JP2004116538A - Heat media flowing roller - Google Patents

Heat media flowing roller Download PDF

Info

Publication number
JP2004116538A
JP2004116538A JP2002276652A JP2002276652A JP2004116538A JP 2004116538 A JP2004116538 A JP 2004116538A JP 2002276652 A JP2002276652 A JP 2002276652A JP 2002276652 A JP2002276652 A JP 2002276652A JP 2004116538 A JP2004116538 A JP 2004116538A
Authority
JP
Japan
Prior art keywords
heat medium
heat
roller
medium flow
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002276652A
Other languages
Japanese (ja)
Other versions
JP3958166B2 (en
Inventor
Yoshio Kitano
北野 良夫
Toru Tonomura
外村 徹
Kozo Okamoto
岡本 幸三
Nariyuki Hirota
弘田 成之
Masanobu Hiragori
平郡 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2002276652A priority Critical patent/JP3958166B2/en
Priority to DE60331713T priority patent/DE60331713D1/en
Priority to EP03021449A priority patent/EP1403607B1/en
Priority to US10/667,307 priority patent/US6992272B2/en
Priority to CNB031603505A priority patent/CN100473513C/en
Publication of JP2004116538A publication Critical patent/JP2004116538A/en
Priority to US11/186,861 priority patent/US7420141B2/en
Application granted granted Critical
Publication of JP3958166B2 publication Critical patent/JP3958166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat media flowing roller capable of performing uniform heat treating of a processed object such as a resin film and miniaturizing a heat exchanger and a pump. <P>SOLUTION: A plurality of airtight chambers 13 filling a heat media with two of gaseous and liquid phases extending in a longitudinal direction of a roll shell 11 are formed along an outer periphery of the roll shell 11, and a heat media flowing pipe 14 passing through inside the airtight chamber 13 in a longitudinal direction is also formed in a thick wall of the cylindrical roll shell 11. The heat media liquid for heating and cooling the processed object are poured into the heat media flowing pipe 14. Consequently, uniform heating or cooling the processed object is performed in spite of temperature difference between an inlet and an outlet of the heat media liquid, and the amount of flow required for reduction of the temperature difference is decreased. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流体を熱媒体として樹脂フィルムなどの処理物を加熱又は奪熱処理するローラに関する。
【0002】
【従来の技術】
樹脂フィルムなどの処理物をローラに掛け、ローラに当接して通過する間に処理物を所定の温度に加熱したり、高温の処理物を所定の温度にまで奪熱することが行われている。加熱処理する場合、ローラは加熱処理に必要な温度に高められ、奪熱処理する場合、処理物からの奪熱作用によってローラ自体の温度が上昇するので、処理物の冷却に適応する温度までローラを冷却する。いずれの場合も熱を移送する媒体を必要とし、その媒体として流体たとえば油が使用されている。すなわち、適温の流体をローラの内部を通過させ、この流体でローラを加熱又はローラから奪熱する(以下、このようなローラを熱媒通流ローラという。)ようにしている。
【0003】
図10はこのような熱媒通流ローラの一例の概略構成を示すもので、図10において、1はロールシェル、2は回転駆動軸、3は中子、4はロータリジョイント、5は貯油タンク、6は油(熱媒流体)、7は加熱又は冷却用熱交換器、8は温度センサ、9はポンプ、10は樹脂フィルムなどの処理物である。ロールシェル1は円筒状をなし、その中空内部に中子3が配置され、中子3の中央部を貫通して熱媒通流路3aが形成されている。熱媒通流路3aは回転駆動軸2内を経てロータリジョイント4の流入口に連結され、ロールシェル1の内周壁と中子3の外周壁との間で形成された熱媒通流路1aは回転駆動軸2内を経てロータリジョイント4の出口に連結されている。
【0004】
すなわち、貯油タンク5の油6は加熱又は冷却用熱交換器7を通り、所定の温度にされ、ポンプ9によってロールシェル1内に送られ、熱媒通流路3aおよび1aを通流した油6は貯油タンク5へ排出される。主として熱媒通流路1aを通流する間にロールシェル1は所定の温度に維持され、ロールシェル1の表面に当接した処理物10を加熱又は奪熱する。
【0005】
【発明が解決しようとする課題】
ところで、このような熱媒通流ローラでは、ローラ(ロールシェルに回転駆動軸を連結したもの)内に流入する熱媒流体の温度と処理物の加熱後または奪熱後に流出する熱媒流体の温度との間に温度差が発生し、その温度差はローラの表面に現れるため、ローラの表面に当接した処理物のローラの軸心に沿う長手方向に対し、均一な熱処理ができないという問題がある。この問題を解消するために、従来はこの温度差を減らすために、温度差に応じてローラ内を通流する熱媒流体の流量を増加するようにしている。 そのために加熱又は冷却用熱交換器やポンプが大型化せざるを得ないという問題があった。
【0006】
本発明は、このような問題を解消すべくなされたもので処理物の均一な熱処理を可能にするとともに、熱交換器やポンプを小型化することのできる熱媒通流ローラを提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に係る本発明は、内部に熱媒通流路を有し、前記熱媒通流路を流れる熱媒流体により表面に当接する処理物を加熱又は奪熱処理する熱媒通流ローラであって、前記ローラの肉厚内部に前記ローラの長手方向に伸びる気液2相の熱媒体を封入する密閉室を設けてなることを特徴とする。
【0008】
請求項2に係る本発明は、内部に熱媒通流路を有し、前記熱媒通流路を流れる熱媒流体により表面に当接する処理物を加熱又は奪熱処理する熱媒通流ローラであって、前記ローラの肉厚内部に、前記ローラの長手方向に伸びる気液2相の熱媒体を封入する密閉室を前記ローラの外周面に沿って複数個設けると共に、前記密閉室内を長手方向に貫通する管を設け、前記管を前記熱媒通流路としてなることを特徴とする。
【0009】
請求項3に係る本発明は、請求項1又は請求項2に記載の発明において、請求項1又は請求項2に記載の発明において、電磁誘導発熱機構を備えてなることを特徴とする。
【0010】
本発明では、ローラの肉厚内部に前記ローラの長手方向に伸びる気液2相の熱媒体を封入する密閉室を設けているので、ローラ内に流入する熱媒流体の温度と処理物の加熱後または奪熱後に流出する熱媒流体の温度との間に温度差が発生しても、気液2相の熱媒体の潜熱の移動により、ローラの軸心に沿う長手方向の表面温度が均一化し、熱媒流体の流量を増加することなく、ローラに当接した処理物のローラの軸心に沿う長手方向に対し、均一な熱処理ができる。また、電磁誘導発熱機構を付加すると、電磁誘導発熱機構を適宜、たとえば処理温度の変更時などに駆動することによって、必要な温度に到る応答速度を速めることができる。
【0011】
【発明の実施の形態】
以下本発明の実施の形態について図を参照して説明する。図1は一実施の形態に係る熱媒通流ローラの縦断面図、図2は部分的に示す同横断面図、図3は動作説明図であり、(a)は加熱時、(b)は奪熱時を示す。なお、図10に示すロータリジョイント4、貯油タンク5、加熱又は冷却用熱交換器7、温度センサ8およびポンプ9からなる油(熱媒流体)の循環経路については図では省略している。
【0012】
図1ないし図3において、10は樹脂フィルムなどの処理物(図3参照)、 11はロールシェル、12は回転駆動軸、13は密閉室、14は熱媒通流管、15は気液2相を形成する熱媒体である。
【0013】
ロールシェル11は円筒状を成し、長手方向の両側の端部は回転駆動軸12のフランジ12aに連結固定されている。密閉室13はロールシェル11の肉厚内に、たとえばロールシェル11の長手方向の端縁からその長手方向にドリルで孔を形成し、その孔に気液2相の熱媒体となる適量の水15などを注入して開口部を閉塞することにより形成され、図2に示すように適宜間隔を隔ててローラの外周面に沿って複数個設けられている。
【0014】
熱媒通流管14は密閉室13の内部を長手方向に沿って貫通し、ロールシェル11の長手方向の両側の端縁に伸びている。回転駆動軸12およびそのフランジ12aには熱媒通流孔が形成され熱媒通流管14はこの熱媒通流孔と連通している。すなわち、図示しない加熱又は冷却用熱交換器、ポンプおよびロータリジョイントを経て送り込まれたロールシェル11を加熱し、または奪熱するための油などの熱媒流体は、一方の回転駆動軸12およびそのフランジ12aの熱媒通流孔を経て熱媒通流管14を通り、他方のフランジ12aおよび回転駆動軸12の熱媒通流孔およびロータリジョイントを経て貯油タンクへ排出される。
【0015】
樹脂フィルムなどの処理物10を加熱する場合、所定の温度に加熱した熱媒流体を用いるが、この熱媒流体が熱媒通流管14を通過すると、図3(a)に示すように密閉室13内の熱媒体15が加熱気化し、その熱はロールシェル11を介して処理物10を加熱する。熱を奪われた気体は液化し、再び熱媒流体により加熱され加熱気化し、その熱はロールシェル11を介して処理物10を加熱する。この動作が繰り返される。処理物10を加熱する際、加熱気化した熱は処理物10が当接している温度の低い側へと移動し、熱媒流体の流入側の温度が高く、流出側の温度が低いという温度差が発生しても、処理物10をローラの軸心に沿う長手方向に対して均一な加熱処理ができる。
【0016】
また、樹脂フィルムなどの高温の処理物10を所定の温度に奪熱する場合、より温度の低下を防ぐために所定の温度に加熱した熱媒流体を用いるが、この熱媒流体が熱媒通流管14を通過すると、図3(b)に示すように処理物10により加熱されたロールシェル11の熱は密閉室13内の気液2相の熱媒体に伝達され、熱媒通流管14を通過する熱媒流体により所定の温度に冷却される。この場合、熱媒流体の流入側の温度が低く、流出側の温度が高いという温度差が発生しても気体の熱は低い方に移動し、処理物10をローラの軸心に沿う長手方向に対して均一な奪熱処理ができる。
【0017】
なお、この実施の形態では、熱媒流体の流路が直接にロールシェル11に接しないことからロールシェル11の熱膨張差による機械的精度の劣化を抑制することができ、また、必要な加熱部および奪熱部に有効的に作用させることができる。
【0018】
図4は、他の実施の形態に係る、図2と同様の部分的に示す横断面図である。この他の実施の形態に係る熱媒通流ローラが、図1および図2に示す熱媒通流ローラと異なる点は、気液2相の熱媒体を収納する密閉室13の間に、密閉室13と平行してロールシェル11の肉厚内を貫通して熱媒通流孔16を形成している点である。このように構成した熱媒通流ローラでは、ロールシェル11の熱を熱媒通流孔16を通過する熱媒流体により直接に加熱または奪熱するものであるが、密閉室13内の気液2相の熱媒体の潜熱移動により図1および図2に示す熱媒通流ローラと同様に、処理物をローラの軸心に沿う長手方向に対して均一な加熱および奪熱処理ができる。
【0019】
図5ないし図7は、ロールシェル11の中空内部に熱媒流体を通流し、ロールシェル11を直接に加熱または奪熱する場合のそれぞれ他の実施の形態を示すもので、図6および図7に示すものでは、ロールシェル11の中空内部に中子17を配置し、熱媒流体の流速を速めることができる。図7に示すものでは中子17に螺旋溝17aが形成され、熱媒流体はこの螺旋溝17aに沿って流れ、ロールシェル11の中空内部により多くの熱媒流体を通過させることができる。なお、図1、図2および図4に示す熱媒通流ローラと対応する部分には同一の符号を付し、密閉室13内の気液2相の熱媒体の潜熱移動により、処理物をローラの軸心に沿う長手方向に対して均一な加熱および奪熱処理ができる詳細な説明は省略する。
【0020】
以上のようにロールシェル11の肉厚内に気液2相の熱媒体を収納する密閉室13を設けた熱媒通流ローラについて、ロールの直径310mm、ロール面長1110mm、ファン負荷運転、流体流量2.4m3 /h、流体比重841kg/m3 、流体比熱0.42kcal/kg、流体入り口温度178℃、流体出口温度168℃、流体出入口温度差10℃で、流体の出口側から入り口までほぼ等間隔に14点の温度センサをロールシェル11の表面に配置して、計測した。
【0021】
その結果、流体の出口側から順に、146.8 148.8 [150.6 150.8 150.9 150.9 150.9 150.8 150.6 150.7 150.5 150.3] 149.4 147.8であった。[]内の温度が気液2相の熱媒体を収納した密閉室の有効長かつ処理物幅の有効長960mmである。この範囲での温度差は0.6℃であり、流体出入口温度差10℃にかかわらず良好な温度分布を呈している。なお、[]外の温度は密閉室の有効外のロール有効長外部分であり、熱が回転駆動軸に奪われて温度が若干低下している。
【0022】
ロールが放出する熱量を求めると、Q(kcal/h)=10×2.4×841×0.42=8477kcal/h=9.86kwである。ここで、気液2相の熱媒体を収納した密閉室を設けずに、この温度差0.6℃を得るときの流量Vを求めると、V(m/h)=8477/(0.6×841×0.42)=40(m/h)となる。これは気液2相の熱媒体を収納した密閉室を設けた場合に比べ約16.7倍の流体流量が必要であることを意味する。
【0023】
したがって、気液2相の熱媒体を収納した密閉室を設けた場合には1/16.7倍の流体流量で済み、この場合、配管およびロータリージョイントの断面積を1/16.7とすることが可能であり、配管およびロータリージョイントに要するコストを低減することができる。また、流体流量の低減は、配管工数および設置スペースの低減につながり、コスト低減として大きなメリットがあり、さらに流路の断面積が1/16.7となることは配管表面積が約1/4となり、配管放熱が1/4になって省エネルギーとすることができる。流体の流量が少なくすめば流体を供給するポンプも小さくてよく、流量が1/16.7であればポンプの容量は通常1/10程度で十分である。
【0024】
なお、以上は流体出入口温度差10℃とした場合であるが、流体出入口温度差10℃とした理由は、処理物を均一に熱処理しようとするとロールの有効長における温度分布精度が通常5℃未満である必要がある。つまり流体出入口温度差5℃未満とする必要があり、流体出入口温度差5℃以上となる場合には、流体出入口温度差にしたがい流量を増加しなければ均一に熱処理することができない。しかし、気液2相の熱媒体を収納した密閉室を設けることにより、流体出入口温度差5℃以上であっても流量を増加することなく十分に均一な熱処理が果たせることを示すためである。すなわち、気液2相の熱媒体を収納した密閉室を設けることにより特に流体出入口温度差5℃以上となる場合の流量増加に伴う、配管、ロータリージョイントおよびポンプなどの大型化を抑制することができる、顕著な効果を奏する。
【0025】
ところで、奪熱によってローラ(厳密にはロールシェル)の表面温度が変動する際、それを熱媒流体の温度を制御することでローラの表面温度を一定に制御するが、熱媒流体の温度制御は比較的に安定的にできるのに比べ、流路壁面との熱伝達率が小さいためにローラの温度は追従せず時間遅れが発生する。この遅れを解消するために、ローラ自体をジュール発熱させる誘導発熱機構を付加すると好都合である。
【0026】
図8および図9は誘導発熱機構を付加した熱媒通流ローラの実施の形態を示すもので、図8に示すものでは、図1に示す熱媒通流ローラの中空部に誘導コイルと鉄心とからなる誘導発熱機構18を配置したものであり、図9に示すものでは、図6に示す熱媒通流ローラの外周面の近傍位置に誘導発熱機構18を配置したものである。このように誘導発熱機構を付加しておくと、処理物の処理温度を変更した場合に迅速に対応することができる。なお、誘導発熱機構の付加は、図1及び図6に示す熱媒通流ローラに限らず、図4、図5、図7に示す熱媒通流ローラに付加してもよい。
【0027】
以上の各実施の形態では、密閉室に気液2相の熱媒体となる適量の水15などを注入しているが、密閉室にヒートパイプを挿入するようにしてもよい。また、複数の密閉室はそれぞれ独立しているが、たとえば密閉室の両側の端部で互いに連通するようにしてもよい。その連通路を回転駆動軸のフランジ内に設けるようにしてもよく、この場合、密閉室はロールシェルの肉厚内を貫通することとなる。
【0028】
【発明の効果】
以上説明したように本発明によれば、ローラ内を通流する熱媒流体の流量を大幅に低減することができ、これにより小さい配管およびポンプの採用によって設備費を削減することが可能となり、さらに配管の放熱量の低減とポンプ容量の低下によって、省エネルギーを達成することができる。すなわち、流体出入口温度差が大きくても処理物を均一に熱処理することができる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る熱媒通流ローラを示す縦断面図である。
【図2】図1に示す熱媒通流ローラの一部の横断面図である。
【図3】図1に示す熱媒通流ローラの動作説明図である。
【図4】本発明の他の実施態様に係る熱媒通流ローラの一部の横断面図である。
【図5】本発明の他の実施態様に係る熱媒通流ローラを示す縦断面図である。
【図6】本発明の他の実施態様に係る熱媒通流ローラを示す縦断面図である。
【図7】本発明の他の実施態様に係る熱媒通流ローラを示す縦断面図である。
【図8】本発明の他の実施態様に係る熱媒通流ローラを示す縦断面図である。
【図9】本発明の他の実施態様に係る熱媒通流ローラを示す縦断面図である。
【図10】従来の熱媒通流ローラを示す縦断面図である。
【符号の説明】
4  ロータリジョイント
5  貯油タンク
7  加熱又は冷却用熱交換器
8  温度センサ
9  ポンプ
10  処理物
11  ロールシェル
12  回転駆動軸
13  密閉室
14  熱媒通流管
15  気液2相を形成する熱媒体
16 熱媒通流孔
17  中子
18  誘導発熱機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a roller that heats or heat-treats a processed material such as a resin film using a fluid as a heat medium.
[0002]
[Prior art]
Processes such as a resin film are hung on a roller, and the processed product is heated to a predetermined temperature while passing in contact with the roller, or a high-temperature processed product is heated to a predetermined temperature. . In the case of heat treatment, the temperature of the roller is raised to the temperature required for the heat treatment, and in the case of heat treatment for deprivation, the temperature of the roller itself increases due to the heat removal action from the processed material. Cooling. In each case, a medium for transferring heat is required, and a fluid such as oil is used as the medium. That is, an appropriate temperature fluid is passed through the inside of the roller, and the fluid heats the roller or removes heat from the roller (hereinafter, such a roller is referred to as a heat medium flowing roller).
[0003]
FIG. 10 shows a schematic configuration of an example of such a heat medium flow roller. In FIG. 10, 1 is a roll shell, 2 is a rotary drive shaft, 3 is a core, 4 is a rotary joint, and 5 is an oil storage tank. , 6 are oil (heat medium fluid), 7 is a heat exchanger for heating or cooling, 8 is a temperature sensor, 9 is a pump, and 10 is a processed material such as a resin film. The roll shell 1 has a cylindrical shape, and a core 3 is disposed inside the hollow, and a heat medium passage 3 a is formed through the center of the core 3. The heat medium passage 3a is connected to the inlet of the rotary joint 4 through the rotary drive shaft 2 and is formed between the inner peripheral wall of the roll shell 1 and the outer peripheral wall of the core 3. Is connected to the outlet of the rotary joint 4 through the rotary drive shaft 2.
[0004]
That is, the oil 6 in the oil storage tank 5 passes through the heat exchanger 7 for heating or cooling, is brought to a predetermined temperature, is sent into the roll shell 1 by the pump 9, and flows through the heat medium passages 3a and 1a. 6 is discharged to the oil storage tank 5. Mainly, the roll shell 1 is maintained at a predetermined temperature while flowing through the heat medium passage 1 a, and heats or removes the processed material 10 that is in contact with the surface of the roll shell 1.
[0005]
[Problems to be solved by the invention]
By the way, in such a heat medium flow roller, the temperature of the heat medium fluid flowing into the roller (the roller having a rotary drive shaft connected to a roll shell) and the temperature of the heat medium fluid flowing out after heating or heat removal of the processing object are reduced. A temperature difference occurs between the temperature and the temperature, and the temperature difference appears on the surface of the roller. Therefore, a problem that uniform heat treatment cannot be performed in a longitudinal direction along the axis of the roller of the processed material in contact with the surface of the roller. There is. To solve this problem, conventionally, in order to reduce this temperature difference, the flow rate of the heat transfer fluid flowing through the inside of the roller is increased according to the temperature difference. Therefore, there has been a problem that the heat exchanger or pump for heating or cooling must be increased in size.
[0006]
An object of the present invention is to provide a heat medium flow roller that can uniformly heat-treat a processed material and that can reduce the size of a heat exchanger and a pump while solving the above problem. Aim.
[0007]
[Means for Solving the Problems]
The present invention according to claim 1 is a heat medium flow roller that has a heat medium flow path inside, and heats or heat-treats a processing object abutting on a surface by a heat medium fluid flowing through the heat medium flow path. In addition, a sealed chamber is provided inside the thickness of the roller for enclosing a gas-liquid two-phase heat medium extending in the longitudinal direction of the roller.
[0008]
The present invention according to claim 2 is a heat medium flow roller that has a heat medium flow path inside, and heats or heat-treats a processing object that comes into contact with a surface by a heat medium fluid flowing through the heat medium flow path. A plurality of sealed chambers for enclosing a gas-liquid two-phase heat medium extending in the longitudinal direction of the roller are provided along the outer peripheral surface of the roller inside the thickness of the roller. A pipe that penetrates the heat medium, and the pipe serves as the heat medium passage.
[0009]
According to a third aspect of the present invention, in the first or second aspect, there is provided the electromagnetic induction heating mechanism according to the first or second aspect.
[0010]
In the present invention, since the closed chamber for enclosing the gas-liquid two-phase heat medium extending in the longitudinal direction of the roller is provided inside the thickness of the roller, the temperature of the heat medium fluid flowing into the roller and the heating of the processing object Even if a temperature difference occurs between the temperature of the heat medium fluid flowing out after or after heat removal, the surface heat in the longitudinal direction along the axis of the roller is uniform due to the transfer of the latent heat of the gas-liquid two-phase heat medium. Thus, a uniform heat treatment can be performed in the longitudinal direction along the axis of the roller of the processing object in contact with the roller without increasing the flow rate of the heat medium fluid. When an electromagnetic induction heating mechanism is added, the response speed to a required temperature can be increased by appropriately driving the electromagnetic induction heating mechanism, for example, when the processing temperature is changed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of a heat medium flow roller according to one embodiment, FIG. 2 is a partially sectional view of the same, FIG. 3 is an operation explanatory view, FIG. Indicates the time of heat removal. The circulation path of the oil (heat medium fluid) including the rotary joint 4, the oil storage tank 5, the heating or cooling heat exchanger 7, the temperature sensor 8 and the pump 9 shown in FIG. 10 is omitted in the figure.
[0012]
1 to 3, reference numeral 10 denotes a processed product such as a resin film (see FIG. 3); 11, a roll shell; 12, a rotary drive shaft; 13, a closed chamber; 14, a heat medium flow pipe; A heat medium that forms a phase.
[0013]
The roll shell 11 has a cylindrical shape, and both ends in the longitudinal direction are connected and fixed to a flange 12 a of the rotary drive shaft 12. The closed chamber 13 is formed with a hole in the thickness of the roll shell 11 by, for example, drilling from the longitudinal edge of the roll shell 11 in the longitudinal direction, and an appropriate amount of water serving as a gas-liquid two-phase heat medium is formed in the hole. 15 and the like are formed by closing the opening, and as shown in FIG. 2, a plurality of rollers are provided along the outer peripheral surface of the roller at appropriate intervals.
[0014]
The heat medium flow pipe 14 penetrates the inside of the closed chamber 13 along the longitudinal direction, and extends to both longitudinal edges of the roll shell 11. A heat medium passage hole is formed in the rotary drive shaft 12 and its flange 12a, and the heat medium passage tube 14 communicates with the heat medium passage hole. That is, a heat transfer fluid such as oil for heating or removing heat from the roll shell 11 fed through a heat or cooling heat exchanger (not shown), a pump and a rotary joint is provided on one of the rotary drive shafts 12 and The oil passes through the heat medium passage tube 14 through the heat medium passage hole of the flange 12a, and is discharged to the oil storage tank through the other flange 12a, the heat medium passage hole of the rotary drive shaft 12, and the rotary joint.
[0015]
When the processing object 10 such as a resin film is heated, a heat medium fluid heated to a predetermined temperature is used. When the heat medium fluid passes through the heat medium flow pipe 14, the heat medium fluid is sealed as shown in FIG. The heat medium 15 in the chamber 13 is heated and vaporized, and the heat heats the processing object 10 through the roll shell 11. The gas deprived of heat is liquefied, heated again by the heating medium fluid and vaporized, and the heat heats the processing object 10 via the roll shell 11. This operation is repeated. When the processing object 10 is heated, the heat and vaporized heat moves to the lower temperature side where the processing object 10 is in contact, and the temperature difference between the inflow side of the heating medium fluid and the outflow side is high. Even when the heat generation occurs, the processing object 10 can be uniformly heated in the longitudinal direction along the axis of the roller.
[0016]
Further, when heat-treating a high-temperature processing object 10 such as a resin film to a predetermined temperature, a heat medium fluid heated to a predetermined temperature is used in order to further prevent the temperature from lowering. After passing through the pipe 14, as shown in FIG. 3B, the heat of the roll shell 11 heated by the processing object 10 is transferred to the gas-liquid two-phase heat medium in the closed chamber 13, and the heat medium flow pipe 14 Is cooled to a predetermined temperature by the heat transfer fluid passing through the cooling medium. In this case, even if a temperature difference occurs in which the temperature of the inflow side of the heat medium fluid is low and the temperature of the outflow side is high, the heat of the gas moves to the lower side, and the processing object 10 is moved in the longitudinal direction along the axis of the roller. Can be uniformly heat-treated.
[0017]
In this embodiment, since the flow path of the heat medium fluid does not directly contact the roll shell 11, deterioration of mechanical accuracy due to a difference in thermal expansion of the roll shell 11 can be suppressed. Section and the heat removal section.
[0018]
FIG. 4 is a partially cross-sectional view similar to FIG. 2 according to another embodiment. The heat medium flow roller according to the other embodiment is different from the heat medium flow roller shown in FIGS. 1 and 2 in that the heat medium flow roller is sealed between a closed chamber 13 that stores a gas-liquid two-phase heat medium. The point is that the heat medium passage hole 16 is formed so as to penetrate through the thickness of the roll shell 11 in parallel with the chamber 13. In the heat medium flow roller configured as described above, the heat of the roll shell 11 is directly heated or removed by the heat medium fluid passing through the heat medium flow hole 16. By the latent heat transfer of the two-phase heat medium, as in the case of the heat medium flow rollers shown in FIGS. 1 and 2, the processing object can be uniformly heated and deprived in the longitudinal direction along the axis of the roller.
[0019]
FIGS. 5 to 7 show another embodiment in which a heat medium fluid flows through the hollow interior of the roll shell 11 to directly heat or remove the heat from the roll shell 11, respectively. In the case of (1), the core 17 is disposed inside the hollow of the roll shell 11, and the flow rate of the heat transfer fluid can be increased. 7, a spiral groove 17a is formed in the core 17, the heat medium fluid flows along the spiral groove 17a, and more heat medium fluid can pass through the hollow interior of the roll shell 11. Parts corresponding to the heat medium flow rollers shown in FIGS. 1, 2 and 4 are denoted by the same reference numerals, and the processing object is moved by the latent heat transfer of the gas-liquid two-phase heat medium in the closed chamber 13. A detailed description that enables uniform heating and deprivation heat treatment in the longitudinal direction along the axis of the roller is omitted.
[0020]
As described above, for the heat medium flow roller provided with the closed chamber 13 for storing the gas-liquid two-phase heat medium within the thickness of the roll shell 11, the roll diameter is 310 mm, the roll surface length is 1110 mm, the fan load operation, the fluid Flow rate 2.4m 3 / h, fluid specific gravity 841kg / m 3 , fluid specific heat 0.42kcal / kg, fluid inlet temperature 178 ° C, fluid outlet temperature 168 ° C, fluid inlet / outlet temperature difference 10 ° C, from fluid outlet to inlet Fourteen temperature sensors were arranged on the surface of the roll shell 11 at substantially equal intervals and measured.
[0021]
As a result, in order from the fluid outlet side, 146.8 148.8 [150.6 150.8 150.9 150.9 150.9 150.8 150.6 150.7 150.5 150.3] 149. 4 147.8. The temperature in [] is the effective length of the closed chamber containing the gas-liquid two-phase heat medium and the effective length of the processed object width is 960 mm. The temperature difference in this range is 0.6 ° C., and a good temperature distribution is exhibited regardless of the fluid inlet / outlet temperature difference of 10 ° C. The temperature outside [] is the portion outside the effective length of the roll outside the effective space of the closed chamber, and heat is taken by the rotary drive shaft, and the temperature is slightly lowered.
[0022]
When the amount of heat released from the roll is determined, Q (kcal / h) = 10 × 2.4 × 841 × 0.42 = 8377 kcal / h = 9.86 kw. Here, when a flow rate V for obtaining this temperature difference of 0.6 ° C. is obtained without providing a closed chamber containing a gas-liquid two-phase heat medium, V (m 3 / h) = 8377 / (0. 6 × 841 × 0.42) = 40 (m 3 / h). This means that about 16.7 times the fluid flow rate is required as compared with the case where a closed chamber containing a gas-liquid two-phase heat medium is provided.
[0023]
Therefore, when a closed chamber containing a gas-liquid two-phase heat medium is provided, the fluid flow rate is 1 / 16.7 times the fluid flow rate. In this case, the cross-sectional area of the pipe and the rotary joint is 1 / 16.7. It is possible to reduce costs required for piping and a rotary joint. In addition, the reduction in the fluid flow rate leads to a reduction in the number of man-hours for piping and the installation space, and there is a great merit in cost reduction. Further, when the cross-sectional area of the flow channel is 1 / 16.7, the surface area of the piping is reduced to about 1/4 In addition, the heat radiation of the pipe is reduced to 1/4, so that energy can be saved. If the flow rate of the fluid is small, the pump for supplying the fluid may be small, and if the flow rate is 1 / 16.7, the capacity of the pump is usually about 1/10.
[0024]
The above description is for the case where the fluid inlet / outlet temperature difference is set to 10 ° C. The reason for setting the fluid inlet / outlet temperature difference to 10 ° C. is that the temperature distribution accuracy in the effective length of the roll is usually less than 5 ° C. in order to uniformly heat-treat the processed material. Need to be In other words, it is necessary to make the temperature difference between the fluid inlet and outlet less than 5 ° C. When the temperature difference between the fluid inlet and outlet becomes 5 ° C. or more, the heat treatment cannot be performed uniformly unless the flow rate is increased in accordance with the temperature difference between the fluid inlet and outlet. However, this is because by providing the closed chamber containing the gas-liquid two-phase heat medium, it is possible to perform a sufficiently uniform heat treatment without increasing the flow rate even when the fluid inlet / outlet temperature difference is 5 ° C. or more. That is, by providing a closed chamber containing a gas-liquid two-phase heat medium, it is possible to suppress an increase in the size of pipes, rotary joints, pumps, etc. due to an increase in flow rate particularly when the temperature difference between the fluid inlet and outlet is 5 ° C. or more. It has a remarkable effect.
[0025]
By the way, when the surface temperature of the roller (strictly speaking, the roll shell) fluctuates due to heat removal, the surface temperature of the roller is controlled to be constant by controlling the temperature of the heat medium fluid. The roller temperature does not follow the temperature of the roller due to a small heat transfer coefficient with the wall of the flow path, and a time delay occurs. In order to eliminate this delay, it is convenient to add an induction heating mechanism that causes the roller itself to generate Joule heat.
[0026]
8 and 9 show an embodiment of a heat medium flow roller to which an induction heating mechanism is added. In the embodiment shown in FIG. 8, an induction coil and an iron core are provided in a hollow portion of the heat medium flow roller shown in FIG. In FIG. 9, the induction heating mechanism 18 is disposed at a position near the outer peripheral surface of the heat medium flow roller shown in FIG. By adding the induction heating mechanism in this way, it is possible to quickly respond to a change in the processing temperature of the processing object. Note that the induction heating mechanism is not limited to the heat medium flow rollers shown in FIGS. 1 and 6, and may be added to the heat medium flow rollers shown in FIGS. 4, 5, and 7.
[0027]
In each of the above embodiments, an appropriate amount of water 15 or the like serving as a gas-liquid two-phase heat medium is injected into the closed chamber, but a heat pipe may be inserted into the closed chamber. The plurality of closed chambers are independent of each other, but may be connected to each other, for example, at both ends of the closed chamber. The communication passage may be provided in the flange of the rotary drive shaft, and in this case, the closed chamber penetrates through the thickness of the roll shell.
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to greatly reduce the flow rate of the heat medium fluid flowing through the inside of the roller, and it is possible to reduce equipment costs by employing smaller piping and a pump. Further, energy saving can be achieved by reducing the heat radiation amount of the pipe and the pump capacity. That is, even if the temperature difference between the fluid inlet and outlet is large, it is possible to uniformly heat-treat the processing object.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a heat medium flow roller according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a part of the heat medium flow roller shown in FIG.
FIG. 3 is a diagram illustrating the operation of the heat medium flow roller shown in FIG.
FIG. 4 is a cross-sectional view of a part of a heat medium flow roller according to another embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing a heat medium flow roller according to another embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing a heat medium flow roller according to another embodiment of the present invention.
FIG. 7 is a longitudinal sectional view showing a heat medium flow roller according to another embodiment of the present invention.
FIG. 8 is a longitudinal sectional view showing a heat medium flow roller according to another embodiment of the present invention.
FIG. 9 is a longitudinal sectional view showing a heat medium flow roller according to another embodiment of the present invention.
FIG. 10 is a longitudinal sectional view showing a conventional heat medium flow roller.
[Explanation of symbols]
4 Rotary Joint 5 Oil Storage Tank 7 Heat Exchanger for Heating or Cooling 8 Temperature Sensor 9 Pump 10 Processed Material 11 Roll Shell 12 Rotation Drive Shaft 13 Closed Chamber 14 Heat Medium Flow Tube 15 Heat Medium Forming Two Phases of Gas and Liquid 16 Heat Medium flow hole 17 Core 18 Induction heating mechanism

Claims (3)

内部に熱媒通流路を有し、前記熱媒通流路を流れる熱媒流体により表面に当接する処理物を加熱又は奪熱処理する熱媒通流ローラであって、前記ローラの肉厚内部に前記ローラの長手方向に伸びる気液2相の熱媒体を封入する密閉室を設けてなることを特徴とする熱媒通流ローラ。A heat medium flow roller that has a heat medium flow passage therein, and heats or heat-treats a processing object abutting on a surface by a heat medium fluid flowing through the heat medium flow passage, wherein the thickness inside the roller is A heat medium flow roller, wherein a closed chamber for enclosing a gas-liquid two-phase heat medium extending in the longitudinal direction of the roller is provided. 内部に熱媒通流路を有し、前記熱媒通流路を流れる熱媒流体により表面に当接する処理物を加熱又は奪熱処理する熱媒通流ローラであって、前記ローラの肉厚内部に、前記ローラの長手方向に伸びる気液2相の熱媒体を封入する密閉室を前記ローラの外周面に沿って複数個設けると共に、前記密閉室内を長手方向に貫通する管を設け、前記管を前記熱媒通流路としてなることを特徴とする熱媒通流ローラ。A heat medium flow roller that has a heat medium flow passage therein, and heats or heat-treats a processing object abutting on a surface by a heat medium fluid flowing through the heat medium flow passage, wherein the thickness inside the roller is A plurality of sealed chambers for enclosing a gas-liquid two-phase heat medium extending in the longitudinal direction of the roller along the outer peripheral surface of the roller, and a pipe penetrating the sealed chamber in the longitudinal direction. As the heat medium passage. 電磁誘導発熱機構を備えてなる請求項1又は請求項2に記載の熱媒通流ローラ。The heat medium flow roller according to claim 1 or 2, further comprising an electromagnetic induction heating mechanism.
JP2002276652A 2002-09-24 2002-09-24 Heat transfer roller Expired - Fee Related JP3958166B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002276652A JP3958166B2 (en) 2002-09-24 2002-09-24 Heat transfer roller
DE60331713T DE60331713D1 (en) 2002-09-24 2003-09-23 Thermal treatment roller and temperature control device provided therefor
EP03021449A EP1403607B1 (en) 2002-09-24 2003-09-23 Thermal processing roller and temperature control apparatus for roller
US10/667,307 US6992272B2 (en) 2002-09-24 2003-09-23 Thermal processing roller and temperature control apparatus for roller
CNB031603505A CN100473513C (en) 2002-09-24 2003-09-24 Hot-working roller
US11/186,861 US7420141B2 (en) 2002-09-24 2005-07-22 Thermal processing roller and temperature control apparatus for roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276652A JP3958166B2 (en) 2002-09-24 2002-09-24 Heat transfer roller

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006116738A Division JP2006207826A (en) 2006-04-20 2006-04-20 Heat medium conduction roller
JP2006116737A Division JP4357497B2 (en) 2006-04-20 2006-04-20 Heat transfer roller

Publications (2)

Publication Number Publication Date
JP2004116538A true JP2004116538A (en) 2004-04-15
JP3958166B2 JP3958166B2 (en) 2007-08-15

Family

ID=32272468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276652A Expired - Fee Related JP3958166B2 (en) 2002-09-24 2002-09-24 Heat transfer roller

Country Status (1)

Country Link
JP (1) JP3958166B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107676A (en) * 2005-10-17 2007-04-26 Tokuden Co Ltd Heat medium flowing roller
EP1784051A1 (en) * 2005-11-04 2007-05-09 Tokuden Co., Ltd Fluid heating device and heating medium passing roller device using the same
JP2007168222A (en) * 2005-12-21 2007-07-05 Tokuden Co Ltd Heating medium circulation roller device
JP2007210260A (en) * 2006-02-13 2007-08-23 Tokuden Co Ltd Fluid heating equipment
JP2008002562A (en) * 2006-06-22 2008-01-10 Tokuden Co Ltd Heat transfer medium flowing roller
JP2009283159A (en) * 2008-05-20 2009-12-03 Tokuden Co Ltd Induction heat generating roller device
JP2011063028A (en) * 2010-11-12 2011-03-31 Tokuden Co Ltd Heating medium circulation roller device
JP2013208918A (en) * 2013-07-05 2013-10-10 Dainippon Printing Co Ltd Method and apparatus for manufacturing decorative plate
KR20150122583A (en) * 2014-04-23 2015-11-02 토쿠덴 가부시기가이샤 Induction Heated Roll Apparatus
KR20160035386A (en) * 2014-09-23 2016-03-31 우관수 Heating Roller with Simple Structure
JP2017101915A (en) * 2015-11-20 2017-06-08 住友化学株式会社 Film heating device and process of manufacturing film
WO2017099438A1 (en) * 2015-12-07 2017-06-15 김선기 Heating roller of fabric making machine
JP2017124521A (en) * 2016-01-13 2017-07-20 トヨタ自動車株式会社 Chill roll
JP2019075357A (en) * 2017-02-13 2019-05-16 トクデン株式会社 Induction heated roll apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107676A (en) * 2005-10-17 2007-04-26 Tokuden Co Ltd Heat medium flowing roller
EP1784051A1 (en) * 2005-11-04 2007-05-09 Tokuden Co., Ltd Fluid heating device and heating medium passing roller device using the same
JP2007168222A (en) * 2005-12-21 2007-07-05 Tokuden Co Ltd Heating medium circulation roller device
JP4657096B2 (en) * 2005-12-21 2011-03-23 トクデン株式会社 Heat medium flow roller device
KR101286409B1 (en) * 2005-12-21 2013-07-18 토쿠덴 가부시기가이샤 Heating fluid medium passing roller device
JP2007210260A (en) * 2006-02-13 2007-08-23 Tokuden Co Ltd Fluid heating equipment
JP2008002562A (en) * 2006-06-22 2008-01-10 Tokuden Co Ltd Heat transfer medium flowing roller
JP2009283159A (en) * 2008-05-20 2009-12-03 Tokuden Co Ltd Induction heat generating roller device
JP2011063028A (en) * 2010-11-12 2011-03-31 Tokuden Co Ltd Heating medium circulation roller device
JP2013208918A (en) * 2013-07-05 2013-10-10 Dainippon Printing Co Ltd Method and apparatus for manufacturing decorative plate
KR20150122583A (en) * 2014-04-23 2015-11-02 토쿠덴 가부시기가이샤 Induction Heated Roll Apparatus
JP2015207508A (en) * 2014-04-23 2015-11-19 トクデン株式会社 Induction heating roller device
US10212764B2 (en) 2014-04-23 2019-02-19 Tokuden Co., Ltd. Induction heated roll apparatus
KR102279700B1 (en) * 2014-04-23 2021-07-20 토쿠덴 가부시기가이샤 Induction Heated Roll Apparatus
KR20160035386A (en) * 2014-09-23 2016-03-31 우관수 Heating Roller with Simple Structure
KR101639795B1 (en) 2014-09-23 2016-07-14 우관수 Heating Roller with Simple Structure
JP2017101915A (en) * 2015-11-20 2017-06-08 住友化学株式会社 Film heating device and process of manufacturing film
WO2017099438A1 (en) * 2015-12-07 2017-06-15 김선기 Heating roller of fabric making machine
JP2017124521A (en) * 2016-01-13 2017-07-20 トヨタ自動車株式会社 Chill roll
JP2019075357A (en) * 2017-02-13 2019-05-16 トクデン株式会社 Induction heated roll apparatus
JP7079473B2 (en) 2017-02-13 2022-06-02 トクデン株式会社 Induction heating roller device

Also Published As

Publication number Publication date
JP3958166B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP4657096B2 (en) Heat medium flow roller device
JP2004116538A (en) Heat media flowing roller
US7420141B2 (en) Thermal processing roller and temperature control apparatus for roller
JP3842210B2 (en) Temperature control device for heat treatment roller
JP4357497B2 (en) Heat transfer roller
TWI510663B (en) Substrate handling roller
JP4963042B2 (en) Heat transfer roller
JP4716705B2 (en) Heat treatment roller
JP5234847B2 (en) Heat medium flow roller device
WO2005038373A1 (en) High-pressure heat treatment furnace
JP2006207826A (en) Heat medium conduction roller
JP4587595B2 (en) Heat roller processing machine
US5035610A (en) Internal heat exchange tubes for inductrial furnaces
JP4766984B2 (en) Heat medium flow roller
JP4903478B2 (en) Fluid flow heating or cooling device
JP7307589B2 (en) heat treatment furnace
JPH0913121A (en) Rotating shaft of support roll in heating furnace or cooling device
JPH0548394Y2 (en)
JP2000353588A (en) Induction heating roller device
KR100399232B1 (en) Continuous annealing furnace roll using the principle of rotary heat pipe
RU2035682C1 (en) Heat exchanging apparatus
JPH11237184A (en) Heat treatment furnace
JPS6235010Y2 (en)
CN110021684A (en) Cooling device and annealing furnace
JPH09194929A (en) Hearth roll for continuous heat treatment furnace for metallic strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Ref document number: 3958166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees