JP2004116322A - Exhaust gas posttreatment device of internal combustion engine - Google Patents

Exhaust gas posttreatment device of internal combustion engine Download PDF

Info

Publication number
JP2004116322A
JP2004116322A JP2002277927A JP2002277927A JP2004116322A JP 2004116322 A JP2004116322 A JP 2004116322A JP 2002277927 A JP2002277927 A JP 2002277927A JP 2002277927 A JP2002277927 A JP 2002277927A JP 2004116322 A JP2004116322 A JP 2004116322A
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
exhaust
hole
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002277927A
Other languages
Japanese (ja)
Inventor
Reiko Domeki
百目木 礼子
Yoshihisa Takeda
武田 好央
Sei Kawatani
川谷 聖
Satoshi Hiranuma
平沼 智
Kenji Kawai
河合 健二
Takeshi Hashizume
橋詰 剛
▲高▼橋 嘉則
Yoshinori Takahashi
Ritsuko Shinozaki
篠▲崎▼ 律子
Shinichi Saito
斎藤 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002277927A priority Critical patent/JP2004116322A/en
Publication of JP2004116322A publication Critical patent/JP2004116322A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas posttreatment device of an internal combustion engine which can facilitate incinerating and regenerating a filter for collecting a particulate, etc., and which can be simplified. <P>SOLUTION: The exhaust gas posttreatment device of the internal combustion engine includes a filter casing 4 having the filter 6 interposed between a casing inlet 402 and a casing outlet 403, a first hole group H1 having a plurality of inlet holes 11 for guiding an exhaust gas in a first direction, a second hole group H2 formed in the filter in a state which does not interfere with the first group and having a plurality of outlet holes 12 for guiding the exhaust gas in a direction different from the first direction, a transmission passage r1 which can transmit the exhaust gas flowing from the inlet 402 to the holes 11 through a wall (w) between the inlet and the outlet and which can flow out to the outlet 403, a bypass passage r2 for exhausting the gas to the outlet c2 from the inlet c1 of the inlet hole from the outlet via a bypass tube 406, and a controller 8 for controlling a control valve 7 in response to an exhaust pressure pg or a filter temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気ガス中よりパティキュレート等を捕集する内燃機関の排気後処理装置、特に、フィルタによって捕集されるパティキュレートを適時に焼却再生する内燃機関の排気後処理装置に関する。
【0002】
【従来の技術】
内燃機関、特に、ディーゼルエンジンの排ガス中には、カーボン微粒子等を核とするパティキュレートが混入しており、このパティキュレートを大気中に放出することなく捕集するためにディーゼルエンジンの排ガス流路上にはパティキュレートフィルタが装着される。このパティキュレートフィルタはパティキュレート堆積量が増加すると、これを焼却して再生する必要がある。なお、ここでのパティキュレートは600℃程度の高温で酸素により酸化処理可能であるが、焼却可能温度を維持する運転域は比較的短く、このような運転域に達する期間は比較的狭いものとなっている。
ここで、パティキュレートはすすを主成分とするINSOL成分(不溶性成分)と、未燃燃料、潤滑油、硫酸ミスト等を主成分とするSOF分(可溶性有機成分)とからなる。
【0003】
なお、特開平5−222918号公報(特許文献1)には、ディーゼルエンジン11の排気管12に再生用ヒータ14およびバーナ16を有するDPF13を備え、電子制御ユニット25においてこれらヒータ14およびバーナ16を制御する技術が開示される。そして、特許文献1では、エンジン11の動作状態での再生開始に際して、ヒータ16に通電してDPF13の再生を所定時間実行させるもので、この再生動作中にエンジン11が停止されたときは、バッテリ保護のためヒータ14に対する通電を断ち、バーナ16に点火して所定の再生動作を完了させるものである。
【0004】
又、特開2001−73743号公報(特許文献2)には、フィルタ再生を行なう場合、排気通路10を少し開き、バイパス通路14を略全開にするように開度制御弁18を制御することで、機関運転中の排気の一部をフィルタ12に導き、排気熱を利用することでバーナ装置20で消費される燃料を低減する技術が開示されている。
【0005】
【特許文献1】
特開平5−222918号
【特許文献2】
特開2001−73743号
【0006】
【発明が解決しようとする課題】
上述の両特許文献のように、フィルタを強制的に加熱し、堆積したパティキュレートを燃焼除去する手法においても、パティキュレート堆積条件や温度条件によってフィルタの溶損を招く虞れがある上に、この種強制再生手段はフィルタを高温に維持する必要上、燃費悪化を招き易いという問題もある。また、フィルタの下流部より排気ガスやエアなどを逆流させ、堆積したパティキュレートをフィルタ上流部より排出させて、回収する手法があるが、この場合、広いシステム搭載スペースを必要とするという問題がある。
【0007】
このようにディーゼルパティキュレート使用に際して、不可欠である再生手段は何れも確立されていない状態にある。
本発明は、上述の課題に基づき、内燃機関の排気ガス中よりパティキュレート等を捕集するフィルタの焼却再生処理を容易化でき、装置の簡素化を図れる内燃機関の排気後処理装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明は、排気ガス中のパティキュレートを捕集するフィルタをケーシング入口及びケーシング出口間に介装したフィルタケーシングと、上記フィルタに形成され、相互に並列状を成し第1方向に排気ガスを導く複数の流入穴からなる第1穴郡と、同第1穴郡と干渉しない状態で上記フィルタに形成され、相互に並列状を成し上記第1方向とは異なる方向に排気ガスを導く複数の流出穴からなる第2穴郡と、上記ケーシング入口より流入穴に流入した排気ガスが上記流入穴と流出穴間の壁部を透過し流出穴よりケーシング出口に流出できる透過路と、上記流入穴の流入口より流出口に達した排気ガスが制御弁を備えたバイパス管を経て上記ケーシング出口より排出されるバイパス路と、上記ケーシング入口での排気圧又はフィルタ温度に応じて上記制御弁を制御する制御手段とを備えたことを特徴とする。
このように、排気圧が増加する運転域又はフィルタ温度が低い運転域で制御弁を開作動させることによって、排気ガスをバイパス路より排出するので、パティキュレートがフィルタに過度に堆積せず、再生燃焼時のフィルタ温度が過度に上昇せず、フィルタの溶損による耐久性低下を防止できる。
【0009】
請求項2の発明は、請求項1記載の内燃機関の排気後処理装置において、上記制御手段は排気圧が過剰堆積判定圧を越えたときに上記制御弁を開作動するよう制御することを特徴とする。
このようにフィルタがケーシング入口より流入穴に流入した排気ガスのパティキュレートを捕集し、その堆積量が過剰堆積量に達すると制御手段が制御弁を開き、排気ガスをバイパス路より排出するので、パティキュレートがフィルタに過度に堆積せず、再生燃焼時のフィルタ温度が過度に上昇せず、フィルタの溶損による耐久性低下を防止できる。しかも、フィルタケーシングにバイパス路が形成され、装置のコンパクト化を図れる。
【0010】
請求項3の発明は、請求項1記載の内燃機関の排気後処理装置において、少なくとも上記流出穴の内壁には触媒が担持されることを特徴とする。
このように少なくとも流入穴を通過する排気ガスが流入穴の触媒により浄化反応を促進され、排気ガス浄化を促進できる。
好ましくは上記触媒は酸化触媒であるとよい。この場合、パティキュレート中SOF成分を酸化して浄化できると共に、酸化触媒により生成されたNO2によりパティキュレート中のINSOL成分を酸化燃焼できる。
【0011】
請求項4の発明は、請求項1記載の内燃機関の排気後処理装置において、上記流入穴及び流出穴の内壁に触媒が担持され、上記バイパス路は上記バイパス管を経た排気ガスが上記第2穴郡の流出穴を通過した上で、上記ケーシング出口より排出されるように形成されたことを特徴とする。
この場合、フィルタの堆積量が過剰堆積量に達した際に、制御手段が制御弁を開くと、排気ガスは流入路、バイパス管、流出路をこの順に通過してケーシング出口より排出されるので、この間に流入路及び流出路の触媒に排気ガスが接する頻度が増え排気ガスの浄化処理及び、パティキュレートの焼却を十分に促進できる。
【0012】
【発明の実施の形態】
図1には一実施形態として本発明を適用した内燃機関の排気後処理装置1を示した。この排気後処理装置1はエンジン2の図示しない燃焼室より延出する排気路Rに装着される。
排気路Rはその要部を成す排気管3u、3dの途中に排気後処理装置1、その下流にマフラー5を順次接続して形成される。
【0013】
排気管3の途中の排気後処理装置1は金属筒状のフィルタケーシング(以後単にケーシングと記す)4を備える。ケーシング4は膨出部401内に排気ガス中のパティキュレートを捕集するパティキュレートフィルタ(以後単にフィルタと記す)6を収容し、膨出部401の外周部にケーシング入口402及びケーシング出口403を形成され、しかも、膨出部401の側壁に沿ってバイパス管406を一体的に取付けている。
図1乃至図3に示すように、ケーシング4の膨出部401は矩形箱状を成し、その上壁の一端より流入管部404を延出形成し、側方縦壁より流出管部405を延出形成し、下壁の他端よりバイパス管406を延出形成する。
【0014】
流入管部404は上流側の排気管3uに図示しない締結手段で連通状態で一体結合され、排気管3uの排気ガスを膨出部の上部の流入空間e1に導入できる。流出管部405は下流側の排気管3dに図示しない締結手段で連通状態で一体結合され、膨出部401の側部(図2では下側)の流出空間e2の排気ガスを下流側の排気管3dに流出できる。バイパス管406は制御弁7を備えた延出バイパス管(バイパス管406と同様の断面形状を成す)407に図示しない締結手段で連通状態で一体結合され、膨出部401の下部(図3参照)の短絡空間e3の排気ガスを延出バイパス管407に流出できる。延出バイパス管407の延出端は流出管部405のジョイントqに図示しない締結手段で連通状態で一体的に結合され、短絡空間e3の排気ガスを下流側の流出管部405、排気管3dに排出できる。
【0015】
制御弁7は比例電磁弁であり、制御手段であるコントローラ8の弁駆動信号を受けることで、延出バイパス管407を開閉する図示しないバタフライ弁を駆動し、通路断面の開度を全閉より全開の間で増減調整可能に形成される。
フィルタ6はセラミック製、すなわち、Mg、Al、Siを主成分とするコージェライトから成り、全体はブロック状を成し、内部に多数の排気ガス通路が形成される。
即ち、フィルタ6は第1方向である上下方向Z(図3参照)に延びるように形成してなる複数の流入穴11を相互に間隔aを空けて並列状を成した状態で長手方向Xに順次形成され、第1穴郡H1を形成される。
【0016】
ここで、各流入穴11はフィルタ6の上壁部601に形成される流入口c1からの排気ガスを、下壁部602に形成される流出口c2及び短絡空間e3に導いており、即ち、第1方向に排気ガスを導く。
更に、フィルタ6は互いに隣合う各流入穴11間に流出穴12をそれぞれ配備する。ここで流出穴12と隣合う各流入穴11との間の壁部wはここを排気ガスが透過可能なように所定厚さtに設定される。
【0017】
各流出穴12はフィルタ6の左右側壁部603、604、上下側壁601、602で覆われ、左側壁部603に形成された矩形穴d1を介し流出空間e2に連通している。即ち、ここで、各流出穴12は隣合う各流入穴11より壁部wを透過してくる排気ガスを、左側壁部603の矩形穴d1を介し流出空間e2に導いており、即ち、第2方向に排気ガスを導く。
このように第1方向に排気ガスを導く各流入穴11からなる第1穴郡H1と、第1方向とは異なる第2方向に排気ガスを導く各流出穴12からなる第2穴郡H2とは所定量t離れ、相互に干渉しない状態でフィルタ6に形成されている。
【0018】
フィルタ6の流入穴11及び流出穴12の内壁には酸化触媒prが担持される。
酸化触媒prは、エンジン2から排出される排気中の一酸化窒素(NO)を酸素Oで酸化して高活性の二酸化窒素(NO)に生成し、高活性の二酸化窒素(NO)で酸化し、捕集済みパティキュレートの酸化、焼却を促進できる。 制御手段であるコントローラ8は、ケーシング入口402に装着される圧力センサ13の排気圧力pg及びエンジン回転数センサ14よりエンジン回転数Neを検出する。
【0019】
その上で、所定エンジン回転数Ne1での排気圧力pgnの平均値を順次更新する。その上で、最新の排気圧力pgnに相当する制御弁7の駆動出力DUnを図5の駆動出力算出マップm1より導出し、同駆動出力DUnで制御弁7を駆動する。ここでの駆動出力算出マップm1は排気圧力pg0以下で弁全閉出力DU=0%(非作動)を、排気圧力pg1以上で弁全開出力DU=100%を設定し、排気圧力pg0〜pg1間で排気圧力増に応じて所定比率で弁開出力DUが増加するように設定される。
このような排気後処理装置1は、図示しないエンジンの駆動時にコントローラ8がエンジン回転数Ne、排気圧力pgnを採り込み、排気圧力pgnの平均値を順次更新し、最新の排気圧力pgnに相当する駆動出力DUnを導出し、同駆動出力DUnで制御弁7を駆動する。
【0020】
この際、排気圧力pgnが低く、弁全閉出力DU=0%(非作動)の場合、バイパス管7b、即ち、バイパス路r2が閉じる。この結果、ケーシング入口402より流入穴11に流入した排気ガスが、流入穴11と流出穴12間の壁部wを透過し流出穴12の矩形穴d1よりケーシング出口403に流出できる透過路r1を形成する。この際、排気ガス中のパティキュレートは流入穴11の壁面に捕集される。しかも、排気ガス温度が比較的高い運転域に達すると、流入穴11の壁面のパティキュレート中のINSOL成分は酸化触媒prにより生成されたNO2により比較的低温で酸化焼却され、フィルタの再生処理が成される。又、パティキュレート中のSOF成分が酸化触媒によりPrにより酸化され浄化される。
【0021】
一方、流入穴11の壁面のパティキュレートの酸化燃焼が進まない運転が継続し、パティキュレートの堆積量が増加し、排気圧力pgnの平均値が更新される毎に、最新の排気圧力pgnが排気圧力pg0を上回ったとする。
この場合、コントローラ8は最新の排気圧力pgn相当の弁開出力DUnを導出し、同値で制御弁7を駆動し、出力値相当の弁開度に制御弁7を切換え保持する。これによりバイパス管7b、即ち、バイパス路r2が所定量あるいは全開作動し、ケーシング入口402より流入穴11に流入した排気ガスが流入口c1より流出口c2に達し、短絡空間e3、所定開度の制御弁7、バイパス管7を経てケーシング出口403に流出できる。このように、排気ガスの一部がバイパス路r2を通過し、流入穴11の壁面のパティキュレートの増加が規制され、過度な堆積を防げ、燃焼時における過度なフィルタ温度の上昇を防止でき、排気後処理装置1の耐久性を確保できる。しかも、排気ガスの一部が流入穴11を通過する際に酸化触媒prの働きを受けてHC、CO及びSOF成分の浄化反応を促進でき、排気ガス浄化機能を発揮できる。
【0022】
上述の一実施形態では、フィルタ入口の排気圧力Pgnが排気圧力Pgoを越えると制御弁7を徐々に開弁制御するようにしたが、これに限定されるものではない。例えば、フィルタ入口の排気圧力が同一のエンジン回転数Nebにおいて増加する場合、或いはフィルタ温度が設定温度温度以下の運転時間が所定時間以上継続した時、又は、設定温度以下の頻度が高いときに、制御弁を開制御しても良いし、更に、その排気圧力の増大度合、フィルタ温度に応じて開度を大きく制御しても良い。
【0023】
図6乃至図7には本発明の他の実施形態としての排気後処理装置1aを示した。
ここでの排気後処理装置1aは図1の排気後処理装置1と比較して、流入路11aと流出路12a及びバイパス路r2aの構成が相違する以外はほぼ同様の構成を採ることより、重複説明を略し、相違部分を主に説明する。なお、同一部材には符号aを添えて記す。
【0024】
排気後処理装置1aのフィルタ6aは矩形ブロック状を成し内部を上下に層状に区分し、第1穴郡H1と第2穴郡H2を上下に交互に配備する。このため、第1穴郡H1と第2穴郡H2とは相互に干渉しない状態でフィルタ6に上下に積層状に形成されている。更に、フィルタ6aはその上下壁をケーシングの膨出部401aに上下よりシール材を介して挟持され、4方の側壁は膨出部401aにより所定空間、即ち、流入空間e1、流出空間e2、短絡空間e3、戻し空間e4が形成されている。
【0025】
フィルタ6aはその長手方向Xに排気ガスを導くよう形成してなる複数の流入穴11aを相互に間隔jをあけて並列状を成した状態で形成され、第1穴郡H1を形成される。各流入穴11aはケーシング入口402側の流入空間e1に対向する流入口c1からの排気ガスを、短絡空間e3に対向する流出口c2に導いており、即ち、第1方向に排気ガスを導く。
【0026】
更に、図7に示すように、フィルタ6aは第1穴郡H1の上下側に互いに並列配備された複数の流出穴12aをそれぞれ形成される。ここで、各流出穴12aは、図6に示すように、戻し空間e4と対向する流入口d2からの排気ガスを流出空間e2に導いており、即ち、第2方向に排気ガスを導く。
各流出穴12aと上下方向で隣合う各流入穴11aとの間の壁部waはここを排気ガスが透過可能なように所定厚さtaに設定される。ここでもフィルタ6の流入穴11及び流出穴12の内壁には酸化触媒prが担持される。
【0027】
ケーシングの膨出部401aの側壁近傍に戻しバイパス管407aが一体的取付けられる。この戻しバイパス管407aは途中に制御弁7aを備え、短絡空間e3の排気ガスを戻し空間e4に戻すように形成されている。
制御弁7aは制御弁7と同様に形成される。制御手段であるコントローラ8aは、コントローラ8と同様の制御機能を備える。
このような、排気後処理装置1aは、排気後処理装置1と同様にエンジン回転数Ne、排気圧力pgn相当の駆動出力DUnで制御弁7を駆動する。
【0028】
この際、排気圧力pgnが低く、弁全閉出力DU=0%(非作動)の場合、戻しバイパス管407a、即ち、バイパス路r2が閉じ、流入穴11aに流入した排気ガスが、流入穴11aと流出穴12a間の壁部waを透過し流出穴12aより流出空間e2を経てケーシング出口403に流出でき、この際、排気ガス中のパティキュレートは流入穴11aの壁面に捕集され、排気ガス温度が比較的高い運転域に達すると、パティキュレート中のINSOL成分は酸化触媒prにより生成されたNO2により比較的低温で酸化燃焼され、フィルタの再生処理が成される。又、パティキュレート中のSOF成分が酸化触媒Prにより酸化され、浄化される。
【0029】
一方、流入穴11aのパティキュレートの堆積量が増加し、最新の排気圧力pgnが排気圧力pg0を上回ったとする。
この場合、コントローラ8aは排気圧力pgn相当の弁開出力DUnで制御弁7aを駆動し、出力値相当の弁開度に制御弁7aを切換える。これにより戻しバイパス管407a、即ち、バイパス路r2が所定量開き、流入穴11aの排気ガスが戻しバイパス管407a、短絡空間e3、流出穴12a、流出空間e2を経てケーシング出口403に流出でき。このように、排気ガスの一部あるいは全部がバイパス路r2を通過し、流入穴11aのパティキュレートの増加が規制され、過度な堆積を防げ、燃焼時における過度なフィルタ温度の上昇を防止でき、排気後処理装置1aの耐久性を確保できる。特に、排気ガスの一部が流入穴11a及び流出穴12aを通過する際に酸化触媒prとの接触頻度が十分に増加しており、排気ガス中のHC、CO及びSOF成分の浄化反応を十分に促進でき、排気ガス浄化機能を十分に発揮できる。
【0030】
なお、図6、7のケーシング入口402aと対向する流入空間e1を十分な容量とした上で消音機能を付加してもよい。この場合、別途マフラーを設ける必要が無くなり、排気系の圧力損失をより低減でき、排気系の簡素化を図れるという利点がある。
【0031】
【発明の効果】
以上のように、請求項1の発明では、フィルタがケーシング入口より流入穴に流入した排気ガスのパティキュレートを捕集し、ケーシング入口での排気圧又はフィルタ温度に応じて上記制御弁を制御することによって、排気圧が増加する、或いは、フィルタ温度が低い運転域で制御弁を開作動させることによって、パティキュレートがフィルタに過度に堆積せず、自己着火による燃焼時のフィルタ温度が過度に上昇せず、フィルタの溶損による耐久性低下を防止できる。
【0032】
請求項2の発明では、フィルタがケーシング入口より流入穴に流入した排気ガスのパティキュレートを捕集し、その堆積量が過剰堆積量に達すると制御手段が制御弁を開き、排気ガスをバイパス路より排出するので、パティキュレートがフィルタに過度に堆積せず、再生燃焼時のフィルタ温度が過度に上昇せず、フィルタの溶損による耐久性低下を防止できる。しかも、フィルタケーシングにバイパス路が形成され、装置のコンパクト化を図れる。
【0033】
請求項3の発明では、流入穴を通過する排気ガスが流入穴の触媒により浄化反応を促進され、排気ガス浄化を促進できる。
【0034】
請求項4の発明では、流入穴及び流出穴の内壁に触媒が担持されることによって、排気ガスは流入路、バイパス管、流出路をこの順に通過してケーシング出口より排出されるので、この間に流入路及び流出路の触媒に排気ガスが接する頻度が増え排気ガスの浄化処理及び、パティキュレートの焼却を十分に促進できる。
【図面の簡単な説明】
【図1】本発明の一実施形態例としての内燃機関の排気後処理装置の概略構成図である。
【図2】図1の排気後処理装置の平面断面図である。
【図3】図1の排気後処理装置の側面断面図である。
【図4】図1の排気後処理装置が用いるフィルタの排気ガス通過説明図である。
【図5】図1の排気後処理装置の再生制御で用いる制御弁の開度設定マップの特性線図である。
【図6】本発明の他の実施形態である排気後処理装置の平面断面図である。
【図7】図6の排気後処理装置の側面断面図である。
【符号の説明】
4     フィルタケーシング
402   ケーシング入口
403   ケーシング出口
407   バイパス管
6     フィルタ
7     制御弁
11    流入穴
12    流出穴
H1    第1穴郡
H2    第2穴郡
c1    流入口
c2    流出口
r1    透過路
r2    バイパス路
w     壁部
pg    排気圧
pgα   堆積判定圧
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust aftertreatment device for an internal combustion engine that collects particulates and the like from exhaust gas of an internal combustion engine, and more particularly, to an exhaust posttreatment device for an internal combustion engine that properly burns and regenerates particulates collected by a filter. .
[0002]
[Prior art]
In the exhaust gas of an internal combustion engine, in particular, a diesel engine, particulates having nuclei such as carbon fine particles are mixed therein, and in order to collect the particulates without releasing them to the atmosphere, the particulates are collected on an exhaust gas flow path of the diesel engine. Is equipped with a particulate filter. When the amount of accumulated particulates increases, the particulate filter must be incinerated and regenerated. The particulates here can be oxidized with oxygen at a high temperature of about 600 ° C., but the operating range for maintaining the incineration temperature is relatively short, and the period to reach such an operating range is relatively short. Has become.
Here, the particulates are composed of an INSOL component (insoluble component) containing soot as a main component and an SOF component (soluble organic component) containing unburned fuel, lubricating oil, sulfuric acid mist and the like as main components.
[0003]
JP-A-5-222918 (Patent Document 1) discloses that an exhaust pipe 12 of a diesel engine 11 is provided with a DPF 13 having a regeneration heater 14 and a burner 16, and the electronic control unit 25 includes the heater 14 and the burner 16. A technique for controlling is disclosed. In Patent Document 1, when starting regeneration in the operating state of the engine 11, the heater 16 is energized to perform regeneration of the DPF 13 for a predetermined time. When the engine 11 is stopped during this regeneration operation, a battery For protection, the power supply to the heater 14 is cut off, and the burner 16 is ignited to complete a predetermined regeneration operation.
[0004]
Japanese Patent Application Laid-Open No. 2001-73743 (Patent Document 2) discloses that, when performing filter regeneration, the opening degree control valve 18 is controlled so that the exhaust passage 10 is slightly opened and the bypass passage 14 is almost fully opened. A technique is disclosed in which part of exhaust gas during engine operation is guided to a filter 12 and the heat consumed by the burner device 20 is reduced by using exhaust heat.
[0005]
[Patent Document 1]
JP-A-5-222918 [Patent Document 2]
JP 2001-73743 A
[Problems to be solved by the invention]
As in the above-mentioned patent documents, in the method of forcibly heating the filter and burning and removing the accumulated particulates, there is a concern that the filter may be melted by the particulate accumulation conditions and temperature conditions, This type of forced regeneration means has a problem in that the filter must be maintained at a high temperature and fuel economy is likely to deteriorate. In addition, there is a method in which exhaust gas or air flows backward from the downstream part of the filter, and the accumulated particulates are discharged from the upstream part of the filter and collected.However, in this case, a large system mounting space is required. is there.
[0007]
As described above, none of the essential regeneration means has been established when using diesel particulates.
The present invention provides an exhaust aftertreatment device for an internal combustion engine that can simplify the incineration regeneration process of a filter that collects particulates and the like from the exhaust gas of the internal combustion engine and achieves simplification of the device based on the above-described problem. The purpose is to:
[0008]
[Means for Solving the Problems]
Means for Solving the Problems To achieve the above object, the invention according to claim 1 provides a filter casing in which a filter for trapping particulates in exhaust gas is interposed between a casing inlet and a casing outlet, and the filter casing, A first group of holes formed in parallel and formed of a plurality of inflow holes for guiding exhaust gas in a first direction; and a filter formed in the filter so as not to interfere with the first group of holes. A second hole group formed of a plurality of outflow holes for guiding exhaust gas in a direction different from the one direction, and an exhaust gas flowing into the inflow hole from the casing inlet penetrates a wall portion between the inflow hole and the outflow hole to outflow hole. A permeation path through which the exhaust gas can reach the outlet from the inlet of the inflow hole, and a bypass path through which the exhaust gas is discharged from the casing outlet via a bypass pipe having a control valve; Depending on the exhaust gas pressure or the filter temperature at the mouth, characterized in that a control means for controlling the control valve.
By opening the control valve in the operating range where the exhaust pressure increases or the operating temperature of the filter is low, exhaust gas is discharged from the bypass passage, so that particulates do not excessively accumulate on the filter, and regeneration is performed. The filter temperature during combustion does not rise excessively, and a decrease in durability due to erosion of the filter can be prevented.
[0009]
According to a second aspect of the present invention, in the exhaust aftertreatment device for an internal combustion engine according to the first aspect, the control means controls to open the control valve when the exhaust pressure exceeds the excessive deposition determination pressure. And
As described above, the filter collects the particulates of the exhaust gas flowing into the inflow hole from the casing inlet, and when the amount of accumulation reaches an excessive amount of accumulation, the control means opens the control valve and discharges the exhaust gas from the bypass passage. In addition, the particulates do not excessively accumulate on the filter, the filter temperature during regeneration combustion does not excessively increase, and a decrease in durability due to erosion of the filter can be prevented. In addition, a bypass path is formed in the filter casing, and the device can be made compact.
[0010]
According to a third aspect of the present invention, in the exhaust aftertreatment device for an internal combustion engine according to the first aspect, a catalyst is supported on at least an inner wall of the outflow hole.
As described above, at least the exhaust gas passing through the inflow hole is promoted by the catalyst in the inflow hole, so that the purification reaction can be promoted.
Preferably, the catalyst is an oxidation catalyst. In this case, the SOF component in the particulates can be oxidized and purified, and the INSOL component in the particulates can be oxidized and burned by NO2 generated by the oxidation catalyst.
[0011]
According to a fourth aspect of the present invention, in the exhaust aftertreatment device for an internal combustion engine according to the first aspect, a catalyst is supported on inner walls of the inflow hole and the outflow hole, and the bypass passage is provided with the exhaust gas passing through the bypass pipe. It is characterized in that it is formed so as to be discharged from the casing outlet after passing through the outflow holes of the hole group.
In this case, when the control means opens the control valve when the accumulation amount of the filter reaches the excessive accumulation amount, the exhaust gas passes through the inflow path, the bypass pipe, and the outflow path in this order, and is discharged from the casing outlet. During this time, the frequency of contact of the exhaust gas with the catalysts in the inflow passage and the outflow passage increases, so that the exhaust gas purification process and the burning of particulates can be sufficiently promoted.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an exhaust aftertreatment device 1 for an internal combustion engine to which the present invention is applied as one embodiment. The exhaust aftertreatment device 1 is mounted on an exhaust passage R extending from a combustion chamber (not shown) of the engine 2.
The exhaust path R is formed by sequentially connecting the exhaust after-treatment device 1 in the middle of the exhaust pipes 3u and 3d forming the main part thereof, and the muffler 5 downstream thereof.
[0013]
The exhaust aftertreatment device 1 in the middle of the exhaust pipe 3 includes a metal cylindrical filter casing (hereinafter simply referred to as a casing) 4. The casing 4 accommodates a particulate filter (hereinafter simply referred to as a filter) 6 for collecting particulates in the exhaust gas in the bulging portion 401, and a casing inlet 402 and a casing outlet 403 are provided on the outer peripheral portion of the bulging portion 401. The bypass pipe 406 is integrally formed along the side wall of the bulging portion 401.
As shown in FIGS. 1 to 3, the bulging portion 401 of the casing 4 has a rectangular box shape, an inflow pipe portion 404 extends from one end of an upper wall thereof, and an outflow pipe portion 405 extends from a side vertical wall. And the bypass pipe 406 is formed to extend from the other end of the lower wall.
[0014]
The inflow pipe section 404 is integrally connected to the upstream exhaust pipe 3u in a communicating state by a fastening means (not shown) so that exhaust gas from the exhaust pipe 3u can be introduced into the inflow space e1 above the bulging portion. The outflow pipe portion 405 is integrally connected to the downstream exhaust pipe 3d in a communicating state by fastening means (not shown), and the exhaust gas in the outflow space e2 on the side (lower side in FIG. 2) of the bulging portion 401 is exhausted on the downstream side. It can flow out to the pipe 3d. The bypass pipe 406 is integrally connected in communication with an extension bypass pipe (having a cross section similar to that of the bypass pipe 406) 407 provided with the control valve 7 by fastening means (not shown), and a lower portion of the bulging portion 401 (see FIG. 3). The exhaust gas in the short circuit space e3) can flow out to the extension bypass pipe 407. The extension end of the extension bypass pipe 407 is integrally connected to the joint q of the outflow pipe section 405 in a communicating state by a fastening means (not shown), and the exhaust gas in the short circuit space e3 is connected to the downstream outflow pipe section 405 and the exhaust pipe 3d. Can be exhausted.
[0015]
The control valve 7 is a proportional solenoid valve, and upon receiving a valve drive signal from a controller 8 as a control means, drives a butterfly valve (not shown) that opens and closes the extension bypass pipe 407 and changes the opening of the passage cross section from the fully closed state. It is formed so as to be adjustable between full open and closed.
The filter 6 is made of ceramic, that is, made of cordierite containing Mg, Al, and Si as main components, has a block shape as a whole, and has a number of exhaust gas passages formed therein.
That is, the filter 6 has a plurality of inflow holes 11 formed so as to extend in the vertical direction Z (see FIG. 3) which is the first direction, and is arranged in parallel in the longitudinal direction X with an interval a therebetween. The first hole group H1 is formed sequentially.
[0016]
Here, each inflow hole 11 guides the exhaust gas from the inflow port c1 formed in the upper wall section 601 of the filter 6 to the outflow port c2 formed in the lower wall section 602 and the short circuit space e3. The exhaust gas is guided in a first direction.
Further, the filter 6 has an outflow hole 12 between each inflow hole 11 adjacent to each other. Here, the wall portion w between the outflow hole 12 and each adjacent inflow hole 11 is set to a predetermined thickness t so that the exhaust gas can pass therethrough.
[0017]
Each outflow hole 12 is covered by left and right side walls 603 and 604 and upper and lower side walls 601 and 602 of the filter 6, and communicates with the outflow space e2 through a rectangular hole d1 formed in the left side wall 603. That is, each outflow hole 12 guides the exhaust gas passing through the wall portion w from each adjacent inflow hole 11 to the outflow space e2 through the rectangular hole d1 of the left side wall portion 603. The exhaust gas is guided in two directions.
As described above, the first hole group H1 including the respective inlet holes 11 for guiding the exhaust gas in the first direction and the second hole group H2 including the respective outlet holes 12 for guiding the exhaust gas in the second direction different from the first direction. Are formed on the filter 6 with a predetermined distance t apart and not interfering with each other.
[0018]
An oxidation catalyst pr is carried on the inner walls of the inflow hole 11 and the outflow hole 12 of the filter 6.
The oxidation catalyst pr oxidizes nitrogen monoxide (NO) in the exhaust gas discharged from the engine 2 with oxygen O 2 to generate highly active nitrogen dioxide (NO 2 ), and outputs highly active nitrogen dioxide (NO 2 ). And promotes the oxidation and incineration of the collected particulates. The controller 8 serving as control means detects the engine speed Ne from the exhaust pressure pg of the pressure sensor 13 attached to the casing inlet 402 and the engine speed sensor 14.
[0019]
Then, the average value of the exhaust pressure pgn at the predetermined engine speed Ne1 is sequentially updated. Then, the drive output DUn of the control valve 7 corresponding to the latest exhaust pressure pgn is derived from the drive output calculation map m1 in FIG. 5, and the control valve 7 is driven with the drive output DUn. The drive output calculation map m1 sets the valve fully closed output DU = 0% (non-operating) when the exhaust pressure is pg0 or less, and sets the valve fully open output DU = 100% when the exhaust pressure is pg1 or more. Is set so that the valve opening output DU increases at a predetermined ratio according to the increase in the exhaust pressure.
In such an exhaust after-treatment device 1, when the engine (not shown) is driven, the controller 8 takes in the engine speed Ne and the exhaust pressure pgn, sequentially updates the average value of the exhaust pressure pgn, and corresponds to the latest exhaust pressure pgn. The drive output DUn is derived, and the control valve 7 is driven with the drive output DUn.
[0020]
At this time, when the exhaust pressure pgn is low and the valve fully closed output DU = 0% (non-operation), the bypass pipe 7b, that is, the bypass passage r2 is closed. As a result, the exhaust gas flowing into the inflow hole 11 from the casing inlet 402 passes through the wall w between the inflow hole 11 and the outflow hole 12, and flows through the permeation path r1 through which the rectangular hole d1 of the outflow hole 12 can flow out to the casing outlet 403. Form. At this time, the particulates in the exhaust gas are collected on the wall surface of the inflow hole 11. Further, when the exhaust gas temperature reaches a relatively high operating range, the INSOL component in the particulates on the wall surface of the inflow hole 11 is oxidized and incinerated at a relatively low temperature by NO2 generated by the oxidation catalyst pr, and the filter regeneration processing is performed. Is done. Further, the SOF component in the particulates is oxidized and purified by Pr by the oxidation catalyst.
[0021]
On the other hand, the operation in which the oxidizing combustion of the particulates on the wall surface of the inflow hole 11 does not proceed continues, the accumulation amount of the particulates increases, and every time the average value of the exhaust pressure pgn is updated, the latest exhaust pressure pgn is exhausted. Assume that the pressure exceeds pg0.
In this case, the controller 8 derives the latest valve opening output DUn corresponding to the latest exhaust pressure pgn, drives the control valve 7 with the same value, and switches and holds the control valve 7 to the valve opening corresponding to the output value. As a result, the bypass pipe 7b, that is, the bypass path r2 is opened by a predetermined amount or fully opened, the exhaust gas flowing into the inlet hole 11 from the casing inlet 402 reaches the outlet c2 from the inlet c1, and the short-circuit space e3 has a predetermined opening degree. It can flow out to the casing outlet 403 via the control valve 7 and the bypass pipe 7. As described above, a part of the exhaust gas passes through the bypass path r2, the increase of the particulates on the wall surface of the inflow hole 11 is restricted, excessive accumulation can be prevented, and an excessive rise in filter temperature during combustion can be prevented. The durability of the exhaust after-treatment device 1 can be ensured. Moreover, when a part of the exhaust gas passes through the inflow hole 11, the reaction of the HC, CO and SOF components can be promoted by the action of the oxidation catalyst pr, and the exhaust gas purifying function can be exhibited.
[0022]
In the above-described embodiment, the control valve 7 is gradually opened when the exhaust pressure Pgn at the filter inlet exceeds the exhaust pressure Pgo. However, the present invention is not limited to this. For example, when the exhaust pressure at the filter inlet increases at the same engine speed Neb, or when the filter temperature is equal to or lower than the set temperature for an operation time equal to or longer than a predetermined time, or when the frequency at which the filter temperature is equal to or lower than the set temperature is high, The opening of the control valve may be controlled, or the opening may be controlled to be large according to the degree of increase of the exhaust pressure and the filter temperature.
[0023]
6 and 7 show an exhaust after-treatment device 1a as another embodiment of the present invention.
The exhaust after-treatment device 1a here has almost the same configuration as the exhaust after-treatment device 1 of FIG. 1 except that the configurations of the inflow channel 11a, the outflow channel 12a, and the bypass channel r2a are different. The description will be omitted, and the differences will be mainly described. Note that the same members are denoted by reference numeral a.
[0024]
The filter 6a of the exhaust after-treatment device 1a has a rectangular block shape and the inside is vertically divided into layers, and the first hole group H1 and the second hole group H2 are arranged alternately in the vertical direction. For this reason, the first hole group H1 and the second hole group H2 are formed on the filter 6 in a vertically stacked state without interfering with each other. The upper and lower walls of the filter 6a are sandwiched between the bulging portions 401a of the casing from above and below via a sealing material. A space e3 and a return space e4 are formed.
[0025]
The filter 6a is formed in a state where a plurality of inflow holes 11a formed so as to guide exhaust gas in the longitudinal direction X are arranged in parallel with an interval j therebetween, and a first hole group H1 is formed. Each inflow hole 11a guides the exhaust gas from the inflow port c1 facing the inflow space e1 on the casing inlet 402 side to the outflow port c2 facing the short circuit space e3, that is, guides the exhaust gas in the first direction.
[0026]
Further, as shown in FIG. 7, the filter 6a has a plurality of outflow holes 12a arranged in parallel on the upper and lower sides of the first hole group H1. Here, as shown in FIG. 6, each of the outflow holes 12a guides the exhaust gas from the inflow port d2 facing the return space e4 to the outflow space e2, that is, guides the exhaust gas in the second direction.
The wall wa between each of the outflow holes 12a and each of the inflow holes 11a vertically adjacent to each other is set to a predetermined thickness ta so that the exhaust gas can pass therethrough. Here, the oxidation catalyst pr is carried on the inner walls of the inflow hole 11 and the outflow hole 12 of the filter 6.
[0027]
A return bypass pipe 407a is integrally attached near the side wall of the bulging portion 401a of the casing. The return bypass pipe 407a includes a control valve 7a on the way, and is formed so as to return the exhaust gas in the short-circuit space e3 to the return space e4.
The control valve 7a is formed similarly to the control valve 7. The controller 8a, which is a control means, has the same control function as the controller 8.
The exhaust post-processing device 1a drives the control valve 7 with a drive output DUn corresponding to the engine speed Ne and the exhaust pressure pgn, similarly to the exhaust post-processing device 1.
[0028]
At this time, when the exhaust pressure pgn is low and the valve fully closed output DU = 0% (non-operating), the return bypass pipe 407a, that is, the bypass path r2 is closed, and the exhaust gas flowing into the inflow hole 11a flows into the inflow hole 11a. Through the wall wa between the outlet hole 12a and the outlet hole 12a, and can flow out to the casing outlet 403 through the outlet space e2. At this time, the particulates in the exhaust gas are collected on the wall surface of the inlet hole 11a, and the exhaust gas is exhausted. When the temperature reaches a relatively high operating range, the INSOL component in the particulates is oxidized and burned at a relatively low temperature by NO2 generated by the oxidation catalyst pr, and the filter is regenerated. Further, the SOF component in the particulate is oxidized and purified by the oxidation catalyst Pr.
[0029]
On the other hand, it is assumed that the accumulation amount of the particulates in the inflow hole 11a increases and the latest exhaust pressure pgn exceeds the exhaust pressure pg0.
In this case, the controller 8a drives the control valve 7a with the valve opening output DUn corresponding to the exhaust pressure pgn, and switches the control valve 7a to a valve opening degree corresponding to the output value. As a result, the return bypass pipe 407a, that is, the bypass path r2 is opened by a predetermined amount, and the exhaust gas in the inflow hole 11a can flow out to the casing outlet 403 via the return bypass pipe 407a, the short circuit space e3, the outflow hole 12a, and the outflow space e2. In this way, a part or all of the exhaust gas passes through the bypass passage r2, the increase in the particulates in the inflow hole 11a is regulated, excessive deposition can be prevented, and an excessive rise in filter temperature during combustion can be prevented. The durability of the exhaust after-treatment device 1a can be ensured. In particular, when a part of the exhaust gas passes through the inflow hole 11a and the outflow hole 12a, the frequency of contact with the oxidation catalyst pr is sufficiently increased, and the purification reaction of HC, CO, and SOF components in the exhaust gas is sufficiently performed. And the exhaust gas purifying function can be sufficiently exhibited.
[0030]
6 and 7, the inflow space e1 facing the casing inlet 402a may have a sufficient capacity, and may have a silencing function. In this case, there is no need to provide a separate muffler, and there is an advantage that the pressure loss of the exhaust system can be further reduced and the exhaust system can be simplified.
[0031]
【The invention's effect】
As described above, according to the first aspect of the present invention, the filter collects the particulates of the exhaust gas flowing into the inflow hole from the casing inlet, and controls the control valve according to the exhaust pressure at the casing inlet or the filter temperature. By increasing the exhaust pressure or opening the control valve in the operating range where the filter temperature is low, the particulates do not excessively accumulate on the filter and the filter temperature during combustion by self-ignition increases excessively. Without this, it is possible to prevent the durability from being lowered due to the melting of the filter.
[0032]
According to the second aspect of the present invention, the filter collects the particulates of the exhaust gas flowing from the casing inlet into the inflow hole, and when the amount of the accumulated gas reaches the excessive amount of accumulation, the control means opens the control valve to pass the exhaust gas to the bypass passage. Since the particulates are more discharged, the particulates do not excessively accumulate on the filter, the filter temperature during regeneration and combustion does not excessively increase, and a decrease in durability due to melting damage of the filter can be prevented. In addition, a bypass path is formed in the filter casing, and the device can be made compact.
[0033]
According to the third aspect of the present invention, the purification reaction of the exhaust gas passing through the inflow hole is promoted by the catalyst in the inflow hole, so that the exhaust gas purification can be promoted.
[0034]
According to the fourth aspect of the present invention, since the catalyst is carried on the inner walls of the inflow hole and the outflow hole, the exhaust gas passes through the inflow path, the bypass pipe, and the outflow path in this order, and is discharged from the casing outlet. The frequency of contact of the exhaust gas with the catalyst in the inflow passage and the outflow passage increases, and the exhaust gas purification processing and the burning of particulates can be sufficiently promoted.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust aftertreatment device for an internal combustion engine as one embodiment of the present invention.
FIG. 2 is a plan sectional view of the exhaust after-treatment device of FIG.
FIG. 3 is a side sectional view of the exhaust after-treatment device of FIG. 1;
FIG. 4 is an explanatory view showing passage of exhaust gas through a filter used by the exhaust after-treatment device of FIG.
FIG. 5 is a characteristic diagram of a control valve opening degree setting map used in the regeneration control of the exhaust after-treatment device in FIG. 1;
FIG. 6 is a plan sectional view of an exhaust after-treatment device according to another embodiment of the present invention.
FIG. 7 is a side sectional view of the exhaust after-treatment device of FIG. 6;
[Explanation of symbols]
4 Filter Casing 402 Casing Inlet 403 Casing Outlet 407 Bypass Pipe 6 Filter 7 Control Valve 11 Inlet Hole 12 Outlet Hole H1 First Hole Group H2 Second Hole Group c1 Inlet c2 Outlet r1 Permeation Path r2 Bypass Path w Wall pg Exhaust Atmospheric pressure pgα Deposition judgment pressure

Claims (4)

排気ガス中のパティキュレートを捕集するフィルタをケーシング入口及びケーシング出口間に介装したフィルタケーシングと、
上記フィルタに形成され、相互に並列状を成し第1方向に排気ガスを導く複数の流入穴からなる第1穴郡と、
同第1穴郡と干渉しない状態で上記フィルタに形成され、相互に並列状を成し上記第1方向とは異なる方向に排気ガスを導く複数の流出穴からなる第2穴郡と、
上記ケーシング入口より流入穴に流入した排気ガスが上記流入穴と流出穴間の壁部を透過し流出穴よりケーシング出口に流出できる透過路と、
上記流入穴の流入口より流出口に達した排気ガスが制御弁を備えたバイパス管を経て上記ケーシング出口より排出されるバイパス路と、
上記ケーシング入口での排気圧又はフィルタ温度に応じて上記制御弁を制御する制御手段とを備えた内燃機関の排気後処理装置。
A filter casing in which a filter for collecting particulates in exhaust gas is interposed between a casing inlet and a casing outlet,
A first hole group formed of a plurality of inflow holes formed in the filter and arranged in parallel with each other to guide exhaust gas in a first direction;
A second hole group formed of a plurality of outflow holes formed in the filter so as not to interfere with the first hole group and arranged in parallel with each other and guiding exhaust gas in a direction different from the first direction;
A permeation path through which exhaust gas flowing into the inflow hole from the casing inlet can pass through the wall between the inflow hole and the outflow hole and flow out to the casing outlet from the outflow hole,
A bypass passage through which the exhaust gas reaching the outlet from the inlet of the inlet hole is discharged from the casing outlet through a bypass pipe having a control valve;
Control means for controlling the control valve according to the exhaust pressure at the casing inlet or the filter temperature.
請求項1記載の内燃機関の排気後処理装置において、上記制御手段は排気圧が過剰堆積判定圧を越えたときに上記制御弁を開作動するよう制御することを特徴とする内燃機関の排気後処理装置。2. The exhaust after-treatment device for an internal combustion engine according to claim 1, wherein said control means controls to open said control valve when the exhaust pressure exceeds an excessive deposition determination pressure. Processing equipment. 請求項1記載の内燃機関の排気後処理装置において、
少なくとも上記流入穴の内壁には触媒が担持されることを特徴とする内燃機関の排気後処理装置。
The exhaust aftertreatment device for an internal combustion engine according to claim 1,
An exhaust aftertreatment device for an internal combustion engine, wherein a catalyst is carried on at least an inner wall of the inflow hole.
請求項1記載の内燃機関の排気後処理装置において、
上記流入穴及び流出穴の内壁に触媒が担持され、
上記バイパス路は上記バイパス管を経た排気ガスが上記第2穴郡の流出穴を通過した上で、上記ケーシング出口より排出されるように形成されたことを特徴とする内燃機関の排気後処理装置。
The exhaust aftertreatment device for an internal combustion engine according to claim 1,
A catalyst is supported on inner walls of the inflow hole and the outflow hole,
The exhaust post-treatment device for an internal combustion engine, wherein the bypass passage is formed such that exhaust gas passing through the bypass pipe passes through the outflow holes of the second group of holes and is then discharged from the casing outlet. .
JP2002277927A 2002-09-24 2002-09-24 Exhaust gas posttreatment device of internal combustion engine Withdrawn JP2004116322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277927A JP2004116322A (en) 2002-09-24 2002-09-24 Exhaust gas posttreatment device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277927A JP2004116322A (en) 2002-09-24 2002-09-24 Exhaust gas posttreatment device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004116322A true JP2004116322A (en) 2004-04-15

Family

ID=32273382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277927A Withdrawn JP2004116322A (en) 2002-09-24 2002-09-24 Exhaust gas posttreatment device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004116322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864769B1 (en) * 2006-05-31 2008-10-22 혼다 기켄 고교 가부시키가이샤 Structure for arrangement of catalyst for motorcycle
DE102008062217A1 (en) * 2008-12-13 2010-06-17 Deutz Ag Particle filter system with variable separation efficiency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864769B1 (en) * 2006-05-31 2008-10-22 혼다 기켄 고교 가부시키가이샤 Structure for arrangement of catalyst for motorcycle
DE102008062217A1 (en) * 2008-12-13 2010-06-17 Deutz Ag Particle filter system with variable separation efficiency
US8935916B2 (en) 2008-12-13 2015-01-20 Deutz Aktiengesellschaft Particulate filter system having a variable degree of separation

Similar Documents

Publication Publication Date Title
EP1316692B1 (en) Exhaust gas purification system and method for controlling regeneration thereof
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
KR20060012642A (en) Exhaust gas purifier
JP2005090450A (en) Exhaust emission control device
JP2007192055A (en) Exhaust emission control device and exhaust emission control method
EP1637717B1 (en) Exhaust gas cleaning method and exhaust gas cleaning system
JP2010265873A (en) Exhaust emission control device
JP2007023997A (en) Exhaust emission control device
JP2006320854A (en) Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP2001280121A (en) Continuous regeneration-type particulate filter device
JP2005030231A (en) Exhaust emission control device for internal combustion engine
JP2009092015A (en) Exhaust emission control device
JP2006316758A (en) Exhaust emission control method and exhaust emission control system
JP4567968B2 (en) Exhaust gas purification device and exhaust gas purification method
JP4210555B2 (en) Exhaust purification equipment
JP2005320880A (en) Exhaust emission control device
JPH0598932A (en) Exhaust emission control device for internal combustion engine
JP3747793B2 (en) Fuel injection control method and regeneration control method for continuous regeneration type diesel particulate filter system
JP2004116322A (en) Exhaust gas posttreatment device of internal combustion engine
JP3565141B2 (en) Exhaust gas purification device for internal combustion engine
KR100763411B1 (en) Catalytic converter with multi-arrangement type for diesel engine
JP2011247212A (en) Exhaust emission control device of internal combustion engine
JP2006226121A (en) Exhaust emission control device and emission control method
JP2003035126A (en) Exhaust emission control device for diesel engine
JP2010261390A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070412