JP2004116240A - Sunlight utilizing device - Google Patents

Sunlight utilizing device Download PDF

Info

Publication number
JP2004116240A
JP2004116240A JP2002284641A JP2002284641A JP2004116240A JP 2004116240 A JP2004116240 A JP 2004116240A JP 2002284641 A JP2002284641 A JP 2002284641A JP 2002284641 A JP2002284641 A JP 2002284641A JP 2004116240 A JP2004116240 A JP 2004116240A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
solar
locking member
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002284641A
Other languages
Japanese (ja)
Inventor
Kyoichi Ibaraki
茨木 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002284641A priority Critical patent/JP2004116240A/en
Publication of JP2004116240A publication Critical patent/JP2004116240A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/30Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
    • F24S25/33Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles
    • F24S25/35Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles by means of profiles with a cross-section defining separate supporting portions for adjacent modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/015Supports with play between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/016Filling or spacing means; Elastic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent sunlight utilizing device which facilitates work for arranging sunlight utilizing equipment on a roof and attachment/detachment in maintenance etc., dispenses with inspections such as a check on looseness after the arrangement of the sunlight utilizing equipment, and reduces the number of components and the number of man-hours of work. <P>SOLUTION: This sunlight utilizing device is constituted by planarly fixing a plurality of solar cell modules 1 among cleats 2a and 2b which serve as a plurality of long supporting members 2a and 2b juxtaposed on the roof or a base. In the sunlight utilizing device, the cleats 2a and 2b are provided with elastic locking members 3 which serve as locking members elastically deformed between the cleat 2a and the module 1 and between the cleat 2b and the module 1; and a locking groove, into which the member 3 is inserted for the regulation of the displacement of the module 1, is provided on the side of the module 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、太陽エネルギーを利用して発電を行う太陽電池モジュールの複数を建物の屋根上に設置した太陽電池アレイや太陽熱集熱器等の太陽光利用装置に関する。
【0002】
【従来の技術】
従来、例えば図7,8に示すように、家庭の電気負荷を低減させるために、家屋の屋根上に太陽エネルギーを電気エネルギーに変換する太陽電池モジュー20の複数を配設して成る太陽電池アレイが知られている。
【0003】
このような太陽電池アレイの場合、太陽電池モジュール20を屋根面に設置する際に、縦桟及び/または横桟等の支持部材を屋根面に配設し、横桟もしくは縦桟に太陽電池モジュールを順次取り付けていく方法がとられる。例えば、太陽光発電システムの太陽電池モジュール用支持部材(以下支持部材という)は、屋根面上にその勾配方向にそって相互に平行に設置される複数の縦桟21と、これらの縦桟上に相互に平行に掛け渡して設置される複数の横桟22とにより格子状を形成しており、その上に太陽電池モジュール20を配するようにしている。また、この縦桟・横桟は一般的に各々別々の断面形状および部品締結用の加工等が行われており、その断面形状としては、C型、ロ形、L型、エ型など様々な形状のものがあげられ、支持部材に使用する材質としてアルミニウム等の材質を押出し成型等で形成したものや、鉄材等の板材を概C形に曲げ加工を行ったものが一般的である。
【0004】
縦桟21もしくは横桟22上に太陽電池モジュール20を配した後、太陽電池モジュール20の外枠部に設けられた固定用の穴をネジ等の締結部材24で縦桟21もしくは横桟22に締め付けたり、太陽電池モジュール20の端部を押えカバー23で押えてネジ止めするなどして縦桟21もしくは横桟22に固定している。
【0005】
以下に、鉄材等の板材に概C形の曲げ加工を行った支持部材を使用した従来の太陽光発電システムJの設置方法を例にとり説明する。
【0006】
太陽光発電システムJは屋根の傾斜方向に沿って設置される縦桟21と、前記縦桟を屋根に固定する桟固定金具27、および前記縦桟21上に屋根の棟と略平行に設置される横桟22と、横桟22上に配される太陽電池モジュール20が複数集まった太陽電池アレイMAにより構成される。
【0007】
図7,8に示すように、縦桟21、横桟22、及び太陽電池のジュール20等で構成される太陽光発電システムを支えるために、桟固定金具27の下部は屋根の垂木や瓦材である屋根材28に釘やネジなどで固定されている。桟固定金具27上には締結用のボルトなどが溶接されており、縦桟21もしくは横桟22の固定用の穴を前記ボルト部に通してナット等で締め付け固定する。
【0008】
一般に、桟固定金具上には縦桟を配した後、その上に横桟を配し、横桟上に太陽電池モジュールなどの太陽電池モジュールを配置することが多いが、縦桟および横桟の配置は逆でもよく、また、縦桟もしくは横桟のいずれかのみを使用して太陽電池モジュールを配してもよい。太陽電池モジュール20は透光体に太陽光電池を一体的に取り付けた発電部26と、前記発電部の外周に配される枠部25とから成る。前記枠部25は前記発電部26のたわみの防止や桟への固定の役割りを担っており、前記発電部26の大きさや固定方法によって材質、厚み、固定部の形状は様々である。本例の場合は横桟22上に枠部25の端部を載せ、隣り合う太陽電池モジュールの枠部25と共に押えカバー23とネジなどの締結部材24で締め付け固定するようにしている。前記横桟22上に太陽電池モジュール20を順次固定していくことにより、太陽電池アレイMAが構成される(例えば、特許文献1を参照)。
【0009】
【特許文献1】
特開平9−159473号公報
【0010】
【発明が解決しようとする課題】
しかしながら、太陽電池モジュール20を複数設置していく工程において、図7,8に示すように、太陽電池モジュール20aを固定する押えカバー23をネジで締めようとすると、既に設置された太陽電池モジュール20によって作業のために必要な足場となる空間がなくなり、その結果、太陽電池モジュール上にのったり、足場用の梯子を用意するなどしなければならず、太陽電池モジュールの破損や作業者滑落の危険、梯子使用による作業工数の増加が生じる。また、太陽電池モジュール20の枠部25に取付用の穴を設け、ネジ等で締め付ける場合においても同様である。しかも、太陽電池モジュール20の取付用の穴と、横桟22の取付用穴の位置を合わせる必要があり、太陽電池モジュールの枠組みの寸法精度が要求される。また、個々の太陽電池モジュール20をネジ締めするので、ネジ締め箇所が増加し作業工数が増えるだけでなく、ネジ締めが完全に行なわれているかを確認する検査工数や、経年変化によるネジ脱落による太陽電池モジュールの外れの危険性も増加する。なお、これらの作業工数は配設する太陽光利用機器の枚数が多いほど顕著になる。また、配線ミスやメンテナンスで太陽電池モジュールを再度着脱する必要が生じた際にも多大な工数が必要になる。
【0011】
そこで、太陽電池モジュールに凸部を設け、この凸部を受容する凹部を屋根側設置することで、太陽電池モジュールを嵌め込むだけで容易に取り付けが完了し、しかも取り付けた時点で設置位置が正しく確定されており、太陽電池モジュールの端部位置合わせなどの作業が不要な方法を考えることもできるが、屋根側に設置する凹部部材の設置位置が正しくなければ、太陽電池モジュールの配置がずれてしまい、屋根外観を損なう。また、その修正のためには、一旦、太陽電池モジュールを外し、再度、凹部における位置だしを行わなければならないといった問題がある。
【0012】
そこで本発明では、上述した諸問題を解消し、屋根上での太陽電池モジュール等の太陽光利用機器の配設作業やメンテナンス等での着脱、さらに太陽光利用機器の桟上での固定位置決めが容易で、配設後の緩みチェックなどの検査が不要で、しかも部品点数が少なく、施工作業が簡単な優れた太陽光利用装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の太陽光利用装置は、屋根もしくは架台上に並設された複数の長尺支持部材の間に、平板状の太陽光利用機器の複数を平面状に固定して成り、前記長尺支持部材に、該長尺支持部材と前記太陽光利用機器との間で弾性変形する係止部材を設けるとともに、前記太陽光利用機器に前記係止部材を挿入させて前記太陽光利用機器のずれを規制する係止溝を設けたことを特徴とする。
【0014】
具体的には、太陽光利用機器として例えば太陽電池モジュールを長尺支持部材である桟に固定する場合、すなわち屋根面に傾斜方向に沿って太陽電池モジュールを設置する場合は、太陽電池モジュールを支持する棟側の桟、及び/または太陽電池モジュールの枠部に弾性変化する係止部材を配し、軒側の桟、及び/または太陽電池モジュールの枠部には係止溝である受け溝を設けて太陽電池モジュールを支持する構造とし、太陽電池モジュールを一旦、棟側の弾性変化する係止部材を押し込みながら挿入し、太陽電池モジュールの棟側の枠、もしくは桟の受け溝に嵌め込み固定される。太陽電池モジュールは弾性変化する係止部材の押える力により固定される。
【0015】
さらに、太陽電池モジュール及び/または桟に、前記弾性変化する係止部材の一端を受け入れる溝を設けているので、太陽電池モジュールを横方向に移動させることにより設置位置が前記弾性変化する係止部材と前記溝の嵌合により判明するようにする。
【0016】
この様にすることにより、太陽電池モジュールを少ない部品で着脱可能とし、施工工数を削減することが可能となるだけでなく、設置位置の位置だし作業が不要で、しかも正確に配置される。
【0017】
【発明の実施の形態】
以下に、本発明に係る太陽光利用装置の実施形態について、平板状の太陽光利用機器として太陽電池モジュールを例にとり、模式的に図示した図面に基づいて詳細に説明する。
【0018】
図1に弾性変化する係止部材を長尺支持部材である桟に配設した透視図を示す。図2に太陽電池モジュールを横桟に配した太陽光利用システムSの斜視図を示す。また、図3に枠を簡略化した太陽電池モジュールの組み付け状況を示す一部側面図を、図4に太陽電池モジュールの設置位置が決定される様子を説明する一部側面図を、図5、図6に隣接する太陽電池モジュール同士の固定・設置位置決定の様子を説明する一部側面図をそれぞれ示す。
【0019】
図1に示すように、本発明の太陽光利用装置は、屋根もしくは架台上に並設された複数の長尺支持部材である桟2a,2bの間に、太陽電池モジュール1の複数を平面状に固定して成る。桟2a,2bには、これらと太陽電池モジュール1との間で弾性変形する係止部材である弾性係止部材3を設け、太陽電池モジュール1側には後記するように、弾性係止部材3を挿入させて太陽電池モジュール1の位置ずれを規制する係止溝を設けている。
【0020】
さらに、互いに隣合う太陽電池モジュール間において、一方の太陽電池モジュールに、前記互いに隣合う太陽電池モジュールの間で弾性変形する係止部材である弾性係止部材4を設け、他方の太陽電池モジュールに、後記するように弾性係止部材4を挿入させて、太陽電池モジュール間のずれを規制する係止溝を設けている。
【0021】
ここで、太陽電池モジュールの固定構造は、鉄やステンレスなどの金属や、FRPやカーボンなどの樹脂で成り、弾性変化により復元しようとする性質を持った弾性係止部材3,4、および鉄材等の板材を略C形に曲げ加工を行い形成したもの、断面が略四角形のパイプ、またはアルミニウム等の押出し成型により形成したものを用いた長尺支持部材である桟2と、太陽電池モジュール1により構成される。
【0022】
なお、本実施形態では、桟2に弾性係止部材3を取り付ける構造としているが、弾性係止部材3は枠用弾性係止部材4と同様に、太陽電池モジュール1に取り付けてもよい。また、桟2には太陽電池モジュール1を嵌め込むための、嵌め込み溝11が形成されているが、嵌め込み溝11の反対側にも隣り合う太陽電池モジュールの端部を嵌め込みが可能な溝を設け、太陽電池モジュール2枚を1本の桟で支持できるようにしてもよい。これにより、部品点数を削減することができ好適である。
【0023】
図2(a)に示すように、長尺支持部材である一方の横桟2aの太陽電池モジュールの嵌め込み溝11に、弾性係止部材3を太陽電池モジュール1の挿入方向に対して前後に弾性変化するように取り付け、太陽電池モジュール1を横桟2aの嵌め込み溝11に挿入した際に一定以上の力を加えることにより、太陽電池モジュール1が嵌め込み溝11の奥に押し込めるようにしている。
【0024】
これにより、他方の横桟2bの嵌め込み溝12に太陽電池モジュール1の軒側端部を嵌め込むことができるようになる。横桟2a側に押し込む力を緩めると、弾性係止部材3の復元力により太陽電池モジュール1が横桟2b側に押しつけられ固定される。
【0025】
また同様にして、太陽電池モジュール1を横桟2a側に一定以上の力で押しやれば、太陽電池モジュール1の横桟2b側を取り外すことができるので、メンテナンス等で着脱が必要となる際にも好適である。
【0026】
次に、図2(b)のように、先程嵌め込んだ太陽電池モジュール1を、既に位置が固定されている太陽電池モジュール1a側に押しやることにより、太陽電池モジュール1aの枠に取り付けられた弾性係止部材4が弾性変形し、太陽電池モジュール1を押し返そうとするようになるので、太陽電池モジュールが戻らないように固定すれば、太陽電池モジュール間に反発力が維持され、外圧により動きにくく、しかも熱膨張などによる動きを阻害しない取り付け構造とできる。
弾性係止部材4は、横桟や太陽電池モジュールにネジやボルト、接着剤等で固定するが、横桟や太陽電池モジュールの枠の成型時に挿入溝を作っておいてもよい。
【0027】
なお、太陽電池モジュール1枚に対する弾性係止部材3の数量は、太陽電池モジュール1を押し込む際に弾性係止部材3が適度な力で弾性変形させられることが必要であり、強すぎると嵌め込みに多大な力を必要とし、弱すぎると設置後の固定が不安定になる。よって、弾性係止部材の弾性強度と太陽電池モジュール1の大きさにより決定するのが好ましい。
【0028】
上記のようにすることにより、長尺支持部材である桟と弾性係止部材の部品のみで太陽電池モジュールを桟に固定することができ、固定用の穴等が不要となるので、ネジ締めが完全に行なわれているかを確認する検査工数や、経年変化によるネジ脱落による太陽電池モジュールの外れの危険性もない。また、設置寸法の精度を緩くでき、施工作業が簡単で、しかも着脱を容易とすることができる。しかも、熱膨張などによる動きを阻害しない取り付け構造なので太陽電池モジュール本体への負担も軽減される。
【0029】
次に、太陽電池モジュールが複数設置された太陽光発電システムSに、太陽電池モジュール1を取り付ける方法を図3に示す。横桟2はスレート瓦や板金瓦のような屋根材28上に、ネジや釘などの固定部材17を屋根の野地板16に打ち付けて固定する。
【0030】
そして、図3(a)に示すように、太陽電池モジュール1の棟側を嵌め込み溝11に挿入する。このとき嵌め込み溝11内にある弾性係止部材3は伸びきった状態であり、太陽電池モジュール1の軒側は横桟2bの嵌め込み溝12の突起よりも軒側に張り出しており、嵌め込み溝12内に挿入することはできない。
【0031】
そこで、図3(b)に示すように、太陽電池モジュール1を嵌め込み溝11側に押し付けると弾性係止部材3が変形し、太陽電池モジュール1が嵌め込み溝11内に押し込まれる。これにより、太陽電池モジュール1の軒側端部は横桟2bの嵌め込み溝12の突起よりも内側に移動することができるので、図3(c)に示すように、横桟2bの嵌め込み溝12内に太陽電池モジュール1を嵌め込むことができる。そして、太陽電池モジュール1を横桟2a側に押しやる力を緩めると、図3(d)に示すように、弾性係止部材3の復元力により横桟2bの嵌め込み溝12に押し付けられ固定される。
【0032】
次に、太陽電池モジュールの設置位置が決定される様子を図4に示す。図4(a)に示すように、横桟2の嵌め込み溝11に太陽電池モジュール1を嵌め込む。このとき、弾性係止部材3はのびる方向に弾性変化したままであるが、図4(b)に示すように、太陽電池モジュール1の固定溝5を弾性係止部材3の先端部の方向へスライドさせると、固定溝5に弾性係止部材3の先端部が到達した時点で、図4(c)に示すように、弾性係止部材3の先端部が固定溝5内に嵌り込み、太陽電池モジュール1がそれ以上左右どちらにも動かないようにするストッパーとなる。
【0033】
また、図5(a)に示すように、既に太陽電池モジュール1aが弾性係止部材3aで設置位置が固定されている場合は、太陽電池モジュール1を太陽電池モジュール1a側にスライドさせることで、図5(b)に示すように弾性係止部材3が固定溝5に嵌り込み、太陽電池モジュール間で弾性変形させられた弾性係止部材4の復元力によって、弾性係止部材3及び/または3aと固定溝5及び/または5aに常に適度なテンションがかかるようにして設置位置が決定される。
【0034】
これにより、太陽電池モジュールの設置位置を、特に計測したり穴位置合わせをすることなく自動的に決定させることができるだけでなく、弾性係止部材の配置位置が多少ずれていても、弾性係止部材の復元力の効果範囲であれば誤差は問題にならない。
【0035】
さらに、図6(a)、(b)に示すように、モジュール間固定溝6を掘り込みの溝にして、太陽電池モジュール1aと太陽電池モジュール1の位置固定が完了した後に、フレームのゆがみ等の理由で浮き上がった状態の太陽電池モジュール1を押し下げることによって、弾性係止部材4がモジュール間固定溝6内に入り込み、隣接する太陽電池モジュール同士が上下位置を合わせるようにすることにより、太陽電池モジュールの受光面に生じる段差を極力少なくし、設置外観を向上させるだけでなく、太陽電池モジュールの裏面からの太陽電池モジュールを押し上げようとする風圧に対し、2枚分の太陽電池モジュールの重量で対抗するので浮きあがりが起こり難く、その結果、桟2への負担を軽減させる。
【0036】
なお、この実施形態では太陽電池モジュールの固定構造はスレート瓦や板金瓦、陶器瓦上に桟を配する設置方法を例にとり説明したが、桟を野地板上に直接配した屋根材用固定構造としてもよい。また、横桟、縦桟のいずれにも太陽電池モジュールが設けられる構成としてもよい。
【0037】
また、太陽電池モジュールを使用した太陽電池モジュールの固定構造として説明したが、太陽熱集熱器を利用した太陽熱利用システム等に適用しても良く、屋根上に設置する平板状の太陽利用機器の支持部材であれば好適に適用が可能であり、本発明の要旨を逸脱しない範囲で適宜変更し実施が可能である。
【0038】
【発明の効果】
以上、詳述したように、本発明の太陽光利用装置によれば、屋根もしくは架台上に並設された複数の長尺支持部材の間に、平板状の太陽光利用機器の複数を平面状に固定して成り、長尺支持部材に、該長尺支持部材と太陽光利用機器との間で弾性変形する係止部材を設け、前記太陽光利用機器に前記係止部材を挿入させて前記太陽光利用機器のずれを規制する係止溝を設けたので、太陽光利用機器の施工作業が簡単で、太陽光利用機器上を作業用足場としなくてもよく、しかもメンテナンス等において太陽光利用機器を容易に着脱ができる。
【0039】
また、長尺支持部材と係止部材の部品のみで太陽光利用機器を長尺支持部材に容易に固定することができ、固定用の穴等が不要であるので設置寸法の精度を緩くでき、しかも太陽光利用機器の設置位置を、特に計測したり穴の位置合わせをすることなく自動的に決定させることができる。
【0040】
また、互いに隣合う太陽光利用機器間において、一方の太陽光利用機器に、前記互いに隣合う太陽光利用機器の間で弾性変形する係止部材を設け、他方の太陽光利用機器に、前記係止部材を挿入させて、太陽光利用機器間のずれを規制する係止溝を設けたので、太陽光利用機器の裏面からのこれを押し上げようとする風圧に対し、2枚分の太陽電池モジュールの重量で対抗することが可能となり、太陽光利用機器の浮きあがりを極力防止し、長尺支持部材への負担を軽減させることができる。
【0041】
さらに、太陽光利用機器間の段差が生じにくく、外観が近似となり屋根外観を向上させることが可能な優れた太陽光利用装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池モジュールの固定構造を構成する弾性変化する係止部材を桟に配した様子を模式的に説明する平面透視図である。
【図2】(a)、(b)は、それぞれ本発明に係る太陽光発電システムを模式的に説明する斜視図である。
【図3】(a)、(b)、(c)、(d)は、それぞれ本発明に係る太陽電池モジュールの固定構造において、桟への太陽電池モジュールの組み付けの一例を模式的に説明する一部断面側面図である。
【図4】(a)、(b)、(c)は、それぞれ本発明に係る太陽電池モジュールの固定構造において、太陽電池モジュールの設置位置が決定される様子を模式的に説明する一部断面側面図である。
【図5】(a)、(b)は、本発明に係る太陽電池モジュールの固定構造において、隣接する太陽電池モジュール同士の固定を模式的に説明する一部透視平面図である。
【図6】(a)、(b)は、それぞれ本発明に係る太陽電池モジュールの固定構造において、隣接する太陽電池モジュール同士の受光面の面位置を合わせる方法を模式的に説明する一部断面側面図である。
【図7】従来の太陽電池モジュールの桟への固定方法を模式的に説明する側面図である。
【図8】従来の太陽電池モジュールの設置例を模式的に説明する斜視図である。
【符号の説明】
1、1a:太陽電池モジュール
2:桟(長尺支持部材)
2a、2b:横桟(長尺支持部材)
3、3a:弾性係止部材
4:枠用弾性係止部材
5、5a:固定溝(係止溝)
6:モジュール間固定溝(係止溝)
11:嵌め込み溝
12:嵌め込み溝
16:野地板
17:固定部材
20、20a:太陽電池モジュール
21:縦桟
22:横桟
23:押えカバー
24:締結部材
25:枠部
26:発電部
27:桟固定金具
28:屋根材
MA:太陽電池アレイ
J:太陽光発電システム
S:太陽光発電システム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar light utilization device such as a solar cell array or a solar heat collector in which a plurality of solar cell modules that generate power using solar energy are installed on a roof of a building.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as shown in FIGS. 7 and 8, for example, a solar cell array in which a plurality of solar cell modules 20 for converting solar energy into electric energy is disposed on a roof of a house in order to reduce electric load at home. It has been known.
[0003]
In the case of such a solar cell array, when the solar cell module 20 is installed on the roof surface, supporting members such as vertical rails and / or horizontal rails are arranged on the roof surface, and the solar cell modules are mounted on the horizontal rails or the vertical rails. Are sequentially attached. For example, a supporting member for a solar cell module (hereinafter, referred to as a supporting member) of a solar power generation system includes a plurality of vertical rails 21 installed on a roof surface in parallel with each other along a gradient direction thereof, A plurality of horizontal rails 22 are installed in parallel with each other to form a lattice, and the solar cell module 20 is arranged thereon. In addition, these vertical and horizontal rails generally have different cross-sectional shapes and processing for fastening parts, and the cross-sectional shapes include various shapes such as C-shape, B-shape, L-shape, and D-shape. Examples of the shape include a material formed by extruding a material such as aluminum as a material used for the support member, and a material obtained by bending a plate material such as an iron material into a substantially C shape.
[0004]
After arranging the solar cell module 20 on the vertical rail 21 or the horizontal rail 22, a fixing hole provided in the outer frame portion of the solar cell module 20 is fixed to the vertical rail 21 or the horizontal rail 22 with a fastening member 24 such as a screw. The solar cell module 20 is fixed to the vertical rail 21 or the horizontal rail 22 by, for example, tightening or fixing the end of the solar cell module 20 with a holding cover 23 and screwing.
[0005]
Hereinafter, a description will be given of an example of a conventional installation method of a photovoltaic power generation system J using a support member obtained by performing a substantially C-shaped bending process on a plate material such as an iron material.
[0006]
The photovoltaic power generation system J is provided with a vertical beam 21 installed along the inclination direction of the roof, a beam fixing bracket 27 for fixing the vertical beam to the roof, and installed on the vertical beam 21 substantially parallel to the roof ridge. A horizontal rail 22 and a solar cell array MA in which a plurality of solar cell modules 20 arranged on the horizontal rail 22 are collected.
[0007]
As shown in FIGS. 7 and 8, in order to support a photovoltaic power generation system composed of a vertical rail 21, a horizontal rail 22, a solar cell joule 20, and the like, the lower part of the rail fixing bracket 27 has a roof rafter or a tile material. Is fixed to the roofing material 28 with nails or screws. A fastening bolt or the like is welded on the rail fixing bracket 27, and the fixing hole of the vertical rail 21 or the horizontal rail 22 is passed through the bolt part and fastened and fixed with a nut or the like.
[0008]
Generally, a vertical rail is arranged on a rail fixing bracket, a horizontal rail is arranged thereon, and a solar cell module such as a solar cell module is often arranged on the horizontal rail. The arrangement may be reversed, and the solar cell modules may be arranged using only the vertical rails or the horizontal rails. The solar cell module 20 includes a power generation unit 26 in which a photovoltaic cell is integrally attached to a light-transmitting body, and a frame 25 disposed on the outer periphery of the power generation unit. The frame portion 25 plays a role in preventing the power generation portion 26 from bending and fixing the power generation portion 26 to the beam, and the material, thickness, and shape of the fixing portion vary depending on the size and the fixing method of the power generation portion 26. In the case of this example, the end of the frame portion 25 is placed on the horizontal rail 22, and the frame portion 25 of the adjacent solar cell module is fastened and fixed together with the pressing cover 23 and the fastening member 24 such as a screw. A solar cell array MA is configured by sequentially fixing the solar cell modules 20 on the horizontal rail 22 (for example, see Patent Document 1).
[0009]
[Patent Document 1]
JP-A-9-159473
[Problems to be solved by the invention]
However, in the process of installing a plurality of solar cell modules 20, as shown in FIGS. 7 and 8, when the holding cover 23 for fixing the solar cell module 20a is to be screwed, the already installed solar cell module 20 As a result, there is no space for scaffolding necessary for work, and as a result, it is necessary to step on the solar cell module and prepare ladders for the scaffolding, and damage to the solar cell module and slipping of workers Danger, the use of ladders will increase the number of work steps. The same applies to a case where a mounting hole is provided in the frame portion 25 of the solar cell module 20 and tightened with a screw or the like. In addition, it is necessary to match the position of the mounting hole of the solar cell module 20 with the mounting hole of the horizontal rail 22, and the dimensional accuracy of the framework of the solar cell module is required. In addition, since the individual solar cell modules 20 are tightened with screws, not only the number of screw tightening locations increases and the number of man-hours increases, but also the number of inspection man-hours for confirming that screw tightening is completely performed, and screw dropout due to aging. The risk of detachment of the solar cell module also increases. Note that these man-hours become more remarkable as the number of solar-powered devices provided increases. In addition, a large number of man-hours are required when it is necessary to attach and detach the solar cell module again due to a wiring error or maintenance.
[0011]
Therefore, by providing a convex part on the solar cell module and installing a concave part for receiving this convex part on the roof side, installation is completed simply by fitting the solar cell module, and the installation position is correct at the time of mounting. Although it has been decided, it is possible to consider a method that does not require work such as alignment of the end of the solar cell module.However, if the installation position of the concave member installed on the roof side is not correct, the arrangement of the solar cell module will be misaligned. It will spoil the roof appearance. Further, in order to correct the problem, there is a problem that the solar cell module must be once removed and the position in the concave portion must be again determined.
[0012]
Therefore, in the present invention, it is possible to solve the above-mentioned problems, to install and remove solar-powered devices such as solar cell modules on a roof, to perform attachment / detachment for maintenance, and to fix and position the solar-powered devices on a beam. An object of the present invention is to provide an excellent solar light utilization device that is easy, does not require inspection such as looseness check after installation, has a small number of parts, and is easy to perform construction work.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the solar utilization device of the present invention is configured such that a plurality of flat solar utilization devices are fixed in a plane between a plurality of long support members arranged side by side on a roof or a gantry. The long support member is provided with a locking member that is elastically deformed between the long support member and the sunlight utilization device, and the locking member is inserted into the sunlight utilization device. A feature is provided in which a locking groove for regulating the displacement of the solar light utilization device is provided.
[0014]
Specifically, when the solar cell module is fixed to a beam as a long support member, for example, when the solar cell module is installed along the inclined direction on the roof surface, the solar cell module is supported. An elastically changing locking member is disposed on the ridge side of the building and / or the frame of the solar cell module, and a receiving groove which is a locking groove is provided on the eaves of the ridge and / or the frame of the solar cell module. The structure is provided to support the solar cell module, and the solar cell module is temporarily inserted while pushing in the elastically changing locking member on the ridge side, and is fitted and fixed in the ridge side frame of the solar cell module or the receiving groove of the crosspiece. You. The solar cell module is fixed by the pressing force of the elastically changing locking member.
[0015]
Further, since the solar cell module and / or the bar are provided with a groove for receiving one end of the elastically changing locking member, the mounting position is changed by the lateral movement of the solar cell module. And the fitting of the groove.
[0016]
By doing so, the solar cell module can be detachably mounted with a small number of components, and not only the number of construction steps can be reduced, but also the positioning operation of the installation position is unnecessary, and the solar cell module is accurately arranged.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a solar utilization device according to the present invention will be described in detail with reference to the drawings schematically illustrating a solar cell module as an example of a flat solar utilization device.
[0018]
FIG. 1 shows a perspective view in which an elastically changing locking member is disposed on a bar which is a long supporting member. FIG. 2 shows a perspective view of the solar light utilization system S in which the solar cell modules are arranged on the horizontal rail. FIG. 3 is a partial side view showing an assembling state of the solar cell module with a simplified frame, and FIG. 4 is a partial side view explaining how the installation position of the solar cell module is determined. FIGS. 6A and 6B are partial side views each illustrating a state of fixing / installing positions of adjacent solar cell modules.
[0019]
As shown in FIG. 1, the solar utilization apparatus of the present invention is configured such that a plurality of solar cell modules 1 are planarly arranged between bars 2 a and 2 b which are a plurality of long supporting members juxtaposed on a roof or a gantry. To be fixed. The bars 2a and 2b are provided with an elastic locking member 3 which is a locking member which elastically deforms between these and the solar cell module 1, and the elastic locking member 3 is provided on the solar cell module 1 side as described later. Are inserted to prevent the solar cell module 1 from being displaced.
[0020]
Furthermore, between adjacent solar cell modules, one of the solar cell modules is provided with an elastic locking member 4 that is a locking member that elastically deforms between the adjacent solar cell modules, and the other solar cell module is provided with an elastic locking member 4. As will be described later, an elastic locking member 4 is inserted to provide a locking groove for restricting displacement between the solar cell modules.
[0021]
Here, the fixing structure of the solar cell module is made of a metal such as iron or stainless steel, or a resin such as FRP or carbon, and has elastic locking members 3 and 4 having a property of being restored by an elastic change, and iron material. And a solar cell module 1, which is a long support member using a plate formed by bending a plate material into a substantially C shape, a pipe having a substantially rectangular cross section, or an extrusion formed of aluminum or the like. Be composed.
[0022]
In the present embodiment, the elastic locking member 3 is attached to the bar 2, but the elastic locking member 3 may be attached to the solar cell module 1, similarly to the frame elastic locking member 4. A fitting groove 11 for fitting the solar cell module 1 is formed in the bar 2, and a groove is provided on the opposite side of the fitting groove 11 so that an end of an adjacent solar cell module can be fitted. Alternatively, two solar cell modules may be supported by one crosspiece. Thereby, the number of parts can be reduced, which is preferable.
[0023]
As shown in FIG. 2 (a), the elastic locking member 3 is elastically inserted back and forth with respect to the insertion direction of the solar cell module 1 into the insertion groove 11 of the solar cell module of one of the horizontal rails 2 a which is a long support member. The solar cell module 1 is mounted so as to be changed, and when the solar cell module 1 is inserted into the fitting groove 11 of the horizontal rail 2a, a certain force or more is applied to push the solar cell module 1 into the fitting groove 11.
[0024]
Thereby, the eaves-side end of the solar cell module 1 can be fitted into the fitting groove 12 of the other horizontal rail 2b. When the force of pushing into the side rail 2a is relaxed, the solar cell module 1 is pressed against the side rail 2b and fixed by the restoring force of the elastic locking member 3.
[0025]
Similarly, when the solar cell module 1 is pushed to the horizontal rail 2a side with a certain force or more, the horizontal rail 2b side of the solar cell module 1 can be removed. Are also suitable.
[0026]
Next, as shown in FIG. 2 (b), the solar cell module 1 fitted earlier is pushed to the side of the solar cell module 1a whose position is already fixed, whereby the elasticity attached to the frame of the solar cell module 1a is increased. Since the locking member 4 is elastically deformed and tends to push the solar cell module 1 back, if the solar cell module is fixed so as not to return, the repulsive force is maintained between the solar cell modules, and the solar cell module moves by the external pressure. It is possible to provide a mounting structure that is not difficult and does not hinder movement due to thermal expansion or the like.
The elastic locking member 4 is fixed to the horizontal rail or the solar cell module with a screw, a bolt, an adhesive or the like, but an insertion groove may be formed at the time of molding the horizontal rail or the solar cell module frame.
[0027]
In addition, the number of the elastic locking members 3 per one solar cell module needs to be such that the elastic locking members 3 are elastically deformed by an appropriate force when the solar cell module 1 is pushed in. It requires a lot of force, and if it is too weak, fixing after installation becomes unstable. Therefore, it is preferable that the size be determined based on the elastic strength of the elastic locking member and the size of the solar cell module 1.
[0028]
By doing as described above, the solar cell module can be fixed to the crosspiece only with the crosspiece, which is the long support member, and the elastic locking member, and a fixing hole or the like is not required. There is no inspection man-hour to confirm that the solar cell module has been completely performed, and there is no danger of the solar cell module coming off due to screw dropout due to aging. Further, the accuracy of the installation dimensions can be loosened, the construction work can be simplified, and the attachment and detachment can be facilitated. Moreover, since the mounting structure does not hinder the movement due to thermal expansion or the like, the burden on the solar cell module main body is reduced.
[0029]
Next, a method of attaching the solar cell module 1 to the solar power generation system S in which a plurality of solar cell modules are installed is shown in FIG. The horizontal rail 2 is fixed on a roofing material 28 such as a slate tile or a sheet metal tile by hitting a fixing member 17 such as a screw or a nail to the roof base plate 16 of the roof.
[0030]
Then, the ridge side of the solar cell module 1 is inserted into the fitting groove 11 as shown in FIG. At this time, the elastic locking member 3 in the fitting groove 11 is in a fully extended state, and the eaves side of the solar cell module 1 is protruding more toward the eaves side than the protrusion of the fitting groove 12 of the horizontal rail 2b. Cannot be inserted into
[0031]
Then, as shown in FIG. 3B, when the solar cell module 1 is pressed against the fitting groove 11, the elastic locking member 3 is deformed, and the solar cell module 1 is pushed into the fitting groove 11. As a result, the eaves-side end of the solar cell module 1 can move inward from the protrusion of the fitting groove 12 of the horizontal rail 2b, so that the fitting groove 12 of the horizontal rail 2b as shown in FIG. The solar cell module 1 can be fitted therein. Then, when the force for pushing the solar cell module 1 toward the side rail 2a is loosened, as shown in FIG. 3D, the restoring force of the elastic locking member 3 pushes the solar cell module 1 into the fitting groove 12 of the side rail 2b to be fixed. .
[0032]
Next, FIG. 4 shows how the installation position of the solar cell module is determined. As shown in FIG. 4A, the solar cell module 1 is fitted into the fitting groove 11 of the horizontal rail 2. At this time, the elastic locking member 3 remains elastically changed in the extending direction, but as shown in FIG. 4B, the fixing groove 5 of the solar cell module 1 is moved toward the tip of the elastic locking member 3. When the slider is slid, when the distal end of the elastic locking member 3 reaches the fixing groove 5, the distal end of the elastic locking member 3 fits into the fixing groove 5 as shown in FIG. It serves as a stopper for preventing the battery module 1 from moving further to the left or right.
[0033]
Further, as shown in FIG. 5A, when the installation position of the solar cell module 1a is already fixed by the elastic locking member 3a, the solar cell module 1 is slid to the solar cell module 1a side. As shown in FIG. 5B, the elastic locking member 3 is fitted into the fixing groove 5, and the elastic locking member 3 and / or the elastic locking member 4 is elastically deformed between the solar cell modules. The installation position is determined such that an appropriate tension is always applied to 3a and the fixing groove 5 and / or 5a.
[0034]
This makes it possible not only to automatically determine the installation position of the solar cell module without particularly measuring or aligning the holes, but also to make the elastic locking members slightly displaced. The error does not matter as long as the restoring force of the member is within the effective range.
[0035]
Further, as shown in FIGS. 6 (a) and 6 (b), after the inter-module fixing groove 6 is formed as a dug groove and the position fixing of the solar cell module 1a and the solar cell module 1 is completed, distortion of the frame or the like is performed. By pressing down the solar cell module 1 that has been lifted for the reason described above, the elastic locking member 4 enters the inter-module fixing groove 6 so that the adjacent solar cell modules are aligned with each other in the vertical direction. In addition to minimizing the level difference that occurs on the light receiving surface of the module and improving the appearance of the installation, the weight of two solar cell modules against the wind pressure that pushes up the solar cell module from the back of the solar cell module Since they are opposed to each other, floating is unlikely to occur, and as a result, the load on the beam 2 is reduced.
[0036]
In this embodiment, the fixing structure of the solar cell module has been described by taking as an example an installation method of arranging bars on slate tiles, sheet metal tiles, and ceramic tiles. It may be. Further, a configuration in which a solar cell module is provided on any of the horizontal rail and the vertical rail may be adopted.
[0037]
In addition, although the description has been given as the fixing structure of the solar cell module using the solar cell module, the present invention may be applied to a solar heat utilization system using a solar heat collector, etc., and supports a flat solar utilization device installed on a roof. Any member can be suitably applied, and can be appropriately modified and implemented without departing from the gist of the present invention.
[0038]
【The invention's effect】
As described above in detail, according to the solar utilization device of the present invention, a plurality of flat-panel solar utilization devices are arranged in a planar manner between a plurality of long support members juxtaposed on a roof or a gantry. The long support member is provided with a locking member that is elastically deformed between the long support member and the solar device, and the locking member is inserted into the solar device so that the locking member is inserted. The locking groove that regulates the displacement of the solar equipment is provided, so the construction work of the solar equipment is easy, and the solar equipment does not need to be used as a work scaffold. Devices can be easily attached and detached.
[0039]
In addition, the solar-powered device can be easily fixed to the long support member only with the long support member and the locking member, and the accuracy of the installation dimensions can be reduced because no fixing hole or the like is required. In addition, the installation position of the solar utilization equipment can be automatically determined without particularly measuring or positioning the holes.
[0040]
Also, between adjacent solar utilization devices, one of the solar utilization devices is provided with a locking member that elastically deforms between the adjacent solar utilization devices, and the other solar utilization device is provided with the engaging member. A locking member is inserted to stop the gap between the solar-powered devices, and a locking groove is provided to prevent the solar-powered devices from being pushed up from the back of the solar-powered devices. , The lifting of the solar-powered device can be prevented as much as possible, and the burden on the long supporting member can be reduced.
[0041]
Further, it is possible to provide an excellent solar light utilization device which is less likely to generate a step between the solar light utilization devices, has an approximate appearance, and can improve the roof appearance.
[Brief description of the drawings]
FIG. 1 is a plan perspective view schematically illustrating a state in which an elastically changing locking member constituting a fixing structure of a solar cell module according to the present invention is arranged on a crosspiece.
FIGS. 2A and 2B are perspective views schematically illustrating a photovoltaic power generation system according to the present invention.
FIGS. 3 (a), (b), (c), and (d) each schematically illustrate an example of assembling a solar cell module to a crosspiece in a solar cell module fixing structure according to the present invention. It is a partial sectional side view.
FIGS. 4A, 4B, and 4C are partial cross-sectional views schematically illustrating a manner in which the installation position of the solar cell module is determined in the solar cell module fixing structure according to the present invention. It is a side view.
FIGS. 5A and 5B are partially transparent plan views schematically illustrating fixing of adjacent solar cell modules in the fixing structure of the solar cell module according to the present invention.
FIGS. 6A and 6B are partial cross-sectional views schematically illustrating a method of aligning the light receiving surfaces of adjacent solar cell modules in the solar cell module fixing structure according to the present invention. It is a side view.
FIG. 7 is a side view schematically illustrating a conventional method of fixing a solar cell module to a beam.
FIG. 8 is a perspective view schematically illustrating an installation example of a conventional solar cell module.
[Explanation of symbols]
1, 1a: solar cell module 2: crosspiece (long support member)
2a, 2b: horizontal beam (long support member)
3, 3a: elastic locking member 4: frame elastic locking member 5, 5a: fixing groove (locking groove)
6: Fixing groove between modules (locking groove)
11: Fitting groove 12: Fitting groove 16: Field plate 17: Fixing member 20, 20a: Solar cell module 21: Vertical rail 22: Horizontal rail 23: Holder cover 24: Fastening member 25: Frame 26: Power generation unit 27: Rail Fixing fitting 28: roof material MA: solar cell array J: photovoltaic power generation system S: photovoltaic power generation system

Claims (2)

屋根もしくは架台上に並設された複数の長尺支持部材の間に、平板状の太陽光利用機器の複数を平面状に固定して成る太陽光利用装置であって、前記長尺支持部材に、該長尺支持部材と前記太陽光利用機器との間で弾性変形する係止部材を設けるとともに、前記太陽光利用機器に前記係止部材を挿入させて前記太陽光利用機器のずれを規制する係止溝を設けたことを特徴とする太陽光利用装置。A solar utilization apparatus comprising a plurality of flat-panel solar utilization devices fixed in a plane between a plurality of elongated support members arranged side by side on a roof or a gantry. A locking member that elastically deforms between the long support member and the solar light-using device, and controls the displacement of the solar light-using device by inserting the locking member into the solar light-using device. A solar light utilization device comprising a locking groove. 互いに隣合う太陽光利用機器間において、一方の太陽光利用機器に、前記互いに隣合う太陽光利用機器の間で弾性変形する係止部材を設け、他方の太陽光利用機器に、前記係止部材を挿入させて、太陽光利用機器間のずれを規制する係止溝を設けたことを特徴とする請求項1に記載の太陽光利用装置。Between the solar utilization devices adjacent to each other, one of the solar utilization devices is provided with a locking member that elastically deforms between the adjacent solar utilization devices, and the other solar utilization device is provided with the locking member. The solar utilization device according to claim 1, wherein a locking groove is provided for restricting a shift between the solar utilization devices by inserting the device.
JP2002284641A 2002-09-30 2002-09-30 Sunlight utilizing device Pending JP2004116240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284641A JP2004116240A (en) 2002-09-30 2002-09-30 Sunlight utilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284641A JP2004116240A (en) 2002-09-30 2002-09-30 Sunlight utilizing device

Publications (1)

Publication Number Publication Date
JP2004116240A true JP2004116240A (en) 2004-04-15

Family

ID=32278130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284641A Pending JP2004116240A (en) 2002-09-30 2002-09-30 Sunlight utilizing device

Country Status (1)

Country Link
JP (1) JP2004116240A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091811A (en) * 2007-10-09 2009-04-30 Arashi Bankinten:Kk Solar panel mounting device
FR2931932A1 (en) * 2008-05-27 2009-12-04 Jean Claude Jeandeaud SUPPORT DEVICE FOR SOLAR ENERGY RECOVERY MODULES, SOLAR ENERGY RECOVERY UNIT, AND METHOD FOR MOUNTING SOLAR ENERGY RECOVERY MODULES.
FR2951528A1 (en) * 2009-10-20 2011-04-22 Sarl Moureau Simon PHOTOVOLTAIC DEVICE
WO2010054617A3 (en) * 2008-11-12 2011-06-03 Heintzmann Sicherheitssysteme Gmbh & Co. Kg Solar module supporting structure
FR2958023A1 (en) * 2010-03-23 2011-09-30 Noelle Environnement Juxtaposed solar panels e.g. thermal or photovoltaic type rigid solar panels, fixing device for thermal or photovoltaic solar power unit of roof structure of building, has fixture, flap and plate defining two housings
ITRM20110130A1 (en) * 2011-03-18 2012-09-19 Mauro Pula FASTENING SYSTEM FOR PHOTOVOLTAIC OR SOLAR PANELS ON GRECATED SHEET COVERS, RELATED METHOD AND KIT.
EP2662644A1 (en) * 2012-05-09 2013-11-13 C-Lean S.r.l. Installation assembly of photovoltaic panels
WO2013180275A1 (en) * 2012-05-31 2013-12-05 京セラ株式会社 Solar cell device and holder unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091811A (en) * 2007-10-09 2009-04-30 Arashi Bankinten:Kk Solar panel mounting device
FR2931932A1 (en) * 2008-05-27 2009-12-04 Jean Claude Jeandeaud SUPPORT DEVICE FOR SOLAR ENERGY RECOVERY MODULES, SOLAR ENERGY RECOVERY UNIT, AND METHOD FOR MOUNTING SOLAR ENERGY RECOVERY MODULES.
WO2009153497A2 (en) 2008-05-27 2009-12-23 "Apollon Solar" Solar power recovery module mounting device, solar power recovery unit, and method for mounting solar power recovery modules
WO2009153497A3 (en) * 2008-05-27 2010-10-28 "Apollon Solar" Solar power recovery module mounting device, solar power recovery unit, and method for mounting solar power recovery modules
WO2010054617A3 (en) * 2008-11-12 2011-06-03 Heintzmann Sicherheitssysteme Gmbh & Co. Kg Solar module supporting structure
FR2951528A1 (en) * 2009-10-20 2011-04-22 Sarl Moureau Simon PHOTOVOLTAIC DEVICE
EP2314949A1 (en) 2009-10-20 2011-04-27 SARL Moureau Simon Photovoltaic assembly
FR2958023A1 (en) * 2010-03-23 2011-09-30 Noelle Environnement Juxtaposed solar panels e.g. thermal or photovoltaic type rigid solar panels, fixing device for thermal or photovoltaic solar power unit of roof structure of building, has fixture, flap and plate defining two housings
ITRM20110130A1 (en) * 2011-03-18 2012-09-19 Mauro Pula FASTENING SYSTEM FOR PHOTOVOLTAIC OR SOLAR PANELS ON GRECATED SHEET COVERS, RELATED METHOD AND KIT.
EP2662644A1 (en) * 2012-05-09 2013-11-13 C-Lean S.r.l. Installation assembly of photovoltaic panels
WO2013180275A1 (en) * 2012-05-31 2013-12-05 京セラ株式会社 Solar cell device and holder unit

Similar Documents

Publication Publication Date Title
US10365017B2 (en) Self-adjusting end clamp
JP4414569B2 (en) Solar power plant
US20140151312A1 (en) Support system for solar panels
WO2010131386A1 (en) Solar module fixing structure
JP2004060358A (en) Fixing device for roof and structure for using solar energy using the same
US20150107651A1 (en) Solar panel mechanical connector and frame
KR20140085420A (en) Solar cell module fixing structure
JPH10176403A (en) Installation method for solar cell device on roof
US10177704B2 (en) Snap-on rail assembly
KR20130142993A (en) Installation for collecting solar energy
JP2009130183A (en) Mount for solar cell module, and fitting structure
JP4429028B2 (en) Fixing device
US10958207B2 (en) Attachment structure of photovoltaic cell module
JP2010163750A (en) Structure for attaching solar battery panel
JP2014043720A (en) Solar energy utilizing facility mounting rack and photovoltaic power generation apparatus
JP2004116240A (en) Sunlight utilizing device
JP2004084369A (en) Fixed structure of solar beam using equipment
JP2006037545A (en) Mounting holder for solar-cell panel and fixing device for solar-cell panel using its mounting holder
JP3845528B2 (en) Solar cell power generator
JP4125334B2 (en) Solar cell module
WO2012096297A1 (en) Solar cell module and solar power generation device
JP2001234619A (en) Solar battery roof and snow guard structure of solar battery roof
JP3934453B2 (en) Roof structure with solar panel
TW200818523A (en) Fixing structure of solar cell module
JP2017066806A (en) Installation structure, installation method of solar cell module, and photovoltaic power generation system using installation structure of the same