16の上面にTiNiからなる形状記憶合金薄膜14を、0.5〜1.0μm程度の厚さでスパッタリング法により成膜し、形状記憶合金薄膜14を導電性薄膜12上に積層固定する。この形状記憶合金薄膜14の成膜には、真空蒸着法、イオンビームデポジション法等の方法が用いられる。
つづいて、形状記憶合金薄膜14の下面の有機薄膜16を、例えばレジスト剥離液でエッチングして、レジストパターンを形成していた有機薄膜16の上面に形成された形状記憶合金薄膜14を除去すると、図2(i)に示すように形状記憶合金薄膜14の一部分が残ってこの微細加工ができる。
【0021】
次に、形状記憶合金薄膜14の下面の犠牲薄膜15を、例えばHFエッチング液でエッチングして、すべての犠牲薄膜15を除去すると、図2(j)に示すようになる。
【0022】
この後、TiNiからなる形状記憶合金薄膜14を結晶化するための熱処理を行う。TiNiの結晶化には500℃以上の温度が必要であり、高真空熱処理炉等で試料に700℃を30分間保持する熱処理をおこなう。このとき、Cuからなる導電性薄膜12、13は700℃の熱処理にも十分耐えるし、また形状記憶合金薄膜14が集積回路基板11から離間しているので、TiNiとSiとが反応して、形状記憶合金薄膜14の組成が変わることにより性能が劣化することはない。
【0023】
つづいて、形状記憶合金薄膜14に形状を記憶させるための熱処理をおこなう。このようなTiNi膜の形状記憶には400℃以上の温度が必要であり、高真空熱処理炉等で試料を500℃で240分間保持する熱処理(時効処理)を行う。この際、形状記憶合金薄膜駆動型ブレーカの作動時の形状を記憶させる必要があり、図2(j)の形を保持したままで熱処理を行う。
【0024】
この後、常温状態で、導電性薄膜の上に離間された形状記憶合金薄膜14の上面から微小ピンセット等を用いて適当な力で形状記憶合金薄膜14を下方に加圧して塑性変形させ、導電性薄膜13と当接させ、図1(a)に示すような形状記憶合金薄膜駆動型ブレーカの通電状態に維持させる。
次に、集積回路基板上の回路素子や他の半導体集積回路と形状記憶合金薄膜駆動型ブレーカの電極である導電性薄膜12、13とを、ワイヤボンディング法等で電気的に接続する。
こうして、半導体集積回路に過電流が流れたり、または過熱にさらされたりすると、導電性薄膜12、13を通じて形状記憶合金薄膜14が50〜70℃に加熱され、図1(b)に示すような形に変形し、形状記憶合金薄膜駆動型ブレーカが作動して電流が遮断される。
【0025】
実施の形態の形状記憶合金薄膜駆動型ブレーカ10及びその製造方法は以上のように構成されているので以下の作用を有する。
(1)集積回路基板11上に導電性薄膜12、13が形成され、その上面に形状記憶合金薄膜14が積層配置されているので、全体を平面状に形成でき、集積回路基板11における集積度を高めて小型化を容易にできる。
(2)有機薄膜16をエッチング液等に溶解させて選択的に除去できるので、数μm単位の極めて狭い間隔で導電性薄膜13に対向させて形状記憶合金薄膜14を精密に配置させることができ、微弱な温度変化に対する応答性に優れた形状記憶合金薄膜駆動型ブレーカ10とすることができる。
(3)形状記憶合金薄膜14の可動範囲を有機薄膜16の厚みにより確実に規定できるので、離間距離のバラツキによって生じる回路の切断不良や誤動作等が少なく、動作安定性や信頼性に優れている。
(4)各薄膜の形成に際して公知の半導体製造技術が適用でき、形状記憶合金薄膜14及び導電性薄膜12、13を精密に所定形状に加工でき、機械組み立て工程を省略して生産性に優れた形状記憶合金薄膜駆動型ブレーカを提供できる。
(5)全体が平面状に形成されて構造が単純化されると共に、形状記憶合金薄膜14の微小な動きでオンオフされるので、温度変化に対する応答性と動作信頼性に優れた形状記憶合金薄膜駆動型ブレーカ10を提供できる。
(6)集積回路基板11上に電気配線用としての導電性薄膜12、13と駆動部分となる形状記憶合金薄膜14が積層して形成された単純構造なので、多様な機能を有する集積回路に対する保護性を向上させることができる。
【0026】
【発明の効果】
本発明の請求項1に記載の形状記憶合金薄膜駆動型ブレーカによれば、以下の効果を有する。
(1)同一の集積回路基板上に導電性薄膜が形成され、その上面に所定温度で他方の導電性薄膜から離間する形状記憶合金薄膜が積層配置されているので、全体を平面状に形成させることができ、集積回路基板における集積度を高くして小型化を容易にできる。
(2)フォトリソグラフィーなどの公知の集積回路製造プロセス技術を適用して、所定パターンの形状記憶合金薄膜及び導電性薄膜を集積回路基板上に精密に形成させることができるので、生産性に優れた形状記憶合金薄膜駆動型ブレーカを提供できる。
(3)全体が平面状に形成されて構造が単純化されると共に、形状記憶合金薄膜の微小変形により動作するので、温度変化に対する応答性と動作信頼性に優れた形状記憶合金薄膜駆動型ブレーカを提供できる。
(4)集積回路基板上に電気配線用としての金属薄膜と駆動部分となる形状記憶合金薄膜が形成されている単純構造なので、CPUや記憶素子などとしての多様な機能を有する集積回路の保護性を向上させると共に、小型かつ高精度に製造することができる。
【0027】
請求項2に記載の形状記憶合金薄膜駆動型ブレーカは、請求項1に記載の効果に加えて以下の効果を有する。
(1)ブレーカ動作時の離間距離が特定範囲に設定されているので、回路の切断不良や誤動作等が防止され、動作信頼性に優れた形状記憶合金薄膜駆動型ブレーカを提供できる。
(2)形状記憶合金薄膜の可動範囲を極めて狭く限定できるので、周囲の回路素子等と干渉させることなく全体をコンパクトに設計できる。
(3)微弱な温度変動にも敏感に作動させることができ、動作応答性に優れている。
【0028】
請求項3に記載の形状記憶合金薄膜駆動型ブレーカの製造方法によれば、以下の効果を有する。
(1)集積回路基板に導電性薄膜を形成させる工程により集積回路に接続されたベースとなる導電回路を形成できる。次に、この導電性薄膜に所定パターンの犠牲薄膜を形成させる工程、及び犠牲薄膜及び前記導電性薄膜に形状記憶合金薄膜を形成させる工程を経た後、犠牲薄膜を溶解除去する工程によって導電性薄膜と形状記憶合金薄膜との間に犠牲薄膜の厚み分の間隔を確実に形成させることができる。
(2)犠牲薄膜をエッチング溶液等に溶解させて選択的に除去できるので、数μm単位の極めて狭い間隔で導電性薄膜に対向させて形状記憶合金薄膜を精密に配置させることができ、微弱な温度変化に対する応答性に優れた形状記憶合金薄膜駆動型ブレーカとすることができる。
(3)薄膜の形成に際して公知の半導体製造技術が適用でき、ブレーカ機能を備えた精密で小型の携帯電話等の製造を効率的に行うことができる。
(4)製造工程に機械組み立てが不要となるので、形状記憶合金薄膜駆動型ブレーカの製造の効率化が図れ、生産性や経済性に優れている。
【図面の簡単な説明】
【図1】(a)本実施の形態の形状記憶合金薄膜駆動型ブレーカの模式図
(b)ブレーカ作動時の模式図
【図2】(a)薄膜形成前の集積回路基板の模式図
(b)集積回路基盤の上面を導電性薄膜で被覆した状態を示す模式図
(c)エッチングにより導電性薄膜を加工した状態を示す模式図
(d)犠牲薄膜で被覆した状態を示す模式図
(e)犠牲薄膜をレジストマスクでエッチング加工した状態を示す模式図
(f)ダミー薄膜となる有機薄膜を塗布した状態を示す模式図
(g)パターンマスクを転写したレジストパターンの形成状態を示す模式図
(h)有機薄膜の上面に形状記憶合金薄膜を成膜した状態を示す模式図
(i)ダミー薄膜をエッチング除去した状態を示す模式図
(j)エッチングによりすべての犠牲薄膜を除去した状態を示す模式図
【符号の説明】
10 形状記憶合金薄膜駆動型ブレーカ
11 集積回路基板
12、13 導電性薄膜
14 形状記憶合金薄膜
15 犠牲薄膜
16 ダミー薄膜(有機薄膜)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shape memory alloy thin film drive breaker using a shape memory alloy thin film as a driving material and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, breakers and overheat detecting elements have been installed to prevent an overcurrent from flowing into a semiconductor integrated circuit incorporated in a small electronic device such as a mobile phone or to prevent the semiconductor integrated circuit from being overheated. ing.
However, adding a conventional breaker and overheat detection element to a small electronic device has been a hindrance to further downsizing of the electronic device due to an increased installation volume. Therefore, a technique of applying a shape memory alloy thin film as a driving material to a breaker and an overheat detecting element has been developed. For example, the following techniques are known in relation to such a technique.
Non-Patent Document 1 discloses a breaker in which one end of a shape memory alloy thin film for detecting overcurrent and overheating is adhered to a supporting portion, and a movable element is connected to the other end. In the normal state of this breaker, the movable element is connected to the fixed electrode part forming the electric circuit and current is flowing. However, when an overcurrent flows through the shape memory alloy thin film, the temperature of the shape memory alloy thin film increases. As a result, the movable element is separated from the fixed electrode portion, and the circuit is cut off.
[0003]
[Non-patent document 1]
U.S. Pat. 5,061,914
[0004]
[Problems to be solved by the invention]
However, the conventional technique has the following problems.
(1) The breaker described in Non-Patent Document 1 has a massive movable piece that opens and closes when the shape memory alloy thin film comes into contact with the fixed electrode portion on the tip side thereof, so that the movable piece is thick and requires precision processing. When the substrate is formed or when the fixed electrode portion is electrically separated from the support portion, complicated processes such as etching and grinding of the substrate itself and mechanical assembly are required, and the manufacturing method becomes complicated. There was a problem of lack of productivity.
(2) Since the shape memory alloy thin film has a movable element at the tip thereof, the whole becomes thick and the degree of integration when mounted on a substrate together with other circuit elements is reduced, and the whole is reduced in size. There was a problem that there was a limit.
(3) Since there is a limit in miniaturization, it is difficult to increase the packing density, and there is a problem that the design property when applied to a small electronic device such as a mobile phone is restricted.
(4) Since the movable element is provided at the tip, the response to the temperature change of the shape memory alloy thin film may be deteriorated, and there is a problem that the operation element is delayed and the circuit element is damaged.
(5) Since the shape memory alloy thin film has a large residual stress due to the internal stress at the time of film formation and operates in a shape that is largely curved upward, as a result, the movable element is largely driven upward, so that the breaker There is a problem that a space is required above and packaging cannot be performed after being mounted on a substrate together with other circuit elements.
[0005]
SUMMARY OF THE INVENTION The present invention solves the problems of the above-described conventional technology, and provides a shape memory alloy thin film drive type breaker that can be easily miniaturized and can be manufactured efficiently, and prevents overcurrent to a semiconductor integrated circuit. And providing a method of manufacturing a shape memory alloy thin film drive type breaker having excellent operation reliability.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a shape memory alloy thin film drive type breaker, comprising: a non-conductive integrated circuit board on which circuit elements are mounted; and a pair of opposing formed on the surface of the integrated circuit board. A conductive thin film, the base end of which is laminated and supported on one of the conductive thin films, and the other end of which abuts on the other conductive thin film to recover its shape when heated, thereby recovering the conductive thin film And a shape memory alloy thin film separated from the thin film.
This configuration has the following operation.
(1) A conductive thin film is formed on the same integrated circuit substrate, and a shape memory alloy thin film which is separated from the other conductive thin film at a predetermined temperature on the upper surface thereof is laminated, so that the whole is formed in a planar shape. This makes it possible to increase the degree of integration in the integrated circuit substrate and facilitate downsizing.
(2) Since a shape memory alloy thin film and a conductive thin film having a predetermined pattern can be precisely formed on an integrated circuit substrate by applying a known integrated circuit manufacturing process technology such as photolithography, the productivity is excellent. A shape memory alloy thin film drive breaker can be provided.
(3) The shape memory alloy thin film drive breaker is excellent in responsiveness to temperature change and operation reliability because the whole structure is formed in a planar shape and the structure is simplified, and the shape memory alloy thin film operates by minute deformation. Can be provided.
(4) A simple structure in which a metal thin film for electric wiring and a shape memory alloy thin film serving as a driving portion are formed on an integrated circuit substrate, so that the protection performance of the integrated circuit having various functions as a CPU, a memory element, and the like. , And can be manufactured with small size and high accuracy.
[0007]
Here, the integrated circuit substrate is a non-conductive insulator in use, has an affinity for forming a conductive metal thin film by sputtering or the like, and has a temperature of about 700 ° C. for heat treatment of the shape memory alloy thin film. Since a heat resistance that can withstand the above temperature is required, a silicon wafer or the like is used.
The conductive thin film must be firmly adhered and formed on the integrated circuit substrate, and in order to enable electrical conduction, a metal or alloy such as Cu, Ni, Ti, Cr, or TiNi is formed by sputtering or vacuum. It is firmly attached to the integrated circuit substrate by a physical or chemical method such as an evaporation method, a chemical vapor deposition method (CVD), and a plating method.
[0008]
The shape memory alloy thin film is formed using a shape memory alloy as a material, and its base end is laminated and fixed on one upper surface of a pair of conductive thin films, and the other end is formed as a contact that can be separated from the other conductive thin film. Have been.
Shape memory alloys generally utilize the phenomenon that deformation strain returns to the original state by reverse martensitic transformation. When the austenite phase is cooled and passed through the martensitic transformation start temperature Ms, it transforms into the martensitic phase, When the martensite phase is heated, it has the property of returning to the austenite phase again by reverse martensitic transformation. Such materials include Ti-Ni-based alloys, Ti-Ni-Co-based alloys, Ti-Ni-Cu-based alloys, etc., and actuators using them can increase the generated stress, and have repetitive function characteristics and corrosion resistance. Also, it has excellent fatigue resistance. It is also possible to adjust the separation distance and the magnitude of the driving force when the shape is recovered at a predetermined temperature by adjusting the component ratio of Ti, Ni, etc. in each of the alloy systems.
The shape memory alloy thin film is formed to a thickness of 0.1 to 2 μm, preferably 0.5 to 1.0 μm by film forming means such as high frequency or DC magnetron sputtering. Here, the substrate is kept at room temperature or heated to about 150 ° C. to form an amorphous TiNi alloy thin film on the substrate, and then the crystallization temperature of the TiNi alloy (500 to 550 ° C.) ) A heat treatment (annealing) is performed at the above temperature to crystallize, and a heat treatment (aging treatment) at 400 ° C. or more is performed again while maintaining the shape to be memorized, thereby exhibiting a shape memory effect.
The amount of displacement during reverse martensitic transformation is improved by increasing the orientation of the crystal with respect to the substrate surface of the TiNi alloy by adjusting the conditions such as component adjustment and film formation rate, temperature, and degree of vacuum during thin film formation. By increasing the size, a shape memory alloy thin film drive type breaker excellent in operability such as temperature response can be obtained.
[0009]
Such a shape memory alloy thin film drive type breaker can be manufactured, for example, by sequentially performing the following steps. That is, (1) a conductive thin film is formed on an integrated circuit substrate. {Circle over (2)} In order to fill the space of the conductive thin film and to create a minute space on one of the conductive thin films, a sacrificial thin film or the like is coated and subjected to fine processing by etching. (3) A dummy thin film made of polyimide or the like is formed on the conductive thin film of the integrated circuit substrate. (4) A shape memory alloy thin film is formed on the conductive thin film and the sacrificial thin film on the substrate. {Circle around (5)} The dummy thin film is dissolved using an organic solvent such as an alkaline solution, and a minute gap of, for example, 0.1 to 10 μm, preferably 0.2 to 0.5 μm is formed between the conductive thin film and the shape memory alloy thin film. Let it form. {Circle around (6)} In order to memorize the shape memory alloy thin film held with this minute interval in this state, a crystallization heat treatment and an aging treatment are performed. {Circle around (7)} The shape memory alloy thin film is pressurized or heated to be kept in an energized state in contact with the other conductive thin film. (8) Attach electric wiring on the conductive thin film by wire bonding or the like.
It is desirable that the distance between the shape memory alloy thin film serving as an electrical switching contact and the conductive thin film is in the range of 0.1 to 10 μm, preferably 0.2 to 1 μm. This depends on the operating voltage, the electrical characteristics of the thin film, etc., but as the separation distance becomes thinner than 0.2 μm, the separation distance between the conductive thin film and the shape memory alloy thin film at the time of heating becomes shorter, and the blocking failure increases. The tendency appears, and conversely, as the distance exceeds 1 μm, the response to a temperature change tends to become dull, and these tendencies become more remarkable when the distance becomes smaller than 0.1 μm or becomes larger than 10 μm. is there.
[0010]
In the shape memory alloy thin film drive type breaker according to claim 2, in the invention according to claim 1, a separation distance between the shape memory alloy thin film and the conductive thin film at the time of shape recovery is 0.1 to 10 μm. It is configured as follows.
With this configuration, the following operation is obtained in addition to the operation described in the first aspect.
(1) Since the separation distance during the operation of the breaker is set to a specific range, a disconnection failure or a malfunction of the circuit is prevented, and a shape memory alloy thin film drive type breaker excellent in operation reliability can be provided.
(2) Since the movable range of the shape memory alloy thin film can be limited to a very narrow range, the whole can be designed compact without causing interference with surrounding circuit elements and the like.
(3) It can be operated sensitively to a slight temperature fluctuation, and has excellent operation responsiveness.
Here, it is desirable that the distance between the shape memory alloy thin film and the conductive thin film at the time of shape recovery is in the range of 0.1 to 10 μm, preferably 0.2 to 1 μm. This depends on the operating voltage, the electrical characteristics of the thin film, etc., but as the separation distance becomes thinner than 0.2 μm, the separation distance between the conductive thin film and the shape memory alloy thin film at the time of heating becomes shorter, and the blocking failure increases. The tendency appears, and conversely, as the distance exceeds 1 μm, the response to a temperature change tends to become dull, and these tendencies become more remarkable when the distance becomes smaller than 0.1 μm or becomes larger than 10 μm. is there.
[0011]
A method of manufacturing a shape memory alloy thin film drive type breaker according to claim 3 is a method of manufacturing a shape memory alloy thin film drive breaker according to claim 1 or 2, wherein a vacuum vapor deposition or chemical vapor deposition is performed on an integrated circuit substrate. Forming a conductive thin film by vapor deposition and sputtering, forming a sacrificial thin film having a predetermined pattern on the conductive thin film, forming a shape memory alloy thin film on the sacrificial thin film and the conductive thin film, Dissolving and removing the thin film to form a predetermined space between the conductive thin film and the shape memory alloy thin film.
This configuration has the following operation.
(1) A conductive circuit serving as a base connected to an integrated circuit can be formed by a step of forming a conductive thin film on an integrated circuit substrate. Next, after a step of forming a sacrificial thin film having a predetermined pattern on the conductive thin film, and a step of forming a shape memory alloy thin film on the sacrificial thin film and the conductive thin film, a step of dissolving and removing the sacrificial thin film is performed. An interval corresponding to the thickness of the sacrificial thin film can be reliably formed between the thin film and the shape memory alloy thin film.
(2) Since the sacrificial thin film can be selectively removed by dissolving it in an etching solution or the like, the shape memory alloy thin film can be precisely arranged opposite to the conductive thin film at a very small interval of a few μm, and is weak. A shape memory alloy thin film drive type breaker having excellent response to a temperature change can be obtained.
(3) A well-known semiconductor manufacturing technique can be applied when forming a thin film, and a precise and small-sized mobile phone having a breaker function can be efficiently manufactured.
(4) Since no mechanical assembly is required in the manufacturing process, the efficiency of manufacturing the shape memory alloy thin film drive type breaker can be improved, and the productivity and economy are excellent.
[0012]
Here, the sacrificial thin film is used to form a predetermined gap between the shape memory alloy thin film and the conductive thin film. That is, while the sacrificial thin film is formed only on one conductive thin film, the shape memory alloy thin film is laminated on the upper surface of the other conductive thin film, and then the sacrificial thin film is removed to form the conductive thin film and the shape memory alloy thin film. A predetermined separation distance can be formed between them. Since the sacrificial thin film is formed on the conductive thin film and finely processed by an etching solution or the like, the sacrificial thin film needs to be a material different from the conductive thin film.
The sacrificial thin film may be a conductor or an insulator. For example, a conductor is a metal such as Cu, Ni, Ti or Cr, and an insulator is SiO. 2 , Si 3 N 4 And the like can be used.
The dummy thin film is used for finely processing the shape memory alloy thin film. That is, while the dummy thin film is formed in a predetermined pattern, a shape memory alloy thin film is laminated on the conductive thin film, the sacrificial thin film, and the dummy thin film, and then the dummy thin film is removed to form the shape formed on the dummy thin film. Only the memory alloy thin film can be removed, and a finely processed shape memory alloy thin film can be formed on the upper surfaces of the conductive thin film and the sacrificial thin film. As the dummy thin film, an organic material such as a resist film material that can be dissolved in an organic solvent or the like, or the same as the above-described sacrificial thin film can be applied.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a shape memory alloy thin film drive type breaker and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1A is a schematic diagram of a shape memory alloy thin film drive type breaker according to an embodiment of the present invention, and FIG. 1B is a schematic diagram showing a breaker operating state when overheating.
In FIG. 1, reference numeral 10 denotes a shape memory alloy thin film drive type breaker of the embodiment, 11 denotes a non-conductive integrated circuit substrate made of a silicon wafer or the like, and 12 and 13 are formed on the surface of the integrated circuit substrate 11 so as to face each other. The pair of left and right conductive thin films 14 is supported on one conductive thin film 12 with its base end side laminated and connected and supported on the other conductive thin film 13 at the other end side in a substantially strip shape. The shape memory alloy thin film 14 has a shape in which the other end is separated from the conductive thin film 13 at the time of heating or the like in which excess current flows, for example, the radius of curvature of the strip-shaped surface is reduced. Shape memory processing is performed in advance on an arcuate shape in which the other end side is separated from the conductive thin film 13 and warps upward, or a stacked shape having a stepped portion between the conductive thin film 13 and the like.
[0014]
First, the operation of the shape memory alloy thin film drive type breaker 10 according to the embodiment of the present invention will be described.
As shown in FIG. 1A, conductive thin films 12 and 13 made of Cu, Ni or the like are formed as electrodes on the upper surface of an integrated circuit substrate 11 made of a silicon wafer or the like. On the upper surfaces of the pair of conductive thin films 12 and 13, a shape memory alloy thin film 14 is fixed to the upper surfaces of both conductive thin films 12 and 13 on the conductive thin film 12 side. The conductive thin films 12 and 13 are disposed so as to float on the upper surface of the space therebetween.
[0015]
As a result, the shape memory alloy thin film 14 is electrically connected to both the conductive thin films 12 and 13, but is electrically insulated from the integrated circuit substrate 11. Since the integrated circuit board 11 on which the circuit elements are mounted, the conductive thin films 12 and 13 and the shape memory alloy thin film 14 are formed in a simple structure arranged substantially in a plane, as described in Non-Patent Document 1. There is no movable element or the like for forming such electrical contact portions, so that the manufacturing method can be simplified, and even if the driving force associated with shape recovery of the shape memory alloy is small, it can be easily operated, The responsiveness of the memory alloy thin film drive type breaker 10 is improved, and furthermore, the miniaturization is facilitated.
In the above configuration, when an overcurrent flows from the electric wiring to the shape memory alloy thin film 14 through the conductive thin films 12 and 13 due to an abnormal voltage due to an external factor, or when abnormal overheating occurs due to an external factor, the shape memory alloy thin film 14 is stored in advance. 1B, the other end of the shape memory alloy thin film 14 is separated from the conductive thin film 13 as shown in FIG. Is shut off.
[0016]
Next, a method of manufacturing the shape memory alloy thin film drive type breaker 10 configured as described above will be described with reference to the drawings.
FIG. 2A is a schematic diagram of an integrated circuit substrate before a thin film is formed, and FIG. 2B is a schematic diagram showing a state in which the upper surface of the integrated circuit substrate is covered with a conductive thin film, and FIG. FIG. 2D is a schematic view showing a state in which the conductive thin film is processed by etching, FIG. 2D is a schematic view showing a state in which the conductive thin film is covered with a sacrificial thin film, and FIG. FIG. 2F is a schematic view showing a state in which an organic thin film serving as a dummy thin film is applied, and FIG. 2G is a schematic view showing a state in which a pattern mask is further transferred to form a resist pattern. FIG. 2H is a schematic diagram showing a state in which a shape memory alloy thin film made of TiNi is formed on the upper surface of an organic thin film 16 which is a dummy thin film, and FIG. It is a dummy thin film on the lower surface of the memory alloy thin film FIG. 2 (j) is a schematic view showing a state in which the mechanical thin film is removed by etching. FIG. 2 (j) is a schematic view showing a state in which the sacrificial thin film on the lower surface of the shape memory alloy thin film is etched with an etching solution to remove all the sacrificial thin films. FIG.
In the present embodiment, a silicon wafer is used for the integrated circuit substrate 11, Cu is used as the conductive thin films 12, 13, TiNi is used as the shape memory alloy thin film 14, and SiO is used as the sacrificial thin film 15. 2 Are manufactured using a resist as the organic thin film (dummy thin film) 16, respectively.
[0017]
As shown in FIG. 2B, a Cu film serving as a conductive thin film is formed on one surface of an integrated circuit substrate 11 made of a silicon wafer whose surface is a crystal surface having a Miller index (100) of about 0.2 to 1.0 μm. Is formed by a sputtering method with a thickness of Thereby, when the shape memory alloy thin film 14 is formed on a silicon wafer, the shape memory alloy thin film 14 can be laminated in a state where the shape memory alloy thin film 14 is oriented in a specific direction. Can be improved.
The conductive thin films 12 and 13 made of Cu may be formed by a method such as a chemical vapor deposition method, a plating method, or a sputtering method, in addition to the sputtering method.
Then, a resist pattern is formed on the upper surface of the portion where the Cu film is to be left, and the conductive thin films 12 and 13 are formed using the resist pattern as a mask, for example, FeCl 2. 3 Etching with an etchant to remove the portion of the conductive thin film that is not covered by the mask and then removing the resist on the Cu film results in the state shown in FIG.
[0018]
Next, as shown in FIG. 2D, the upper surfaces of the integrated circuit substrate 11 and the conductive thin film 12 are covered with SiO 2. 2 Is formed by sputtering with a thickness of about 0.3 to 1.1 μm so as to be larger than the thickness of the conductive thin films 12 and 13. As a method for forming the sacrificial thin film 15, a normal method such as a vacuum evaporation method and a CVD method may be used. Then, a resist pattern is formed on the upper surface of the portion of the sacrificial thin film 15 that is desired to be left, and the sacrificial thin film 15 is etched using, for example, an HF etchant using the resist pattern as a mask. Is removed, and then the resist on the sacrificial thin film 15 is removed, as shown in FIG.
In this manner, one of the pair of conductive thin films 12 and 13 has the surface exposed, while the other conductive thin film 13 is covered with the sacrificial thin film 15. Thus, when the shape memory alloy thin film is formed later, the shape memory alloy thin film is fixed to one of the conductive thin films 12 and arranged so as to be separated from the other by a predetermined distance.
[0019]
Next, as shown in FIG. 2F, an organic thin film 16 serving as a dummy thin film is applied on the upper surfaces of the integrated circuit substrate 11, the conductive thin films 12, 13 and the sacrificial thin film 15 with a thickness of about 1.5 μm. A pattern mask is transferred onto the upper surface of the portion of the organic thin film 16 to be left, and the unmasked portion is removed with an etchant to form a resist pattern made of the organic thin film 16 as shown in FIG. .
[0020]
Next, as shown in FIG. 2H, a shape memory alloy thin film 14 made of TiNi is formed on the conductive thin films 12 and 13, the sacrificial thin film 15, and the organic thin film 16 with a thickness of about 0.5 to 1.0 μm. Then, a film is formed by a sputtering method, and the shape memory alloy thin film 14 is laminated and fixed on the conductive thin film 12. The shape memory alloy thin film 14 is formed by a method such as a vacuum evaporation method and an ion beam deposition method.
Subsequently, the organic thin film 16 on the lower surface of the shape memory alloy thin film 14 is etched with, for example, a resist stripper to remove the shape memory alloy thin film 14 formed on the upper surface of the organic thin film 16 on which the resist pattern has been formed. As shown in FIG. 2 (i), a part of the shape memory alloy thin film 14 remains and this fine processing can be performed.
[0021]
Next, when the sacrificial thin film 15 on the lower surface of the shape memory alloy thin film 14 is etched with, for example, an HF etchant to remove all the sacrificial thin films 15, the result is as shown in FIG.
[0022]
Thereafter, heat treatment for crystallizing the shape memory alloy thin film 14 made of TiNi is performed. A temperature of 500 ° C. or higher is required for crystallization of TiNi, and the sample is subjected to a heat treatment at a temperature of 700 ° C. for 30 minutes in a high vacuum heat treatment furnace or the like. At this time, the conductive thin films 12 and 13 made of Cu sufficiently withstand heat treatment at 700 ° C., and since the shape memory alloy thin film 14 is separated from the integrated circuit substrate 11, TiNi and Si react with each other, The performance does not deteriorate due to the change in the composition of the shape memory alloy thin film 14.
[0023]
Subsequently, a heat treatment for storing the shape in the shape memory alloy thin film 14 is performed. Such a shape memory of the TiNi film requires a temperature of 400 ° C. or higher, and a heat treatment (aging treatment) for holding the sample at 500 ° C. for 240 minutes in a high vacuum heat treatment furnace or the like is performed. At this time, it is necessary to memorize the shape at the time of operation of the shape memory alloy thin film drive type breaker, and heat treatment is performed while maintaining the shape of FIG.
[0024]
Thereafter, at normal temperature, the shape memory alloy thin film 14 is pressed downward from the upper surface of the shape memory alloy thin film 14 separated from the conductive thin film with an appropriate force by using fine tweezers or the like to be plastically deformed. Then, the breaker is brought into contact with the conductive thin film 13, and the shape memory alloy thin film drive type breaker as shown in FIG.
Next, circuit elements and other semiconductor integrated circuits on the integrated circuit board are electrically connected to the conductive thin films 12 and 13, which are electrodes of the shape memory alloy thin film drive breaker, by a wire bonding method or the like.
Thus, when an overcurrent flows or is exposed to overheating in the semiconductor integrated circuit, the shape memory alloy thin film 14 is heated to 50 to 70 ° C. through the conductive thin films 12 and 13, as shown in FIG. The shape memory alloy thin film drive type breaker operates to cut off the current.
[0025]
Since the shape memory alloy thin film drive type breaker 10 and the method of manufacturing the same according to the embodiment are configured as described above, they have the following operations.
(1) Since the conductive thin films 12 and 13 are formed on the integrated circuit substrate 11 and the shape memory alloy thin film 14 is laminated on the upper surface thereof, the whole can be formed in a planar shape, and the integration degree in the integrated circuit substrate 11 can be improved. To facilitate miniaturization.
(2) Since the organic thin film 16 can be selectively removed by dissolving it in an etchant or the like, the shape memory alloy thin film 14 can be precisely arranged opposite to the conductive thin film 13 at a very small interval of several μm. In addition, it is possible to provide the shape memory alloy thin film drive type breaker 10 having excellent responsiveness to a slight temperature change.
(3) Since the movable range of the shape memory alloy thin film 14 can be reliably defined by the thickness of the organic thin film 16, there is little circuit cutting failure or malfunction caused by variations in the separation distance, and the operation stability and reliability are excellent. .
(4) Known semiconductor manufacturing techniques can be applied when forming each thin film, the shape memory alloy thin film 14 and the conductive thin films 12 and 13 can be precisely processed into a predetermined shape, and the machine assembling step is omitted, resulting in excellent productivity. A shape memory alloy thin film drive breaker can be provided.
(5) The shape memory alloy thin film is excellent in responsiveness to temperature change and operation reliability because it is formed in a planar shape to simplify the structure and is turned on / off by minute movement of the shape memory alloy thin film 14. A drive type breaker 10 can be provided.
(6) Since it has a simple structure in which conductive thin films 12 and 13 for electric wiring and a shape memory alloy thin film 14 serving as a driving portion are laminated on an integrated circuit substrate 11, protection against an integrated circuit having various functions is provided. Performance can be improved.
[0026]
【The invention's effect】
The shape memory alloy thin film drive breaker according to the first aspect of the present invention has the following effects.
(1) A conductive thin film is formed on the same integrated circuit substrate, and a shape memory alloy thin film which is separated from the other conductive thin film at a predetermined temperature on the upper surface thereof is laminated, so that the whole is formed in a planar shape. This makes it possible to increase the degree of integration in the integrated circuit substrate and facilitate downsizing.
(2) Since a shape memory alloy thin film and a conductive thin film having a predetermined pattern can be precisely formed on an integrated circuit substrate by applying a known integrated circuit manufacturing process technology such as photolithography, the productivity is excellent. A shape memory alloy thin film drive breaker can be provided.
(3) The shape memory alloy thin film drive breaker is excellent in responsiveness to temperature change and operation reliability because the whole structure is formed in a planar shape and the structure is simplified, and the shape memory alloy thin film operates by minute deformation. Can be provided.
(4) A simple structure in which a metal thin film for electric wiring and a shape memory alloy thin film serving as a driving portion are formed on an integrated circuit substrate, so that the protection performance of the integrated circuit having various functions as a CPU, a memory element, and the like. , And can be manufactured with small size and high accuracy.
[0027]
The shape memory alloy thin film drive type breaker according to claim 2 has the following effects in addition to the effects described in claim 1.
(1) Since the separation distance during the operation of the breaker is set to a specific range, a disconnection failure or a malfunction of the circuit is prevented, and a shape memory alloy thin film drive type breaker excellent in operation reliability can be provided.
(2) Since the movable range of the shape memory alloy thin film can be limited extremely narrowly, the whole can be designed compact without causing interference with surrounding circuit elements and the like.
(3) It can be operated sensitively to a slight temperature fluctuation, and has excellent operation responsiveness.
[0028]
According to the method of manufacturing a shape memory alloy thin film drive type breaker according to the third aspect, the following effects are obtained.
(1) A conductive circuit serving as a base connected to an integrated circuit can be formed by a step of forming a conductive thin film on an integrated circuit substrate. Next, after a step of forming a sacrificial thin film having a predetermined pattern on the conductive thin film, and a step of forming a shape memory alloy thin film on the sacrificial thin film and the conductive thin film, a step of dissolving and removing the sacrificial thin film is performed. An interval corresponding to the thickness of the sacrificial thin film can be reliably formed between the thin film and the shape memory alloy thin film.
(2) Since the sacrificial thin film can be selectively removed by dissolving it in an etching solution or the like, the shape memory alloy thin film can be precisely arranged opposite to the conductive thin film at a very small interval of a few μm, and is weak. A shape memory alloy thin film drive type breaker having excellent response to a temperature change can be obtained.
(3) A well-known semiconductor manufacturing technique can be applied when forming a thin film, and a precise and small-sized mobile phone having a breaker function can be efficiently manufactured.
(4) Since no mechanical assembly is required in the manufacturing process, the efficiency of manufacturing the shape memory alloy thin film drive type breaker can be improved, and the productivity and economy are excellent.
[Brief description of the drawings]
FIG. 1A is a schematic view of a shape memory alloy thin film drive type breaker according to the present embodiment.
(B) Schematic diagram during breaker operation
FIG. 2A is a schematic view of an integrated circuit substrate before a thin film is formed.
(B) Schematic diagram showing a state in which the upper surface of the integrated circuit board is covered with a conductive thin film
(C) Schematic diagram showing a state where a conductive thin film is processed by etching.
(D) Schematic diagram showing a state covered with a sacrificial thin film
(E) Schematic diagram showing a state in which a sacrificial thin film is etched using a resist mask.
(F) Schematic diagram showing a state where an organic thin film serving as a dummy thin film is applied.
(G) Schematic diagram showing the formation state of a resist pattern to which a pattern mask has been transferred.
(H) Schematic diagram showing a state in which a shape memory alloy thin film is formed on the upper surface of an organic thin film
(I) Schematic diagram showing a state where a dummy thin film is removed by etching.
(J) A schematic diagram showing a state in which all the sacrificial thin films have been removed by etching.
[Explanation of symbols]
10. Shape memory alloy thin film drive type breaker
11 Integrated circuit board
12, 13 conductive thin film
14. Shape memory alloy thin film
15 Sacrificial thin film
16 Dummy thin film (organic thin film)

Claims (3)

回路素子が搭載された非導電性の集積回路基板と、前記集積回路基板の面上に対向して形成された1対の導電性薄膜と、一方の前記導電性薄膜上にその基端部側が積層接続されて支持され他方の前記導電性薄膜上にその他端部側が当接してその加熱時に形状回復して前記導電性薄膜から離間する形状記憶合金薄膜と、を有することを特徴とする形状記憶合金薄膜駆動型ブレーカ。A non-conductive integrated circuit board on which circuit elements are mounted, a pair of conductive thin films formed to face each other on the surface of the integrated circuit board, and a base end side on one of the conductive thin films. A shape memory alloy thin film, which is stacked and supported, and whose other end side abuts on the other conductive thin film, recovers its shape when heated, and separates from the conductive thin film. Alloy thin film drive type breaker. 形状回復時における前記形状記憶合金薄膜と前記導電性薄膜との離間距離が0.1〜10μmであることを特徴とする請求項1に記載の形状記憶合金薄膜駆動型ブレーカ。2. The shape memory alloy thin film drive type breaker according to claim 1, wherein a distance between the shape memory alloy thin film and the conductive thin film at the time of shape recovery is 0.1 to 10 [mu] m. 請求項1又は2に記載の形状記憶合金薄膜駆動型ブレーカの製造方法であって、前記集積回路基板に真空蒸着や化学気相蒸着、スパッタリングにより導電性薄膜を形成させる工程と、前記導電性薄膜に所定パターンの犠牲薄膜を形成させる工程と、前記犠牲薄膜及び前記導電性薄膜に形状記憶合金薄膜を形成させる工程と、前記犠牲薄膜を溶解除去して前記導電性薄膜と前記形状記憶合金薄膜との間に定間隔を形成させる工程と、前記形状記憶合金薄膜に所定形状を記憶させる工程と、を有することを特徴とする形状記憶合金薄膜駆動型ブレーカの製造方法。3. The method for manufacturing a shape memory alloy thin film drive type breaker according to claim 1, wherein a step of forming a conductive thin film on the integrated circuit substrate by vacuum deposition, chemical vapor deposition, or sputtering; Forming a sacrificial thin film having a predetermined pattern, forming a shape memory alloy thin film on the sacrificial thin film and the conductive thin film, and dissolving and removing the sacrificial thin film to form the conductive thin film and the shape memory alloy thin film. A method of manufacturing a shape memory alloy thin film drive type breaker, comprising: a step of forming a fixed interval between the two; and a step of storing a predetermined shape in the shape memory alloy thin film.
JP2002279678A 2002-09-25 2002-09-25 Shape memory alloy thin film driving type breaker and its manufacturing method Withdrawn JP2004119142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279678A JP2004119142A (en) 2002-09-25 2002-09-25 Shape memory alloy thin film driving type breaker and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279678A JP2004119142A (en) 2002-09-25 2002-09-25 Shape memory alloy thin film driving type breaker and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004119142A true JP2004119142A (en) 2004-04-15

Family

ID=32274613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279678A Withdrawn JP2004119142A (en) 2002-09-25 2002-09-25 Shape memory alloy thin film driving type breaker and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004119142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142980A1 (en) * 2007-05-11 2008-11-27 National Institute For Materials Science Two-direction shape-memory alloy thin film actuator and method for manufacturing shape-memory alloy thin film used in the actuator
JP2008545971A (en) * 2005-06-02 2008-12-18 リッテルフューズ,インコーポレイティド Overheat protection devices, applications and circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545971A (en) * 2005-06-02 2008-12-18 リッテルフューズ,インコーポレイティド Overheat protection devices, applications and circuits
WO2008142980A1 (en) * 2007-05-11 2008-11-27 National Institute For Materials Science Two-direction shape-memory alloy thin film actuator and method for manufacturing shape-memory alloy thin film used in the actuator

Similar Documents

Publication Publication Date Title
US6753639B2 (en) Micro-electromechanical structure resonator frequency adjustment using radiant energy trimming and laser/focused ion beam assisted deposition
US5872496A (en) Planar type electromagnetic relay and method of manufacturing thereof
EP2315221B1 (en) Switch structure and method
US7688167B2 (en) Contact electrode for microdevices and etch method of manufacture
CN103477405B (en) Electronic equipment and manufacture method thereof
US8330237B2 (en) Corrosion-resistant MEMS component and method for the production thereof
JP5829804B2 (en) Switch structure
EP2053017A2 (en) Electrical connection through a substrate to a microelectromechanical devise
JP2003158002A (en) Chip-type electronic component and its manufacturing method
EP2795688A2 (en) Low temperature resistor for superconductor circuits
JP2004119142A (en) Shape memory alloy thin film driving type breaker and its manufacturing method
JP2002170470A (en) Semiconductor micro relay and manufacturing method thereof
US11322580B2 (en) Titanium layer as getter layer for hydrogen in a MIM device
JPH06267926A (en) Etching process and electrostatic microswitch using same
JP2007026804A (en) Structure of high-frequency micromachine switch, and manufacturing method thereof
JP4116420B2 (en) Electrical contact device and method of manufacturing the same
US11011387B2 (en) Wet etching of samarium selenium for piezoelectric processing
KR20090060629A (en) Semiconductor device and method for fabricating the same
WO2004105064A1 (en) Electric contact device
JP2005245135A (en) Planar electromagnetic actuator and its manufacturing method
Yonezawa et al. Non arcing electric contact device using the MEMS multi-electrodes
JPH07111257A (en) Apparatus and method for etching
JP2003242850A (en) Contact for electrical switch and its manufacturing method as well as electrical switch
JP2003347014A (en) Heating element, heating substrate, method of manufacturing heating substrate, microswitch and flow sensor
JPH09218208A (en) Method for taking out electrode and cantilever for atomic force microscope using the electrode-taking method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110