JP2004119087A - Organic electroluminescent panel - Google Patents

Organic electroluminescent panel Download PDF

Info

Publication number
JP2004119087A
JP2004119087A JP2002278350A JP2002278350A JP2004119087A JP 2004119087 A JP2004119087 A JP 2004119087A JP 2002278350 A JP2002278350 A JP 2002278350A JP 2002278350 A JP2002278350 A JP 2002278350A JP 2004119087 A JP2004119087 A JP 2004119087A
Authority
JP
Japan
Prior art keywords
electrode
organic
transparent substrate
metal
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002278350A
Other languages
Japanese (ja)
Inventor
Shigemi Suzuki
鈴木 成己
Isamu Kawada
川田 勇
Kazuo Suzuki
鈴木 一雄
Munetoshi Yoshikawa
吉川 宗利
Junichi Takahashi
高橋 純一
Tomomi Shimokawa
下川 知美
Tomoshi Takaoka
高岡 智志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2002278350A priority Critical patent/JP2004119087A/en
Publication of JP2004119087A publication Critical patent/JP2004119087A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration of element due to invasion of water after delivery of the panel, which is caused by remaining of uncured portion of the ultraviolet-curing resin that adheres the transparent substrate and the metal sealed container, in the organic electroluminescent panel in which the organic electroluminescent element formed on the transparent substrate is sealed by a metal sealed container. <P>SOLUTION: Remaining of the uncured portion is prevented by sufficiently irradiating ultraviolet rays on the adhesive 10 too in the region shaded by the drawing-out electrodes 6, 7 made of metal by applying surface finishing so that reflectivity of the adhered face of the metal sealed container 9 to the ultraviolet rays may be 50% or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フラットディスプレイに用いられる有機エレクトロルミネッセンス(EL)パネルに関するものである。
【0002】
【従来の技術】
有機EL素子は、有機化合物からなる発光層を陽極と陰極で挟んだ積層構造体を基本構造とする自発光性の素子であり、該素子をマトリクス配置した有機ELパネルは、高輝度、広視野角で応答スピードが速いといった利点を有している。そのため、有機ELパネルはLCD(液晶ディスプレイ)に代わるディスプレイパネルとして、近年非常に注目を集め、大画面で高精細、且つ低消費電力であるものが求められている。
【0003】
有機EL素子の電極は、少なくとも一方がITO(インジウム・チン・オキサイド)などの透明導電材で形成される。この透明導電材は、金属に比して抵抗値が非常に大きく、特に単純マトリクス構成のパネルにおいて、抵抗による電圧降下がパネルの大画面化、高精細化、低消費電力化の妨げとなっている。そのため、パネルを構成する有機EL素子から外部回路への取り出し電極に金属を用い、配線抵抗を低減する方法が採られている。
【0004】
一方、有機EL素子は、発光層が有機材料で構成されているため、水分による影響を受けやすく、素子を密封する封止構造が不可欠である。具体的には、水分は有機材料の劣化や発光層と電極の剥離、ダークスポットと呼ばれる非発光部の発生・増大を引き起こし、長期間の発光性能の維持を困難にする。これに対して、金属の封止容器を有機EL素子の形成された透明基材に接着する方法がしばしば用いられる。封止容器の内部には、乾燥状態を保持するために通常吸湿剤などの乾燥手段が配置される。また、別の方法として、積層体の上に保護膜を形成する方法もあるが、保護膜の応力が有機EL素子に加わることは避けられず、また、信頼性の高い保護膜を形成するためには複雑な工程が必要となる。特に、コストが重視される単純マトリクス構成のパネルにおいては、成形が容易で安価な金属封止容器が有利である。
【0005】
金属封止容器と透明基材の接着には、紫外線硬化型の樹脂が接着剤として好ましく用いられている。これは、有機材料からなる有機EL素子の耐熱性や作業性の点から熱硬化型の樹脂が使用しにくいためである。
【0006】
【発明が解決しようとする課題】
金属の取り出し電極が形成された透明基材と金属封止容器とを、紫外線硬化型の樹脂で接着する場合、取り出し電極と金属封止容器の接着面とに挟持された領域には直接紫外線が照射されない。これに対して、紫外線の照射時間を延長し、金属電極の隙間から入射する光の回折や散乱による回り込みを利用して当該領域の接着剤を硬化させる方法がとられている。しかしながら、この方法では、当該領域の中央部に未硬化の部分が残りやすい。特に、取り出し電極の幅が光の回り込み限界を超える場合には、完全な硬化は不可能である。
【0007】
接着剤に未硬化部分が存在すると、温度変化や衝撃によってその部分に微小な剥離が生じやすくなる。この剥離は、取り出し電極と金属封止容器の接着面との間で発生するため、製造中に発生したとしても発見しづらい。また、この微小な剥離により、金属封止容器内への水分侵入量が増加するが、内部に乾燥手段を配置していることもあり、急激に有機EL素子を破壊するレベルには至らず、パネル出荷後に不良が発見されるため、パネルの信頼性を損なう恐れがある。
【0008】
本発明の課題は、上記問題点に鑑み、金属封止容器と透明基材とを接着する接着剤に未硬化部分を残すことなく完全な封止を行い、外部からの水分の侵入による素子の劣化を防止して、信頼性の高い有機ELパネルを提供することにある。
【0009】
【課題を解決するための手段】
本発明は、透明基材と、
上記透明基材上に、光透過性を有する第1電極と、有機化合物からなる発光層を少なくとも有する有機層と、第2電極とを順次積層してなる積層構造体と、
上記積層構造体を内包して上記透明基材に接着された金属封止容器と、
上記第1電極及び第2電極に接続し、透明基材上に形成されて金属封止容器外に引き出された取り出し電極と、
を有する有機エレクトルミネッセンスパネルにおいて、
上記金属封止容器と透明基材とが紫外線硬化型樹脂によって接着され、
取り出し電極が少なくとも金属で形成され、
金属封止容器の接着面の少なくとも取り出し電極を挟持した領域が紫外線に対して50%以上の反射率を有することを特徴とする有機エレクトロルミネッセンスパネルである。
【0010】
【発明の実施の形態】
本発明の有機ELパネルは、金属封止容器の接着面と取り出し電極で挟持される領域において、金属封止容器の接着面の紫外線反射率を50%以上とすることにより、取り出し電極の間から侵入した光が上記接着面において反射され、取り出し電極によって遮光されていた部分にも十分な光の照射が可能になり、接着剤に未硬化部分が残留することなく、良好な封止が実現できる。
【0011】
本発明によれば、幅が100μm以上の取り出し電極を用いることもでき、取り出し電極の配線抵抗を低下させることができる。
【0012】
以下に、実施形態を挙げて本発明を詳細に説明する。
【0013】
図1に本発明の有機ELパネルの基本構成を示す。図中、1は透明基材、2は有機EL素子の積層構造体で、透明基材1上に、光透過性を有する第1電極3と、有機化合物からなる発光層を少なくとも有する有機層4と、第2電極5とを積層してなる。6は第1電極3の取り出し電極、7は第2電極5の取り出し電極であり、8は乾燥手段、9は金属封止容器、10は紫外線硬化型の樹脂からなる接着剤である。尚、図1は概略図であるため、第2電極5が透明基材1に達するまで延長されて陽極3の端部に接しているが、実際には第1電極3と第2電極5は絶縁材によって絶縁されている。
【0014】
本発明において、透明基材1としては、ガラス基板が好ましく用いられる。また、積層構造体2としては、従来の有機EL素子と同じ構成を用いることができ、例えば、光透過性を有する第1電極3には、透明基材1上にスパッタ法で形成されたITO等を用いることができる。また、有機層4の構成としては、少なくとも発光層を有していれば良く、発光層は例えばアルミキノリノール錯体(Alq3)などを用い、蒸着等で形成することができる。また、有機層4には、発光層以外に、トリフェニルジアミン(TPD)などをスピンコート等で成膜してなる正孔輸送層などが好ましく含まれ、その他に電子輸送層や正孔注入層、電子注入層など、従来の有機EL素子の有機層を構成していた層を適宜加えることができる。さらに、第2電極5には、真空蒸着で成膜されたAl膜などを用いることができる。
【0015】
第1電極3、第2電極5にはそれぞれ取り出し電極6、7が接続され、該取り出し電極6、7は透明基材1上に形成され、金属封止容器9外へ引き出されている。取り出し電極6、7は、少なくとも金属からなり、例えばAlなどで形成されている。また、取り出し電極6、7はITOなどの透明導電層と金属層との積層体であっても良い。取り出し電極6、7は透明基材1やITOで構成した場合の第1電極3との密着性を向上するために、TiやMoなどの下地層を透明基材1上に形成した上に金属層を積層しても良い。
【0016】
金属封止容器9には、厚さ0.2〜0.5mm程度のステンレス材が好ましく用いられ、プレス成形などで接着面及び乾燥手段8の保持部分が形成される。本発明においては、金属封止容器9の接着面は、研磨等によって紫外線に対する反射率が50%以上になるように表面仕上げされている。尚、紫外線に対する反射率が50%以上の領域は、少なくとも取り出し電極6、7を挟持する領域であれば良いが、より多くの紫外線を当該領域内に回り込ませるため、取り出し電極6、7に対応する領域の周辺部も同様の反射率に仕上げることが好ましい。この表面仕上げは、成形後に行う以外に、予め鏡面仕上げ材等を用いてプレス成形を行っても良い。
【0017】
金属封止容器9内に配置される乾燥手段8は、一般に用いられるシート状または粉末状の吸湿剤を使用することができるが、吸着した水分を放出しにくい化学吸着するものが好ましい。例えば、アルカリ金属酸化物、アルカリ土類金属酸化物などが挙げられる。また、粉末状の吸湿剤を用いる場合、透湿性を有するフィルムなどを用いて金属封止容器9に固定するのが好ましい。
【0018】
透明基材1と金属封止容器9の接着に用いられる接着剤10としては、紫外線硬化型の樹脂が用いられ、具体的には、紫外線硬化型のエポキシ樹脂を用いることができる。ここで用いられるエポキシ樹脂は、透湿度を低く設計したものが好ましく、近年では有機ELパネル用途に開発されたものも市場に出回っている。
【0019】
このようなエポキシ樹脂の硬化条件としては、紫外線照度が100〜400mW/cm程度が適当であり、これより弱いと重合反応が不十分で樹脂の強度が低下し、逆に強い場合には樹脂の劣化や凝集力過多による界面結合力の低下が生じ、十分な接着強度が得られない。また、適正な紫外線照射量は4〜6J/cm程度であり、照度と同様に照射量不足では未硬化部分が残り、過剰では劣化や界面結合力の低下が起こる。この過剰照射量の限度は適正量の3倍程度であり、これを超えると接着界面への水分の侵入などによる剥離が生じやすくなる。また、取り出し電極6、7によって紫外線が遮られる領域への紫外線の回り込みによる硬化は、30〜50μmが限度といわれ、従来の構成では取り出し電極6、7の幅がそれの倍の100μm以上となると、樹脂の完全な硬化は不可能であった。
【0020】
本発明では、図2に示すように、金属封止容器9の接着面での反射を利用し、100μm以上の電極幅であっても、中央部まで紫外線を誘導して未硬化部分の残留を防ぐことができる。一定時間の紫外線照射を行った場合、過剰な紫外線照射量を適正値の3倍以内にするには、取り出し電極6、7の中央付近に到達する紫外線の照度が、取り出し電極6、7以外の領域に照射される紫外線照度の1/3以上になっている必要がある。紫外線強度の適正値範囲は、最低値に対して3倍以上であり、よって、取り出し電極6、7中央部と取り出し電極6、7以外の領域のいずれにおいても上記適正値範囲内で紫外線を照射することが可能である。
【0021】
接着剤10の紫外線透過率は、通常、樹脂の硬化に使用される波長365nmの紫外線に対して厚み30μmで80%程度である。隣接する取り出し電極6、7間に入射した紫外線が樹脂を透過して金属封止容器9の接着面で反射し、再び樹脂を透過して取り出し電極6、7の裏側(接着剤10側)に到達する経路を考えると、到達する紫外線の強度は、入射光強度と樹脂の透過率の二乗、接着面の反射率の積で表される。取り出し電極6、7の裏側で入射光強度の1/3を得るには、接着面に50%以上の反射率が要求される。実際には、この様な単純な経路だけではなく、拡散や接着面での散乱などによる複雑な経路が存在するが、接着面が50%以上の反射率を有していれば、本発明の効果を得るには十分である。
【0022】
【実施例】
(実施例1)
ガラス基板上に、第1電極として厚さ150μmのITO、正孔輸送層として厚さ20nmのTPD、発光層として厚さ40nmのAlq3、第2電極として厚さ100nmのAlをそれぞれ順次積層し、積層構造体を形成した。取り出し電極には、厚さ150nmのITOに厚さ100nmのAl膜を成膜した積層体を用いた。取り出し電極のパターンは幅120μm、間隔120μmである。金属封止容器には♯800番の表面仕上げを施した厚さ0.4mmのステンレス材SUS304を用い、プレス加工により接着面と吸湿剤の保持部を形成した。形成後の接着面の波長365nm光に対する反射率は55〜60%の範囲であった。接着面にはUV/O洗浄器により前処理を施した後、紫外線硬化型のエポキシ樹脂を用いて接着した。樹脂の硬化は、高圧水銀ランプを配列した紫外線照射装置で行い、樹脂に入射する紫外線の照度は約300mW/cmであった。照射時間60秒の時点で、取り出し電極間での照射量は18J/cm、取り出し電極の裏側では照度が100mW/cm以上であり、照射量は6J/cm以上であった。
【0023】
上記条件で封止した有機ELパネルを、80℃、90%RHの高温高湿条件下で300時間の耐久試験を行った。ここで、封止性能の確認を行うため、通常では設置する吸湿剤を用いずに、有機ELパネル内に水分が侵入した場合には、有機EL素子が湿度に曝される状態にした。耐久試験後の発光部の顕微鏡観察において、試験前と比較してダークスポットの増大など目立った劣化は観察されなかった。また、金属封止容器の剥離試験を行ったところ、接着面のほぼ全面が凝集破壊し、取り出し電極の裏側の界面接着力が十分得られていることを確認した。
【0024】
(比較例1)
金属封止容器の表面仕上げを♯400番とし、接着面の紫外線に対する反射率を20%とした以外は実施例1と同様にして有機ELパネルを封止し、耐久試験を行った。その結果、試験後の発光部の顕微鏡観察においては、試験前に比較してダークスポットの明らかな増大が観察された。また、剥離試験では、取り出し電極裏側で多くの界面剥離が生じ、紫外線照射量不足により未硬化部分が残留した界面付近が水分の侵入口になったと推測される。
【0025】
(比較例2)
比較例1で用いた金属封止容器を用い、取り出し電極の幅を80μm、間隔を160μmとした以外は、実施例1と同様にして有機ELパネルを封止し、耐久試験を行った。その結果、試験後の発光部の顕微鏡観察においては、試験前に比較して目立った劣化は観察されなかった。
【0026】
(実施例2、比較例3)
取り出し電極の幅を80μm、間隔を160μmとして、♯800番(実施例2)と♯400番(比較例3)の表面仕上げを施した金属封止容器を用い、紫外線の照射時間を実施例1の半分にして有機ELパネルを封止し、耐久試験を行った。その結果、比較例3では発光部にダークスポットの増大が観察されたのに対して、実施例2では目立った劣化は観察されなかった。紫外線の回り込みが可能な幅の取り出し電極においても、接着剤の硬化に要する時間を大幅に削減できるという効果が得られた。
【0027】
【発明の効果】
以上説明したように、本発明によれば、取り出し電極の幅が広い場合であっても、接着剤の未硬化部分の残留による剥離が無く、密封性の高い有機ELパネルが得られる。よって、本発明によれば、経時的な水分の侵入による有機EL素子の劣化が大幅に抑制され、信頼性の高い有機ELパネルが提供される。
【図面の簡単な説明】
【図1】本発明の有機ELパネルの基本構成を示す断面模式図である。
【図2】本発明の有機ELパネルの透明基材と金属封止容器との接着部分の一部を拡大した断面模式図である。
【符号の説明】
1 透明基材
2 積層構造体
3 第1電極
4 有機層
5 第2電極
6、7 取り出し電極
8 乾燥手段
9 金属封止容器
10 接着剤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic electroluminescence (EL) panel used for a flat display.
[0002]
[Prior art]
The organic EL element is a self-luminous element having a basic structure of a laminated structure in which a light emitting layer made of an organic compound is sandwiched between an anode and a cathode. An organic EL panel in which the elements are arranged in a matrix has a high luminance and a wide field of view. It has the advantage that the response speed is fast at the corner. Therefore, the organic EL panel has attracted much attention in recent years as a display panel replacing the LCD (liquid crystal display), and a panel having a large screen, high definition, and low power consumption has been demanded.
[0003]
At least one of the electrodes of the organic EL element is formed of a transparent conductive material such as ITO (indium tin oxide). This transparent conductive material has a very large resistance value as compared with a metal, and particularly in a panel having a simple matrix configuration, a voltage drop due to resistance hinders a larger screen, higher definition, and lower power consumption of the panel. I have. For this reason, a method has been adopted in which a metal is used as an extraction electrode from an organic EL element constituting a panel to an external circuit to reduce wiring resistance.
[0004]
On the other hand, since the light emitting layer is made of an organic material, the organic EL element is easily affected by moisture, and a sealing structure for sealing the element is indispensable. Specifically, moisture causes deterioration of the organic material, separation of the light-emitting layer and the electrode, and generation and increase of a non-light-emitting portion called a dark spot, making it difficult to maintain long-term light-emitting performance. On the other hand, a method of bonding a metal sealing container to a transparent substrate on which an organic EL element is formed is often used. Inside the sealed container, a drying means such as a hygroscopic agent is usually arranged in order to maintain a dry state. Further, as another method, there is a method of forming a protective film on the laminate, but it is inevitable that stress of the protective film is applied to the organic EL element, and to form a highly reliable protective film. Requires a complicated process. In particular, in the case of a panel having a simple matrix configuration in which cost is important, a metal sealed container which is easy to form and is inexpensive is advantageous.
[0005]
For adhesion between the metal sealing container and the transparent substrate, an ultraviolet-curable resin is preferably used as an adhesive. This is because it is difficult to use a thermosetting resin in terms of heat resistance and workability of an organic EL element made of an organic material.
[0006]
[Problems to be solved by the invention]
When the transparent substrate on which the metal extraction electrode is formed and the metal sealing container are bonded with an ultraviolet-curing resin, ultraviolet light is directly applied to a region sandwiched between the extraction electrode and the bonding surface of the metal sealing container. Not irradiated. On the other hand, a method has been adopted in which the irradiation time of ultraviolet rays is extended, and the adhesive in the area is hardened by utilizing the wraparound due to the diffraction and scattering of light incident from the gap between the metal electrodes. However, in this method, an uncured portion tends to remain at the center of the region. In particular, when the width of the extraction electrode exceeds the light wrap limit, complete curing is impossible.
[0007]
If an uncured portion exists in the adhesive, minute peeling is likely to occur in that portion due to a temperature change or impact. Since this peeling occurs between the take-out electrode and the bonding surface of the metal sealing container, it is difficult to detect even if it occurs during manufacturing. Also, due to this minute peeling, the amount of water entering into the metal sealing container increases, but there is also a drying means arranged inside, so that the organic EL element is not rapidly destroyed. Since defects are found after the panel is shipped, the reliability of the panel may be impaired.
[0008]
The present invention has been made in view of the above problems, and performs complete sealing without leaving an uncured portion in an adhesive for bonding a metal sealing container and a transparent substrate. An object of the present invention is to provide a highly reliable organic EL panel by preventing deterioration.
[0009]
[Means for Solving the Problems]
The present invention, a transparent substrate,
On the transparent substrate, a first electrode having a light-transmitting property, an organic layer having at least a light-emitting layer made of an organic compound, and a laminated structure obtained by sequentially laminating a second electrode,
A metal sealed container including the laminated structure and bonded to the transparent substrate,
An extraction electrode connected to the first electrode and the second electrode, formed on a transparent substrate, and drawn out of the metal sealing container;
In an organic electroluminescence panel having
The metal sealing container and the transparent substrate are bonded by an ultraviolet-curable resin,
The extraction electrode is formed of at least a metal,
An organic electroluminescent panel characterized in that at least a region of the bonding surface of the metal sealing container sandwiching the extraction electrode has a reflectance of 50% or more with respect to ultraviolet rays.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the organic EL panel of the present invention, by setting the ultraviolet reflectance of the bonding surface of the metal sealing container to 50% or more in the region sandwiched between the bonding surface of the metal sealing container and the extraction electrode, the organic EL panel can be disposed between the extraction electrodes. The penetrated light is reflected on the bonding surface, and sufficient light can be applied to the part shielded by the extraction electrode, and good sealing can be realized without leaving uncured part in the adhesive. .
[0011]
According to the present invention, an extraction electrode having a width of 100 μm or more can be used, and the wiring resistance of the extraction electrode can be reduced.
[0012]
Hereinafter, the present invention will be described in detail with reference to embodiments.
[0013]
FIG. 1 shows a basic configuration of the organic EL panel of the present invention. In the figure, 1 is a transparent substrate, 2 is a laminated structure of an organic EL element, and a first electrode 3 having a light transmitting property and an organic layer 4 having at least a light emitting layer made of an organic compound on the transparent substrate 1. And the second electrode 5 are laminated. Reference numeral 6 denotes an extraction electrode of the first electrode 3, reference numeral 7 denotes an extraction electrode of the second electrode 5, reference numeral 8 denotes a drying means, reference numeral 9 denotes a metal sealing container, and reference numeral 10 denotes an adhesive made of an ultraviolet curing resin. In addition, since FIG. 1 is a schematic diagram, the second electrode 5 is extended to reach the transparent substrate 1 and is in contact with the end of the anode 3. However, actually, the first electrode 3 and the second electrode 5 are Insulated by insulating material.
[0014]
In the present invention, a glass substrate is preferably used as the transparent substrate 1. The same structure as that of a conventional organic EL element can be used as the laminated structure 2. For example, an ITO formed on the transparent substrate 1 by sputtering is used for the first electrode 3 having light transmittance. Etc. can be used. The organic layer 4 only needs to have at least a light-emitting layer, and the light-emitting layer can be formed by vapor deposition using, for example, an aluminum quinolinol complex (Alq3). In addition to the light emitting layer, the organic layer 4 preferably includes a hole transport layer formed by spin-coating triphenyldiamine (TPD) or the like. In addition, an electron transport layer or a hole injection layer Layers that constitute an organic layer of a conventional organic EL element, such as an electron injection layer, can be added as appropriate. Further, as the second electrode 5, an Al film formed by vacuum evaporation can be used.
[0015]
The extraction electrodes 6 and 7 are connected to the first electrode 3 and the second electrode 5, respectively. The extraction electrodes 6 and 7 are formed on the transparent substrate 1 and are drawn out of the metal sealing container 9. The extraction electrodes 6 and 7 are made of at least a metal and are formed of, for example, Al. Further, the extraction electrodes 6 and 7 may be a laminate of a transparent conductive layer such as ITO and a metal layer. The extraction electrodes 6 and 7 are formed by forming a base layer such as Ti or Mo on the transparent substrate 1 and then forming a metal layer on the transparent substrate 1 in order to improve the adhesiveness with the transparent substrate 1 or the first electrode 3 when the electrode is made of ITO. Layers may be stacked.
[0016]
A stainless material having a thickness of about 0.2 to 0.5 mm is preferably used for the metal sealing container 9, and an adhesive surface and a holding portion of the drying unit 8 are formed by press molding or the like. In the present invention, the bonding surface of the metal sealing container 9 is surface-finished by polishing or the like so that the reflectance to ultraviolet rays becomes 50% or more. The region having a reflectance of 50% or more with respect to the ultraviolet rays may be at least a region sandwiching the extraction electrodes 6 and 7. However, in order to allow more ultraviolet light to enter the region, the regions corresponding to the extraction electrodes 6 and 7 are required. It is preferable that the peripheral portion of the region to be finished be finished to have the same reflectance. This surface finishing may be performed in advance by pressing using a mirror-finished material or the like, instead of being performed after molding.
[0017]
As the drying means 8 disposed in the metal sealing container 9, a commonly used sheet-like or powdery hygroscopic agent can be used, but it is preferable to use a chemisorbing device which hardly releases the adsorbed moisture. For example, an alkali metal oxide, an alkaline earth metal oxide and the like can be mentioned. When a powdery hygroscopic agent is used, it is preferable that the powdery hygroscopic agent is fixed to the metal sealing container 9 using a moisture-permeable film or the like.
[0018]
As the adhesive 10 used for bonding the transparent substrate 1 and the metal sealing container 9, an ultraviolet-curable resin is used, and specifically, an ultraviolet-curable epoxy resin can be used. The epoxy resin used here is preferably designed to have low moisture permeability, and in recent years, those developed for use in organic EL panels are also on the market.
[0019]
Suitable curing conditions for such an epoxy resin are an ultraviolet irradiance of about 100 to 400 mW / cm 2. If it is lower than this, the polymerization reaction is insufficient and the strength of the resin decreases. And a decrease in interfacial bonding force due to excessive cohesive force occurs, and sufficient adhesive strength cannot be obtained. Further, an appropriate amount of ultraviolet irradiation is about 4 to 6 J / cm 2. As with the illuminance, if the irradiation amount is insufficient, an uncured portion remains, and if it is excessive, deterioration and a decrease in interface bonding force occur. The limit of this excessive irradiation amount is about three times the proper amount, and if it exceeds this, peeling due to intrusion of moisture into the bonding interface or the like is likely to occur. Further, it is said that the hardening due to the wraparound of the ultraviolet rays to the region where the ultraviolet rays are blocked by the extraction electrodes 6 and 7 is limited to 30 to 50 μm. However, complete curing of the resin was not possible.
[0020]
In the present invention, as shown in FIG. 2, even if the electrode width is 100 μm or more, ultraviolet rays are guided to the central portion to reduce the residual uncured portion even if the electrode width is not less than 100 μm. Can be prevented. In the case where ultraviolet irradiation is performed for a certain period of time, the illuminance of the ultraviolet rays reaching the vicinity of the center of the extraction electrodes 6 and 7 must be adjusted so that the amount of excessive ultraviolet irradiation is within three times the appropriate value. It is necessary that the illuminance of the region is not less than 1/3 of the ultraviolet illuminance. The appropriate value range of the ultraviolet intensity is three times or more as large as the minimum value. Therefore, the ultraviolet rays are irradiated within the above-mentioned appropriate value range in any of the central portions of the extraction electrodes 6 and 7 and the regions other than the extraction electrodes 6 and 7. It is possible to do.
[0021]
The ultraviolet transmittance of the adhesive 10 is usually about 80% at a thickness of 30 μm with respect to ultraviolet rays having a wavelength of 365 nm used for curing the resin. Ultraviolet rays incident between the adjacent extraction electrodes 6 and 7 penetrate the resin, are reflected on the bonding surface of the metal sealing container 9, transmit the resin again, and are on the back side (adhesive 10 side) of the extraction electrodes 6 and 7. Considering the route of arrival, the intensity of the arriving ultraviolet light is represented by the product of the square of the incident light intensity, the transmittance of the resin, and the reflectance of the bonding surface. In order to obtain 1/3 of the incident light intensity on the back side of the extraction electrodes 6 and 7, the adhesive surface needs to have a reflectance of 50% or more. Actually, not only such a simple path, but also a complicated path due to diffusion or scattering at the bonding surface exists, but if the bonding surface has a reflectance of 50% or more, the present invention Enough to get the effect.
[0022]
【Example】
(Example 1)
On a glass substrate, ITO having a thickness of 150 μm as a first electrode, TPD having a thickness of 20 nm as a hole transport layer, Alq3 having a thickness of 40 nm as a light emitting layer, and Al having a thickness of 100 nm as a second electrode were sequentially laminated, respectively. A laminated structure was formed. As the extraction electrode, a laminate in which an Al film having a thickness of 100 nm was formed on ITO having a thickness of 150 nm was used. The pattern of the extraction electrode has a width of 120 μm and an interval of 120 μm. The metal sealing container was made of stainless steel SUS304 having a surface finish of # 800 and having a thickness of 0.4 mm, and the bonding surface and the holding portion for the moisture absorbent were formed by press working. The reflectance of the bonded surface after formation to light with a wavelength of 365 nm was in the range of 55 to 60%. After pre-treatment was performed on the bonding surface with a UV / O 3 washer, bonding was performed using an ultraviolet-curable epoxy resin. The curing of the resin was performed by an ultraviolet irradiation device in which a high-pressure mercury lamp was arranged, and the illuminance of the ultraviolet light incident on the resin was about 300 mW / cm 2 . At an irradiation time of 60 seconds, the irradiation amount between the extraction electrodes was 18 J / cm 2 , the illuminance on the back side of the extraction electrode was 100 mW / cm 2 or more, and the irradiation amount was 6 J / cm 2 or more.
[0023]
The organic EL panel sealed under the above conditions was subjected to a 300-hour durability test under high-temperature and high-humidity conditions of 80 ° C. and 90% RH. Here, in order to confirm the sealing performance, the organic EL element was exposed to humidity when moisture entered the organic EL panel without using a normally installed moisture absorbent. Microscopic observation of the light emitting portion after the durability test showed no noticeable deterioration such as an increase in dark spots as compared to before the test. In addition, a peel test of the metal-sealed container was performed, and it was confirmed that almost the entire bonding surface was cohesively fractured, and that the interfacial adhesive force on the back side of the extraction electrode was sufficiently obtained.
[0024]
(Comparative Example 1)
The organic EL panel was sealed in the same manner as in Example 1 except that the surface finish of the metal-sealed container was # 400 and the reflectance of the bonding surface to ultraviolet rays was 20%, and a durability test was performed. As a result, in the microscopic observation of the light emitting portion after the test, a clear increase in the dark spot was observed as compared with before the test. Further, in the peeling test, it is presumed that a large amount of interface peeling occurred on the back side of the take-out electrode, and the vicinity of the interface where the uncured portion remained due to the insufficient amount of ultraviolet irradiation became a water entry port.
[0025]
(Comparative Example 2)
An organic EL panel was sealed in the same manner as in Example 1 except that the width of the extraction electrode was set to 80 μm and the interval was set to 160 μm using the metal sealing container used in Comparative Example 1, and a durability test was performed. As a result, in the microscopic observation of the light emitting portion after the test, no noticeable deterioration was observed compared to before the test.
[0026]
(Example 2, Comparative Example 3)
The width of the extraction electrode was set to 80 μm, and the interval was set to 160 μm. , The organic EL panel was sealed, and a durability test was performed. As a result, in Comparative Example 3, an increase in dark spots was observed in the light emitting portion, whereas in Example 2, no noticeable deterioration was observed. The effect that the time required for curing the adhesive can be significantly reduced is obtained even with an extraction electrode having a width that allows ultraviolet light to pass around.
[0027]
【The invention's effect】
As described above, according to the present invention, even when the width of the extraction electrode is wide, an organic EL panel having high sealing properties without peeling due to the remaining uncured portion of the adhesive is obtained. Therefore, according to the present invention, the deterioration of the organic EL element due to the invasion of water over time is greatly suppressed, and a highly reliable organic EL panel is provided.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a basic configuration of an organic EL panel of the present invention.
FIG. 2 is a schematic cross-sectional view in which a part of an adhesive portion between a transparent substrate and a metal sealing container of the organic EL panel of the present invention is enlarged.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transparent base material 2 Laminated structure 3 1st electrode 4 Organic layer 5 2nd electrode 6, 7 Extraction electrode 8 Drying means 9 Metal sealing container 10 Adhesive

Claims (2)

透明基材と、
上記透明基材上に、光透過性を有する第1電極と、有機化合物からなる発光層を少なくとも有する有機層と、第2電極とを順次積層してなる積層構造体と、
上記積層構造体を内包して上記透明基材に接着された金属封止容器と、
上記第1電極及び第2電極に接続し、透明基材上に形成されて金属封止容器外に引き出された取り出し電極と、
を有する有機エレクトルミネッセンスパネルにおいて、
上記金属封止容器と透明基材とが紫外線硬化型樹脂によって接着され、
取り出し電極が少なくとも金属で形成され、
金属封止容器の接着面の少なくとも取り出し電極を挟持した領域が紫外線に対して50%以上の反射率を有することを特徴とする有機エレクトロルミネッセンスパネル。
A transparent substrate,
On the transparent substrate, a first electrode having a light-transmitting property, an organic layer having at least a light-emitting layer made of an organic compound, and a laminated structure obtained by sequentially laminating a second electrode,
A metal sealed container including the laminated structure and bonded to the transparent substrate,
An extraction electrode connected to the first electrode and the second electrode, formed on a transparent substrate, and drawn out of the metal sealing container;
In an organic electroluminescence panel having
The metal sealing container and the transparent substrate are bonded by an ultraviolet-curable resin,
The extraction electrode is formed of at least a metal,
An organic electroluminescent panel characterized in that at least a region of the adhesive surface of the metal sealing container sandwiching the extraction electrode has a reflectance of at least 50% with respect to ultraviolet rays.
上記取り出し電極の幅が100μm以上である請求項1に記載の有機エレクトロルミネッセンスパネル。The organic electroluminescent panel according to claim 1, wherein the width of the extraction electrode is 100 µm or more.
JP2002278350A 2002-09-25 2002-09-25 Organic electroluminescent panel Withdrawn JP2004119087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278350A JP2004119087A (en) 2002-09-25 2002-09-25 Organic electroluminescent panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278350A JP2004119087A (en) 2002-09-25 2002-09-25 Organic electroluminescent panel

Publications (1)

Publication Number Publication Date
JP2004119087A true JP2004119087A (en) 2004-04-15

Family

ID=32273642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278350A Withdrawn JP2004119087A (en) 2002-09-25 2002-09-25 Organic electroluminescent panel

Country Status (1)

Country Link
JP (1) JP2004119087A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610850B2 (en) 2010-04-05 2013-12-17 Samsung Display Co., Ltd. Display device
JP2014059246A (en) * 2012-09-19 2014-04-03 Toshiba Corp Radiation detector and method for manufacturing the same
JP2016181387A (en) * 2015-03-24 2016-10-13 古河電気工業株式会社 Electric wire with terminal, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610850B2 (en) 2010-04-05 2013-12-17 Samsung Display Co., Ltd. Display device
JP2014059246A (en) * 2012-09-19 2014-04-03 Toshiba Corp Radiation detector and method for manufacturing the same
JP2016181387A (en) * 2015-03-24 2016-10-13 古河電気工業株式会社 Electric wire with terminal, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5675924B2 (en) Organic optoelectronic device and method for encapsulating said device
CN102832352B (en) Plastic organic electroluminescent display device and manufacture method thereof
US6949825B1 (en) Laminates for encapsulating devices
KR100527191B1 (en) Organic electroluminescent display device using low resistance cathode
US6717052B2 (en) Housing structure with multiple sealing layers
US8557067B2 (en) Method for manufacturing organic electroluminescence panel
US9172057B2 (en) Encapsulation structure for an opto-electronic component
US20130240848A1 (en) Oled package and packaging method thereof
US8772818B2 (en) Radiation-emitting device and method for producing a radiation-emitting device
WO2003098580A1 (en) Display device and method of manufacturing the display device
JP2007536697A (en) Flexible electroluminescence device
JP2008103254A (en) Organic el device
KR100624131B1 (en) Organic light emitting display device
US20150162564A1 (en) Organic electroluminescence device
KR20140048275A (en) Encapsulation structure for an optoelectronic component and method for encapsulating an optoelectronic component
CN109346622A (en) OLED array and preparation method thereof
US20030197475A1 (en) Flat-panel display, manufacturing method thereof, and portable terminal
TW200423801A (en) Organic EL display panel and method of manufacturing the same
JP2013131339A (en) Organic light emitting device and manufacturing method of the same
JP2009277549A (en) Organic electroluminescent panel and defect detecting method of the same
JP2004119087A (en) Organic electroluminescent panel
JP2002050471A (en) Organic electroluminescence element and its manufacturing method
CN112310309B (en) Packaging cover plate of OLED display panel and packaging method of OLED display panel
KR101564629B1 (en) Organic electro-luminescence device
JP2008108545A (en) Sealing substrate, its manufacturing method and manufacturing method for electroluminescent element panel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110