JP2004117309A - Multi-color infrared imaging device - Google Patents

Multi-color infrared imaging device Download PDF

Info

Publication number
JP2004117309A
JP2004117309A JP2002284544A JP2002284544A JP2004117309A JP 2004117309 A JP2004117309 A JP 2004117309A JP 2002284544 A JP2002284544 A JP 2002284544A JP 2002284544 A JP2002284544 A JP 2002284544A JP 2004117309 A JP2004117309 A JP 2004117309A
Authority
JP
Japan
Prior art keywords
subject
infrared
infrared imaging
temperature
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002284544A
Other languages
Japanese (ja)
Inventor
Tetsuo Tamura
田村 哲雄
Toru Tabuchi
田渕 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP2002284544A priority Critical patent/JP2004117309A/en
Publication of JP2004117309A publication Critical patent/JP2004117309A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared imaging device allowing the determination of the qualities and conditions of materials for an object. <P>SOLUTION: An infrared emission energy Eλ from the object 1 is injected to a sensor 5 of a multi-color infrared imaging device 6 via an optical filter 4 having a plurality of wavelength spectrum ranges. A computing means 14 finds a true temperature T<SB>0</SB>and a background temperature Ta of the object 1 in accordance with emissivity values for the plurality of materials previously stored in a storage means 13. The qualities and conditions of the plurality of materials are determined via the computing means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は多色温度計を用いて被写体の真温度の計測が可能な多色赤外線撮像装置に係わり、特に被写体物質の材質やその状態を判別可能な多色赤外線撮像装置に関する。
【0002】
【従来の技術】
従来から使用されている、赤外線撮像装置(サーモグラフィ装置)21の基本的構成は放射温度計に走査機能を付加したもので、一般的には図4に示す如く被写体1を光学系25を介して所定の視野22内で撮像すると共に1次或は2次元のセンサ(HgcdTe,PtSi,InSb等)5に供給し、被写体1からの放射エネルギーを検出して信号増幅器11等で増幅する検出部19と制御部を構成するCPU(マイクロコンピュータ)等の演算手段14並びに被写体1の温度状態を色表示する為のディスプレイ16等で構成されている。
【0003】
また、従来から被写体1で計測した放射エネルギーを2波長の光学通過濾波器(BPF)を介してセンサ5に取り込み、数1に示す様に指数nを近似的に設定し、この式から背景放射率の影響を除去して被写体1の真温度T0 の関数F(T0 )を導き出す方法が使用されている。
【0004】
【数1】

Figure 2004117309
ここで
0 :被写体温度
Ta:背景温度
ε0 :放射率
n:1次近似した指数定数
である。
【0005】
上式の演算は近似による温度値の合せ込みのため広い範囲の温度を測定する場合、精度を要求する場合は問題が残る。
【0006】
更に、近赤外線の3波長で同視野を同時に観測できる広視野用のサーベイ観測用多色同時赤外線カメラ「SIRIUS」(Simultaneous−color Infrared Imagerfor Unbiased Survey)として検出器に1024×1024素子のHgcdTe赤外アレイを3個装備させ、波長1.25μm、1.65μm、2.1μmで視野同時撮像する赤外線カメラ(非特許文献1参照)が開示されている。
【0007】
【非特許文献1】
長嶋千恵 外15名 サーベイ 観測用多色同時赤外線カメラSIRIUS
平成14年9月26日 インターネット<http//optik2.mtk.nao.ac.jp/`hide/s−poster98024.pdf>
【0008】
【発明が解決しようとする課題】
上述の従来の赤外線撮像装置では検出部19の光学系25に被写体1から入射した赤外線量の大小を単純に温度値に変換しているので被写体1の放射率が異なると、真温度が検出されない課題を有していた。
また、被写体1の放射率が解っていたとしても、天空等から放射された赤外光が被写体表面で反射した外乱要因を含む赤外線が赤外線撮像装置内に入射するため、これら外乱要因を含んだ赤外線量での演算処理によって間違った温度値を検出してしまう課題を有していた。
【0009】
更に、非特許文献1に開示された多色用同時赤外線カメラでは光学系にビームスプリッタを用いて3個のセンサに同視野を同時に入射させる様にしているため装置が大型化し、センサ数も多くなって汎用の赤外線撮像装置には向かない課題を有している。
【0010】
本発明は叙上の課題を解消するために成されたもので、本発明が解決しようとする課題は放射率の異なる被写体の放射率及び真温度を測定し、被写体物質の材質やその状態が検出可能な赤外線撮像装置を得る様に成したものである。
【0011】
【課題を解決するための手段】
第1の本発明は被写体1の放射エネルギーを測定して、被写体1の温度計測を行なう多色赤外線撮像装置6に於いて、被写体1と赤外線撮像装置6の検出器5間に被写体1からの複数の赤外線波長範囲を切換え検出器1に入射させる光学帯域通過濾波手段4と、赤外線の複数波長範囲内で被写体1の複数物質或はその状態の放射率値を格納した記憶手段15と、複数の赤外線波長範囲内の被写体1の赤外線量を測定し、記憶手段15に格納した複数物質或は状態の放射率値を基に被写体1の温度及び背景2の温度を演算する演算手段14とを有し、この演算手段14で求めた被写体1の温度から被写体1の物質或はその状態を判別する様に成したことを特徴とする多色赤外線撮像装置としたものである。
【0012】
第2の本発明は複数の赤外線波長範囲が第1乃至第3の赤外線波長範囲である様に成したものである。
第3の本発明は被写体の複数の物質或はその状態はコンクリート、ガラス等の異なる物質或は、水、氷の如き物体の変化状態を示す様に成したものである。
【0013】
斯かる、本発明の多色赤外線撮像装置に依れば複数の物質の材質やその変化状態を判別可能なものが得られる。
【0014】
【発明の実施の形態】
以下、本発明の多色赤外線撮像装置の1形態例を図1乃至図3を用いて説明する。尚、図4との対応部分には同一符号を付して重複説明を省略する。
【0015】
図1は本発明の撮像装置に入射するエネルギーを説明するための説明図、図2は本発明の多色赤外線撮像装置の1形態例を示すブロック図、図3は本発明の多色赤外線撮像装置のフローチャートである。
【0016】
図1は一般的な測定環境における赤外線放射状態を示すもので被写体1の表面温度をT0 、被写体1の波長領域λでの放射率をε、大気等の反射による放射源2の背景温度をTa、fを波長領域λの黒体に対する黒体放射エネルギーとする。ここで物体の温度と赤外線放射の関係は一般にプランク(Planck) の法則で数2で与えられる。
【数2】
Mλ=C1 /λ5 〔exp(C2 /λT )−1〕−1・・・(4)
ここで
Mλ:分光放射発散度(w,cm−2  μm−1
λ:波長(μm)
T:絶対温度(K)
1 2 :定数
である。
【0017】
この(4)式は放射率が1の黒体に対して成り立ち、黒体から放射される全放射エネルギーMは数3のステファン−ボルツマン(Stefan−Boltzmann)法則である絶対温度Tの4乗に比例する。
【0018】
【数3】
M=σT4 〔w,cm−2〕・・・(5)
σ:Stefan−Boltzmann定数
この法則から被写体1から放射される放射エネルギーの強度即ち、赤外線量を測定することで被写体の温度を検出することになる。
【0019】
図1に示す本発明の多色赤外線撮像装置6は被写体1からの出射エネルギーελ・f(T0 ・λ)と、放射源の大気2等の外乱要因で生ずる被写体1から生ずる放射エネルギー(1−ελ)・f(Ta)の和、即ち数4の赤外線量が入射エネルギーをEλとして光学通過濾波手段(BPF)4を介して赤外撮像装置6のセンサ5に入射される様に成されている。
【0020】
【数4】
Figure 2004117309
【0021】
本発明に用いる光学的BPF4は少なくとも第1乃至第3の波長範囲λ1 ,λ2 ,λ3 の帯域のみを通過可能に選択し、これら第1〜第3の波長範囲λ1 〜λ3 を択一的に選択可能と成されている。
【0022】
以下、図2を用いて本発明の多色赤外線撮像装置の構成を3波長の3色温度計を用いた構成として説明する。
【0023】
図2に於いて、被写体1からの入射エネルギーEλは窓材18から入射した赤外光を垂直駆動ミラー8及び水平駆動ミラー9で被写体1の像を水平及び垂直走査し、対物レンズ10で集光した光軸上に光学通過濾波手段(BPF)4を配設する。
【0024】
この光学的BPF4に用いる波長帯域は被写体1の種類に応じて選択される。例えば、建物のガラスの様な物質をセンサとしてInSb等を用いて検出する場合は4.8〜5.2μmのBPFが用いられ、被写体がタイル、コンクリート等の反射率の低い、且つ放射率の高い温度測定時等では5〜8μmの波長範囲等が選択される。
【0025】
また、本例では光学的BPF4として2枚のフィルター1及びフィルター2を切換えることが出来る構成とし、フィルターなしと2種類のフィルター1及びフィルター2とで合計3通りの赤外線波長範囲λ1 ,λ2 ,λ3 を切換えることが出来る様に構成している。これにより1台で3波長の計測が可能であり、センサ5の個体差を除くことが出来る。
【0026】
光学的BPF4を通過した赤外線エネルギーEλは1つのHgcdTe等のセンサ5に入射された後に信号増幅器11で増幅後にアナログ−デジタル変換器(A/D)12でデジタルデータに変換された後に、マイクロコンピュータ(CPU)等の演算手段14に供給されて記憶手段(メモリ)13に格納した物質毎の放射率を基に所定の後述する演算を行なって、真温度の演算が行なわれ、ディスプレイ16やレコーダ17に温度データが出力されて、表示や印刷が行なわれる。尚、15はPCU14を介してメモリ13に放射率値等を入力するための操作部である。
【0027】
上述の多色赤外線撮像装置6では記憶手段13内に入力手段15を介して予め3種類の所定波長範囲での対象物質及びその状態の放射率ελを記憶させておき、演算手段を利用して真温度の演算が行なわれる。以下、本発明の動作を図3を用いて説明する。
【0028】
図3は演算手段14で真温度演算を行なって被写体1の物質の材質やその状態を正確に判定して、把握を行なうためのフローチャートを示すものである。
【0029】
図3に於いて、第1ステップS1 では第1波長範囲(λ1 )の第1物質(A)或はその状態の放射率値ε1 λを測定(又はサーチ)して入力手段15とCPU14を介してメモリ13に書き込む。
【0030】
第2ステップS2 では第1の波長範囲(λ1 )の第2の物質(B)或はその状態の放射率値ε2 λを測定(又はサーチ)して入力手段15とCPU14を介してメモリ13に書き込む。
【0031】
第3ステップS3 では第1の波長範囲(λ1 )の第3の物質(C)或はその状態の放射率値ε3 λを測定(又はサーチ)して入力手段15とCPU14を介してメモリ13に書き込む。
【0032】
第4ステップS4 乃至第6ステップS6 では第2波長範囲の第1物質乃至第3物質(A),(B),(C)或はその状態の放射率値ε1 ,ε2 ,ε3 を測定(又はサーチ)して入力手段15とCPU14を介してメモリ13に書き込む。
【0033】
同様に第7ステップS7 乃至第9ステップS9 では第3波長範囲の第1物質乃至第3物質(A),(B),(C)或はその状態の放射率値ε1 ,ε2 ,ε3 を測定(又はサーチ)して入力手段15とCPU14を介してメモリ13に書き込む。
【0034】
上記第1ステップS1 乃至第9ステップS9 によってメモリ13内には第1乃至第3の波長範囲λ1 〜λ3 の範囲内に第1物質A、第2物質B、第3物質C或はこれらの変化状態をを表す、例えば水、氷等の状態での放射率ε1 ,ε2 ,ε3 が下記の様に格納される。
【0035】
ε1 (λ1 ),ε1 (λ2 ),ε1 (λ3 )‥‥(A)第1物質
ε2 (λ1 ),ε2 (λ2 ),ε2 (λ3 )‥‥(B)第2物質
ε3 (λ1 ),ε3 (λ2 ),ε3 (λ3 )‥‥(C)第3物質
【0036】
次に第10ステップS10に示す様に第1乃至第3の波長範囲の第1乃至第3物質A,B,Cより成る被測定体1の赤外線量Eλn=Eλ1 ,Eλ2 ,Eλ3 を光学BPF4を順次切換えて測定する。
【0037】
この測定により式(1)より数5式を得る。
【0038】
【数5】
Eλ1 =ελ1 ・f(T0 ・λ1 )+(1−ελ1 )f(Ta)‥‥(7)
Eλ2 =ελ2 ・f(T0 ・λ2 )+(1−ελ2 )f(Ta)‥‥(8)
Eλ3 =ελ3 ・f(T0 ・λ3 )+(1−ελ3 )f(Ta)‥‥(9)
ここで予めメモリ13に記憶させた第1物質A或はその状態での放射率値εn=ε1 ,ε2 ,ε3 ‥‥をCPU14は第11ステップS11の様に(7)〜(9)式に代入演算することで被写体温度T0 と背景温度Taが未値数値となる。
【0039】
第12ステップS12では第1物質A或はその状態を代入した時の被写体温度T0 及び背景温度Taは上式(7),(8)の減算から(10)式を得る。
【0040】
同様に第1物質A或はその状態を代入した時の被写体温度T0 及び背景温度Taは上式(7),(9)の減算から(11)式を得る。
【0041】
次の第12ステップS12では第11ステップS11で求めた(10)及び(11)式から夫々の被写体温度T0 の差を求めてΔT0 (A)を求める。
【0042】
上述の第11ステップS11及び第12ステップS12に於いて第1物質Aと同様で第2物質B及び第3物質C或はその状態についての放射率(B)のΔT0 (B)及びΔT0 (C)について演算することで第1乃至第3物質A乃至CのΔT0 (A),ΔT0 (B),ΔT0 (C)を求める。
【0043】
第13ステップS13ではΔT0 (A),ΔT0 (B),ΔT0 (C)の値(誤差)が最も小さなものに相当する放射率A,B,Cかを判断し、これらΔT0 (A),ΔT0 (B),ΔT0 (C)が最小の値のものが第14ステップS14に示す様に所定の被写体1の所定の物質A,B,C或はその状態であると判別を行なってエンドに至る。
【0044】
上述の様に被写体1の材質やその状態を定める場合、被写体1内の放射率が似通っている場合は放射率の違いで判別することが困難となる。然し、温度が全く異なる被写体であれば、被写体の物質或は状態を特定、判別することが可能となる。
【0045】
例えば上述のΔT0 (A),ΔT0 (C)の値が略同じである場合、式7から被写体温度T0 が求まるから被写体1の状態温度の閾値を超えるか超えないかによって、物質の状態を判別すればよく、例えばこの閾値は物質の液相と固相の凝固点に設定すればよい。
【0046】
具体的な例を上げれば道路の路面の状態を被写体1とすると、道路の濡れ状態(この場合、水滴があり水と同等)、凍結した状態(氷)を閾値を0℃に選択することで道路の水滴状態或は凍結状態での判別が可能となる。勿論この場合も上述の構成と同様に道路の乾燥、水滴、凍結状態の放射率を測定し、記憶手段に格納して置いてCPUを介して演算すればよいことは明白である。
【0047】
即ち、乾燥状態と水又は氷の両者の違いは放射率の違いから判別し、水と氷の違いは温度(T0 )の違いから、凝固点が0℃以下であれば凍結(氷)0℃以上であれば濡れ状態(水)と判別できる。この様に物質の材質の差だけでなく道路の路面の状態の判別等にも本発明では効果を有する。
【0048】
上述の各形態例では2つの波長での計測で被写体の物質の材質或はその状態を判別しただ3波長以上の複数の波長であっても同様に判別可能である。
【0049】
【発明の効果】
本発明の多色赤外線撮像装置に依れば外乱の影響の少ない放射率が1でない物質の材質やその状態の判別が可能であり放射率の異なる被写体に於いても真温度や状態温度の閾値を基に物質やその状態を正確に選択可能なものが得られる。
【図面の簡単な説明】
【図1】本発明の入射エネルギー取得方法を説明するための概念図である。
【図2】本発明の多色赤外線撮像装置の1形態例を示すブロック図である。
【図3】本発明の多色赤外線撮像装置の演算手段の演算方法を説明するためのフローチャートである。
【図4】従来の赤外線撮像装置のブロック図である。
【符号の説明】
1‥‥被写体、4‥‥光学通過濾波手段、5‥‥センサ、13‥‥記憶手段(メモリ)14‥‥演算手段(CPU)、15‥‥入力手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multicolor infrared imaging device capable of measuring a true temperature of a subject using a multicolor thermometer, and more particularly to a multicolor infrared imaging device capable of determining a material of a subject substance and its state.
[0002]
[Prior art]
The basic configuration of a conventionally used infrared imaging device (thermography device) 21 is a radiation thermometer with a scanning function added thereto. Generally, as shown in FIG. A detection unit 19 that captures an image in a predetermined field of view 22 and supplies it to a primary or two-dimensional sensor (HgcdTe, PtSi, InSb, etc.) 5 to detect radiant energy from the subject 1 and amplify it by a signal amplifier 11 or the like. And a calculation means 14 such as a CPU (microcomputer) constituting a control section, and a display 16 for displaying the temperature state of the subject 1 in color.
[0003]
Conventionally, the radiant energy measured by the subject 1 is taken into the sensor 5 via a two-wavelength optical pass filter (BPF), and the index n is approximately set as shown in the following equation (1). A method of removing the influence of the rate to derive a function F (T 0 ) of the true temperature T 0 of the subject 1 is used.
[0004]
(Equation 1)
Figure 2004117309
Here, T 0 : subject temperature Ta: background temperature ε 0 : emissivity n: an exponential constant approximated by first order.
[0005]
In the calculation of the above expression, a problem remains when measuring a wide range of temperatures because of approximation of the temperature value by approximation, and when accuracy is required.
[0006]
Furthermore, a 1024 × 1024 element HgcdTe infrared detector is used as a multicolor simultaneous infrared camera “SIRIUS” (Simultaneous-color Infrared Imagerfor Unbiased Survey) for survey observation for a wide field of view capable of simultaneously observing the same field of view at three wavelengths of near infrared. An infrared camera (see Non-Patent Document 1) equipped with three arrays and simultaneously imaging a visual field at wavelengths of 1.25 μm, 1.65 μm, and 2.1 μm is disclosed.
[0007]
[Non-patent document 1]
Chie Nagashima Outside 15 people Multicolor simultaneous infrared camera SIRIUS for observation
September 26, 2002 Internet <http // optik2. mtk. nao. ac. jp / @ hide / s-poster98024. pdf>
[0008]
[Problems to be solved by the invention]
In the above-described conventional infrared imaging apparatus, the magnitude of the amount of infrared light that has entered the optical system 25 of the detection unit 19 from the subject 1 is simply converted into a temperature value. Therefore, if the emissivity of the subject 1 is different, the true temperature is not detected. Had issues.
Further, even if the emissivity of the subject 1 is known, the infrared light radiated from the sky or the like is reflected on the surface of the subject. There is a problem that an incorrect temperature value is detected by the arithmetic processing with the amount of infrared rays.
[0009]
Furthermore, the multi-color simultaneous infrared camera disclosed in Non-Patent Document 1 uses a beam splitter in the optical system so that the same field of view is simultaneously incident on three sensors. Therefore, there is a problem that is not suitable for a general-purpose infrared imaging device.
[0010]
The present invention has been made in order to solve the above-mentioned problems, and the problem to be solved by the present invention is to measure the emissivity and the true temperature of subjects having different emissivities, and to determine the material of the subject material and its state. This is to obtain a detectable infrared imaging device.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a multicolor infrared imaging device 6 for measuring the radiant energy of a subject 1 and measuring the temperature of the subject 1. An optical band-pass filtering means 4 for switching a plurality of infrared wavelength ranges to be incident on the detector 1; a storage means 15 for storing a plurality of substances of the subject 1 or emissivity values of the state within the plurality of infrared wavelength ranges; Calculating means 14 for calculating the temperature of the subject 1 and the temperature of the background 2 based on the emissivity values of a plurality of substances or states stored in the storage means 15 by measuring the amount of infrared light of the subject 1 within the infrared wavelength range of The multicolor infrared imaging apparatus is characterized in that the substance or the state of the subject 1 is determined from the temperature of the subject 1 obtained by the calculating means 14.
[0012]
According to a second aspect of the present invention, the plurality of infrared wavelength ranges are the first to third infrared wavelength ranges.
According to a third aspect of the present invention, a plurality of substances of a subject or their states indicate different substances such as concrete and glass, or change states of objects such as water and ice.
[0013]
According to such a multi-color infrared imaging apparatus of the present invention, it is possible to obtain an apparatus capable of discriminating the materials of a plurality of substances and their change states.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a multicolor infrared imaging apparatus according to the present invention will be described with reference to FIGS. The same reference numerals are given to the portions corresponding to those in FIG.
[0015]
FIG. 1 is an explanatory diagram for explaining energy incident on an image pickup apparatus of the present invention, FIG. 2 is a block diagram showing one embodiment of a multicolor infrared image pickup apparatus of the present invention, and FIG. It is a flowchart of an apparatus.
[0016]
FIG. 1 shows the infrared radiation state in a general measurement environment. The surface temperature of the subject 1 is T 0 , the emissivity in the wavelength region λ of the subject 1 is ε, and the background temperature of the radiation source 2 due to reflection of the atmosphere or the like is shown. Ta, f is the blackbody radiation energy for the blackbody in the wavelength region λ. Here, the relation between the temperature of the object and the infrared radiation is generally given by Equation 2 according to Planck's law.
(Equation 2)
Mλ = C 1 / λ 5 [exp (C 2 / λ T ) −1] −1 (4)
Here, Mλ: spectral radiation emittance (w, cm −2 μm −1 )
λ: wavelength (μm)
T: Absolute temperature (K)
C 1 C 2 : a constant.
[0017]
This equation (4) holds for a black body having an emissivity of 1, and the total radiant energy M radiated from the black body is the fourth power of the absolute temperature T, which is the Stefan-Boltzmann's law of Equation (3). Proportional.
[0018]
[Equation 3]
M = σT 4 [w, cm −2 ] (5)
σ: Stefan-Boltzmann constant From this rule, the temperature of the subject is detected by measuring the intensity of radiant energy radiated from the subject 1, that is, the amount of infrared rays.
[0019]
The multicolor infrared imaging apparatus 6 of the present invention shown in FIG. 1 has a radiation energy ελ · f (T 0 λ) from the subject 1 and a radiation energy (1) generated from the subject 1 caused by a disturbance factor such as the atmosphere 2 of the radiation source. −ελ) · f (Ta), that is, the infrared amount of the formula 4 is incident on the sensor 5 of the infrared imaging device 6 through the optical pass filter (BPF) 4 with the incident energy as Eλ. ing.
[0020]
(Equation 4)
Figure 2004117309
[0021]
The optical BPF 4 used in the present invention is selected so as to pass at least only the first to third wavelength ranges λ 1 , λ 2 , λ 3 , and these first to third wavelength ranges λ 1 to λ 3 are selected. It can be selected as an alternative.
[0022]
Hereinafter, the configuration of the multicolor infrared imaging apparatus of the present invention will be described as a configuration using a three-color thermometer of three wavelengths with reference to FIG.
[0023]
In FIG. 2, the incident energy Eλ from the subject 1 is obtained by scanning the image of the subject 1 horizontally and vertically by the vertical drive mirror 8 and the horizontal drive mirror 9 with respect to the infrared light incident from the window material 18, and by the objective lens 10. An optical passing filtering means (BPF) 4 is disposed on the lighted optical axis.
[0024]
The wavelength band used for the optical BPF 4 is selected according to the type of the subject 1. For example, when a substance such as glass of a building is detected using InSb or the like as a sensor, a BPF of 4.8 to 5.2 μm is used, and the object is a tile, concrete, or the like having a low reflectance and an emissivity. When measuring a high temperature or the like, a wavelength range of 5 to 8 μm is selected.
[0025]
In this example, the optical BPF 4 has a configuration in which two filters 1 and 2 can be switched, and a total of three types of infrared wavelength ranges λ 1 , λ 2 without a filter and two types of filters 1 and 2 are used. , Λ 3 can be switched. As a result, three wavelengths can be measured by one device, and the individual difference of the sensor 5 can be eliminated.
[0026]
The infrared energy Eλ that has passed through the optical BPF 4 is incident on a single sensor 5 such as HgcdTe, amplified by a signal amplifier 11, converted to digital data by an analog-to-digital converter (A / D) 12, and then converted to a microcomputer. Based on the emissivity of each substance supplied to the calculating means 14 such as (CPU) and stored in the storage means (memory) 13, a predetermined calculation described later is performed to calculate the true temperature, and the display 16 and the recorder The temperature data is output to 17 for display and printing. Reference numeral 15 denotes an operation unit for inputting an emissivity value or the like to the memory 13 via the PCU 14.
[0027]
In the above-described multicolor infrared imaging apparatus 6, the target substance and the emissivity ελ of the state in three predetermined wavelength ranges are stored in advance in the storage means 13 via the input means 15, and the calculation means is used. The calculation of the true temperature is performed. Hereinafter, the operation of the present invention will be described with reference to FIG.
[0028]
FIG. 3 is a flow chart for performing a true temperature calculation by the calculation means 14 to accurately determine the material and the state of the substance of the subject 1 and to grasp them.
[0029]
In FIG. 3, the first material (A) or measuring the emissivity value epsilon 1 lambda of the state (or search) to input means 15 of the first step S 1 a first wavelength range (lambda 1) Writing to the memory 13 via the CPU 14.
[0030]
The second material (B) or measuring the emissivity value epsilon 2 lambda of the state of the second step S 2 first wavelength range (lambda 1) (or search) to through the input means 15 and CPU14 Write to the memory 13.
[0031]
Third third substance (C) or measuring the emissivity value epsilon 3 lambda of the condition of step S 3 the first wavelength range (lambda 1) (or search) to through the input means 15 and CPU14 Write to the memory 13.
[0032]
The first material to third material of the second wavelength range in the fourth step S 4 to sixth step S 6 (A), (B ), (C) or emissivity values epsilon 1 in this state, epsilon 2, epsilon 3 is measured (or searched) and written into the memory 13 via the input means 15 and the CPU 14.
[0033]
Similarly first material to third material in the third wavelength range in a seventh step S 7 to ninth step S 9 (A), (B ), (C) or emissivity values epsilon 1 in this state, epsilon 2 , Ε 3 are measured (or searched) and written into the memory 13 via the input means 15 and the CPU 14.
[0034]
Above the first step S 1 to the memory 13 by the ninth step S 9 first material A within the range of the first to third wavelength range lambda 1 to [lambda] 3, the second material B, one third substance C Represents the change state, for example, the emissivities ε 1 , ε 2 , and ε 3 in the state of water, ice, and the like are stored as follows.
[0035]
ε 11 ), ε 12 ), ε 13 ) {(A) first substance ε 21 ), ε 22 ), ε 23 )} (B) Second substance ε 31 ), ε 32 ), ε 33 ) ‥‥ (C) Third substance
Then the first to third material A of the first to third wavelength range as shown in the tenth step S 10, B, the amount of infrared Eλn = Eλ 1 of the measurement body 1 made of C, Eλ 2,3 Is measured by sequentially switching the optical BPF 4.
[0037]
From this measurement, Expression 5 is obtained from Expression (1).
[0038]
(Equation 5)
1 = ελ 1 · f (T 0 · λ 1 ) + (1−ελ 1 ) f (Ta) ‥‥ (7)
2 = ελ 2 · f (T 0 · λ 2 ) + (1−ελ 2 ) f (Ta) ‥‥ (8)
3 = ελ 3 · f (T 0 · λ 3 ) + (1−ελ 3 ) f (Ta) ‥‥ (9)
Here, the CPU 14 stores the first substance A or the emissivity value εn = ε 1 , ε 2 , ε 3 } in the state previously stored in the memory 13 as in the eleventh step S 11 (7) to ( subject temperature T 0 and the background temperature Ta is not yet value numerically by assignment operation to 9).
[0039]
The object temperature T 0 and the background temperature Ta when substituting the twelfth step S 12 in the first material A or the condition expression (7), to obtain a subtracted from equation (10) (8).
[0040]
Similarly the object temperature T 0 and the background temperature Ta when substituting first substance A or the condition expression (7), to obtain a subtracted from equation (11) (9).
[0041]
Request In the next 12th step S 12 obtained in 11th step S 11 (10) and (11) determines the difference between the object temperature T 0 of each from the equation [Delta] T 0 (A).
[0042]
[Delta] T 0 of the 11 steps S 11 and the second material B and third material C or emissivity of the condition the same as the first substance A at a twelfth step S 12 described above (B) (B) and By calculating about ΔT 0 (C), ΔT 0 (A), ΔT 0 (B), and ΔT 0 (C) of the first to third substances A to C are obtained.
[0043]
In a 13 step S 13 ΔT 0 (A), ΔT 0 (B), ΔT 0 (C) value emissivity A (the error) corresponds to the smallest ones, determines B, and either C, these [Delta] T 0 (a), ΔT 0 (B ), ΔT 0 (C) is the minimum value of what is fourteenth step S 14 to a predetermined material having a predetermined object 1 as shown a, B, are C or its state And it reaches the end.
[0044]
When the material and the state of the subject 1 are determined as described above, when the emissivities in the subject 1 are similar, it is difficult to determine the difference based on the emissivity. However, if the subject has a completely different temperature, the substance or state of the subject can be specified and determined.
[0045]
For example, when the values of ΔT 0 (A) and ΔT 0 (C) are substantially the same, the object temperature T 0 is obtained from Expression 7, and therefore, depending on whether the state temperature of the object 1 exceeds or does not exceed the threshold value, The state may be determined. For example, the threshold may be set to the freezing points of the liquid phase and the solid phase of the substance.
[0046]
As a specific example, assuming that the state of the road surface is the subject 1, a threshold value of 0 ° C. is selected for the wet state of the road (in this case, there is water droplets, equivalent to water) and the frozen state (ice) of the road. It is possible to determine whether the road is in a water droplet state or a frozen state. Of course, also in this case, it is obvious that the emissivity of the road in the dry, water-dropped, or frozen state may be measured, stored in the storage means, and calculated via the CPU, similarly to the above-described configuration.
[0047]
That is, the difference between the dry state and water or ice is determined from the difference in emissivity, and the difference between water and ice is the difference in temperature (T 0 ). If it is above, it can be determined as a wet state (water). As described above, the present invention is effective not only for the difference in the material of the substance but also for the determination of the state of the road surface.
[0048]
In each of the embodiments described above, the material of the subject or the state of the material is determined by measuring at two wavelengths, and a plurality of wavelengths equal to or more than three wavelengths can be similarly determined.
[0049]
【The invention's effect】
According to the multi-color infrared imaging apparatus of the present invention, it is possible to determine the material and the state of the substance whose emissivity is less than 1 which is less affected by disturbance, and the threshold of the true temperature or the state temperature can be determined even for subjects having different emissivities. Based on this, a substance and its state that can be accurately selected can be obtained.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for explaining an incident energy obtaining method of the present invention.
FIG. 2 is a block diagram showing one embodiment of a multicolor infrared imaging apparatus according to the present invention.
FIG. 3 is a flowchart for explaining a calculation method of a calculation unit of the multicolor infrared imaging device of the present invention.
FIG. 4 is a block diagram of a conventional infrared imaging device.
[Explanation of symbols]
1 {subject, 4} optical passage filtering means, 5 sensor, 13 storage means (memory) 14 computing means (CPU), 15 input means

Claims (3)

被写体の放射エネルギーを測定して、該被写体の撮像を行なう多色赤外線撮像装置に於いて、
上記被写体と上記赤外線撮像装置の検出器間に上記被写体からの複数の赤外線波長範囲を切換え該検出器に入射させる光学帯域通過濾波手段と、
上記赤外線の複数波長範囲内で上記被写体の複数物質或はその状態の放射率値を格納した記憶手段と、
上記複数の赤外線波長範囲内の上記被写体の赤外線量を測定し、上記記憶手段に格納した上記複数物質或は状態の放射率値を基に該被写体温度及び背景の温度を演算する演算手段とを有し、
上記演算手段で求めた上記被写体温度から上記被写体の物質或はその状態を判別する様に成したことを特徴とする多色赤外線撮像装置。
In a multicolor infrared imaging device that measures the radiant energy of a subject and images the subject,
Optical bandpass filtering means for switching a plurality of infrared wavelength ranges from the subject between the subject and the detector of the infrared imaging device and causing the infrared wavelength to be incident on the detector;
Storage means for storing a plurality of substances of the subject within the plurality of wavelength ranges of the infrared ray or emissivity values of the state,
Computing means for measuring the amount of infrared light of the subject within the plurality of infrared wavelength ranges and calculating the subject temperature and the background temperature based on the emissivity values of the plurality of substances or states stored in the storage means. Have
A multicolor infrared imaging apparatus characterized in that a substance or a state of the object is determined from the object temperature obtained by the arithmetic means.
前記複数の赤外線波長範囲が第1乃至第3の赤外線波長範囲であることを特徴とする請求項1記載の多色赤外線撮像装置。2. The multicolor infrared imaging apparatus according to claim 1, wherein the plurality of infrared wavelength ranges are first to third infrared wavelength ranges. 前記被写体の複数の物質或はその状態はコンクリート、ガラス等の異なる物質或は、水、氷の如き物体の変化状態を示すものであることを特徴とする請求項1記載の多色赤外線撮像装置。2. The multi-color infrared imaging apparatus according to claim 1, wherein the plurality of substances of the subject or their states indicate different substances such as concrete or glass or a change state of an object such as water or ice. .
JP2002284544A 2002-09-27 2002-09-27 Multi-color infrared imaging device Pending JP2004117309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284544A JP2004117309A (en) 2002-09-27 2002-09-27 Multi-color infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284544A JP2004117309A (en) 2002-09-27 2002-09-27 Multi-color infrared imaging device

Publications (1)

Publication Number Publication Date
JP2004117309A true JP2004117309A (en) 2004-04-15

Family

ID=32278058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284544A Pending JP2004117309A (en) 2002-09-27 2002-09-27 Multi-color infrared imaging device

Country Status (1)

Country Link
JP (1) JP2004117309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292195A (en) * 2007-05-22 2008-12-04 Toyota Central R&D Labs Inc Object identification unit and program
JP2017156270A (en) * 2016-03-03 2017-09-07 新日鐵住金株式会社 Surface composition discrimination method of steel plate, surface composition discrimination device, manufacturing method, and manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292195A (en) * 2007-05-22 2008-12-04 Toyota Central R&D Labs Inc Object identification unit and program
JP2017156270A (en) * 2016-03-03 2017-09-07 新日鐵住金株式会社 Surface composition discrimination method of steel plate, surface composition discrimination device, manufacturing method, and manufacturing apparatus

Similar Documents

Publication Publication Date Title
US11733158B2 (en) Gas imaging system
Thevenet et al. Measurements of brake disc surface temperature and emissivity by two-color pyrometry
US7422365B2 (en) Thermal imaging system and method
Kaplan Practical applications of infrared thermal sensing and imaging equipment
US7186978B2 (en) Compact emissivity and temperature measuring infrared detector
CN109313080B (en) Method for the contactless determination of temperature and infrared measuring system
Savino et al. Free emissivity temperature investigations by dual color applied physics methodology in the mid-and long-infrared ranges
US6786634B2 (en) Temperature measuring method and apparatus
EP1302759A2 (en) Temperature distribution measuring method and apparatus
US6817758B2 (en) Temperature distribution measuring method and apparatus
US6814484B2 (en) Temperature distribution measuring method and apparatus
JP2004117309A (en) Multi-color infrared imaging device
KR20040010172A (en) Emissivity distribution measuring method and apparatus
Costa et al. Performance evaluation of colour codes on thermal image analysis–application in the wood damage detection
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
JPH07301569A (en) Method and apparatus for processing infrared temperature image using two filters
JP2004219114A (en) Multicolor infrared imaging device and data processing method
Jiao et al. A smartphone-based infrared thermal imaging temperature sensor for accurate temperature measurement of pig groups
De Cesare et al. Dual-Color Thermography Technique Validation for Space Re-entry Materials Plasma Wind Tunnel Tests
JP4016113B2 (en) Two-wavelength infrared image processing method
Chakraborty et al. Estimation of emissivity with the help of an infrared camera
JP2007240164A (en) Infrared two-wavelength processing method
Jena Emissivity Related Correction Approaches for Temperature Monitoring Using Infrared Thermography
Schreer et al. Multispectral high-speed midwave infrared imaging system
Olbrycht et al. Low-cost thermal scanner image enhancement by merging thermal and visual data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016