JP2004115911A - Ferritic stainless steel for automobile fuel tank and for peripheral member of fuel tank - Google Patents

Ferritic stainless steel for automobile fuel tank and for peripheral member of fuel tank Download PDF

Info

Publication number
JP2004115911A
JP2004115911A JP2003314265A JP2003314265A JP2004115911A JP 2004115911 A JP2004115911 A JP 2004115911A JP 2003314265 A JP2003314265 A JP 2003314265A JP 2003314265 A JP2003314265 A JP 2003314265A JP 2004115911 A JP2004115911 A JP 2004115911A
Authority
JP
Japan
Prior art keywords
stainless steel
fuel tank
less
content
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003314265A
Other languages
Japanese (ja)
Other versions
JP3941762B2 (en
Inventor
Yoshihiro Yazawa
矢沢 好弘
Yasushi Kato
加藤 康
Osamu Furukimi
古君 修
Sadao Hasuno
蓮野 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003314265A priority Critical patent/JP3941762B2/en
Publication of JP2004115911A publication Critical patent/JP2004115911A/en
Application granted granted Critical
Publication of JP3941762B2 publication Critical patent/JP3941762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low Cr, i.e. inexpensive ferritic stainless steel which solves the problem as for external corrosion resistance in a salt damage environment in the conventional technique on using ferritic stainless steel after working and welding into an automobile fuel tank, fuel pipe or the like. <P>SOLUTION: The Zn-containing paint coated ferritic stainless steel is obtained by coating ferritic stainless steel comprising alloy elements having the following specified composition with a Zn-containing paint. The specified composition comprises, by mass, &le;0.1% C, &le;1.0% Si, &le;1.5% Mn, &le;0.06% P, &le;0.03% S, &le;1.0% Al, 11 to 20% Cr and &le;0.04% N, also comprises 0.002 to 0.8% Nb and/or 0.01 to 1.0% Ti, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、ガソリン、メタノール等の有機燃料の容器、配管部材として使用して好適なフェライト系ステンレス鋼に関し、特に自動車の燃料タンクや燃料パイプ、タンクバンドなどの燃料タンク周辺部材用のステンレス鋼に、Zn含有塗料を部材全体または主に隙間部の耐食性向上を目的として部分的に塗布してなるZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼に関する。なお、ここで隙間部とは、フェライト系ステンレス鋼の燃料タンクやその周辺部材の組立てで生じる隙間部のほか、燃料タンクやその周辺部材の溶接で生じる隙間部、燃料タンクやその周辺部材におけるフェライト系ステンレス鋼と異種金属との接合で生じる隙間部などを含めたものをいう。また、燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼とは、燃料タンクまたは燃料タンク周辺部材に使用されるフェライト系ステンレス鋼であって、燃料タンクかつ燃料タンク周辺部材として、常に同時に使用することには限定されない。   The present invention relates to a ferrite stainless steel suitable for use as a container or piping member for organic fuels such as gasoline and methanol, and particularly to a stainless steel for a fuel tank peripheral member such as a fuel tank or a fuel pipe of an automobile or a tank band. The present invention relates to a Zn-containing paint-coated automobile fuel tank and a ferritic stainless steel for a fuel tank peripheral member, in which a Zn-containing paint is partially applied for the purpose of improving the corrosion resistance of the entire member or mainly the gap. Here, the gap means a gap formed by assembling a ferritic stainless steel fuel tank and its peripheral members, a gap formed by welding the fuel tank and its peripheral members, and a ferrite in the fuel tank and its peripheral members. It refers to those that include gaps and the like that occur when joining stainless steel and dissimilar metals. The term “ferritic stainless steel for fuel tanks and fuel tank peripheral members” refers to ferrite stainless steel used for fuel tanks and fuel tank peripheral members, and should always be used simultaneously as fuel tanks and fuel tank peripheral members. It is not limited to.

自動車用燃料タンクおよびその周辺部材には、従来、軟鋼板の表面上に鉛を含むめっきを施したターンシート(Ternes steel sheet(Pb-Sn))を成形加工および溶接したものが広く用いられてきた。しかし、近年の環境問題の高まりにより、鉛を含む材料は使用が厳しく制限される方向にある。このため、ターンシートに代わる代替材料の開発が模索されている。   Conventionally, as a fuel tank for automobiles and its peripheral members, those obtained by forming and welding a turn sheet (Ternes steel sheet (Pb-Sn)) plated with lead on the surface of a mild steel sheet have been widely used. Was. However, the use of lead-containing materials has been severely restricted due to the recent rise in environmental problems. For this reason, the development of alternative materials to replace turn sheets is being sought.

 例えば、塩害耐食性の向上のため、無鉛めっき材として、Al−Si系合金めっきを施し、さらに化成処理した鋼板が提案されている(例えば、特許文献1)。しかし、これの溶接性や長期の耐食性には不安があり、広範囲に適用されるには至っていない。また該鋼板を得るための設備が大型化されると、コスト高になり、生産性が劣ることは否めないので、大量供給の要望に十分に応えられるものではない。 For example, in order to improve the corrosion resistance to salt damage, a steel sheet which has been subjected to an Al—Si alloy plating as a lead-free plating material and further subjected to a chemical conversion treatment has been proposed (for example, Patent Document 1). However, there are concerns about its weldability and long-term corrosion resistance, and it has not been widely applied. In addition, if the equipment for obtaining the steel sheet is enlarged, the cost is increased and the productivity is unavoidably inferior, so that it cannot sufficiently meet the demand for mass supply.

 さらに、加工前の鋼板にZnあるいはZnを含有する潤滑皮膜を塗布することで、抵抗溶接性、潤滑硬化によるプレス成形性、耐食性を確保した燃料タンク用ステンレス鋼が提案されている(例えば、特許文献2)。
 しかし、Zn含有潤滑皮膜を施したままの鋼板を抵抗溶接するため、該皮膜の樹脂成分から炭素が溶接部に混入し、鋭敏化により耐食性を低下させる可能性がある。また、Zn含有潤滑皮膜を有する状態でプレス成形すると、Znを含有しない潤滑皮膜に比べプレス時に剥離粉の発生が著しく金型の手入れが難しくなるといった問題があった。
Further, a stainless steel for a fuel tank has been proposed which secures resistance weldability, press formability by lubrication hardening, and corrosion resistance by applying Zn or a lubricating film containing Zn to a steel sheet before processing (for example, Patent Reference 2).
However, since the steel sheet with the Zn-containing lubricating film is subjected to resistance welding, carbon may be mixed into the welded portion from the resin component of the film and the corrosion resistance may be reduced due to sensitization. Further, when press forming is performed with a Zn-containing lubricating film, there is a problem that release powder is significantly generated at the time of pressing as compared with a lubricating film containing no Zn, making it difficult to maintain a mold.

 さらに、ライニング等を施さずに使用できる鋼として、SUS304に代表されるオーステナイト系ステンレス鋼を使用する試みもなされているが、燃料タンク用としては応力腐食割れ(SCC)の懸念があるため、やはり実用化に至っていない。 Further, an attempt has been made to use an austenitic stainless steel typified by SUS304 as a steel that can be used without lining or the like. However, there is a fear of stress corrosion cracking (SCC) for a fuel tank. It has not been put to practical use.

 また、多層構造の合成樹脂製燃料タンクを使用する試みもなされているが、燃料がわずかながら燃料タンクの壁面などを透過することが避けられず、燃料蒸散という本質的な問題がある。また、合成樹脂の使用は、燃料の蒸散規制の動きや合成樹脂のリサイクル規制もあって、実用化には自ずと限界があった。 試 み Although attempts have been made to use a synthetic resin fuel tank having a multilayer structure, it is unavoidable that the fuel slightly penetrates the walls of the fuel tank and the like, and there is an essential problem of fuel evaporation. In addition, the use of synthetic resins has naturally been limited in practical use due to the regulation of fuel evaporation and the regulation of synthetic resin recycling.

 一方、フェライト系ステンレス鋼は、前記オーステナイト系ステンレス鋼に比べ、応力腐食割れの感受性が低く、しかも高価なNi含有量が少ないので、コスト的に有利である。しかし、燃料タンクや燃料パイプへ適用するに際しては、主に外面の塩害腐食に関する耐食性が不足する欠点があった。そのため、Cr、Moなどの合金元素を多量に含有させる必要があった。ところが、鋼の高合金化に伴い、加工性が低下するため、例えば、燃料パイプとしての厳しい拡管や曲げ加工に耐えられず、加工形状に制限が生じた。 On the other hand, ferritic stainless steel is less costly because it is less susceptible to stress corrosion cracking and has less expensive Ni content than the austenitic stainless steel. However, when applied to a fuel tank or a fuel pipe, there is a drawback that the corrosion resistance mainly due to salt damage corrosion on the outer surface is insufficient. Therefore, it was necessary to contain a large amount of alloy elements such as Cr and Mo. However, since the workability is reduced with the increase in the alloy of steel, for example, the steel pipe cannot withstand severe pipe expansion or bending as a fuel pipe, and the processing shape is limited.

特開2002−146553公報JP-A-2002-146553 特開2002−146557公報JP-A-2002-146557

 したがって、本発明は、従来の高Crのフェライト系ステンレス鋼より、さらに優れた耐食性と加工性を有し、かつ低Crの自動車の燃料系統部材用に適したフェライト系ステンレス鋼を提供することを目的とするものである。
 すなわち、本発明の目的は、フェライト系ステンレス鋼を自動車の燃料タンクや燃料パイプなどに加工、溶接して用いる際に、従来技術が抱えていた塩害による外面耐食性に関する問題を一挙に解決した、低Cr、すなわち安価なフェライト系ステンレス鋼を提供することにある。なお、本発明の自動車の燃料系統部材用フェライト系ステンレス鋼の耐食性の基準は、塩乾湿複合サイクル試験(CCT;アメリカ自動車技術者協会(SAEJ 2334)において120サイクル後も軽微な赤錆やしみ錆すら発生しないことを目安とする。
Accordingly, the present invention provides a ferritic stainless steel having more excellent corrosion resistance and workability than conventional high Cr ferritic stainless steel, and suitable for low Cr automobile fuel system members. It is the purpose.
That is, an object of the present invention is to solve the problem related to the external corrosion resistance due to salt damage that the conventional technology has at once, when processing and welding ferritic stainless steel to a fuel tank or a fuel pipe of an automobile, and the like. It is to provide Cr, that is, inexpensive ferritic stainless steel. The standard of corrosion resistance of the ferritic stainless steel for a fuel system member of an automobile according to the present invention is based on a salt-dry / wet combined cycle test (CCT; American Society of Automobile Engineers (SAEJ 2334)). It is assumed that it does not occur.

 本発明者は、Znの犠牲防食効果に注目し、Zn含有塗料の活用に着眼し、フェライト系ステンレス鋼の加工品の隙間部(溶接部、異種金属接合部を含む)に部分的または全面的にZn含有塗料を塗布し、Znの犠牲防食作用により、耐食性の最も劣る部位の腐食を防止し、さらに他の部位の腐食をも防止することに成功し、本発明を完成した。すなわち、本発明は、特定組成の合金元素を含有するフェライト系ステンレス鋼に、Zn含有塗料を塗布してなるZn含有塗料塗布型フェライト系ステンレス鋼であり、これは自動車燃料タンクおよび燃料タンク周辺部材用として、塩害環境下においても外面耐食性を十分に確保することができるものである。 The present inventor paid attention to the sacrificial anticorrosion effect of Zn, focused on the use of Zn-containing paints, and partially or completely formed in the gaps (including welds and dissimilar metal joints) of ferritic stainless steel processed products. A Zn-containing paint was applied to the steel, and by the sacrificial anticorrosion action of Zn, the corrosion of the portion having the lowest corrosion resistance was prevented, and the corrosion of other portions was also successfully prevented, thereby completing the present invention. That is, the present invention is a Zn-containing paint-applied ferritic stainless steel obtained by applying a Zn-containing paint to a ferritic stainless steel containing an alloy element having a specific composition. For use, it can ensure sufficient external corrosion resistance even in a salt damage environment.

本発明は、質量%でC:0.1%以下、Si:1.0%以下、Mn:1.5%以下、P:0.06%以下、S:0.03%以下、Al:1.0%以下、Cr:11〜20%およびN:0.04%以下を含み、かつ、Nb:0.002〜0.8%および/またはTi:0.01〜1.0%を含有し、残部はFeおよび不可避的不純物からなる鋼に、Zn含有塗料を塗布したことを特徴とするZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼である。   In the present invention, C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.06% or less, S: 0.03% or less, Al: 1 by mass%. 2.0% or less, Cr: 11-20% and N: 0.04% or less, and Nb: 0.002-0.8% and / or Ti: 0.01-1.0%. The remainder is ferritic stainless steel for a Zn-containing paint-coated automobile fuel tank and a fuel tank peripheral member, wherein a Zn-containing paint is applied to steel consisting of Fe and unavoidable impurities.

前記ステンレス鋼は、さらに質量%でMo:3.0%以下、Cu:2.0%以下およびNi:2.0%以下の群からなる少なくとも1種を含有することが好ましい。   It is preferable that the stainless steel further contains at least one selected from the group consisting of Mo: 3.0% or less, Cu: 2.0% or less, and Ni: 2.0% or less by mass%.

 前記ステンレス鋼は、また質量%でB:0.0003〜0.005%を含有することが好ましい。 The stainless steel preferably contains B: 0.0003 to 0.005% by mass.

 前記ステンレス鋼は、また質量%でCo:0.3%以下を含有することが好ましい。 The stainless steel preferably contains Co: 0.3% or less by mass%.

 前記ステンレス鋼は、また質量%でMg:0.0032%以下を含有することが好ましい。 The stainless steel preferably contains Mg: 0.0032% or less by mass%.

 前記自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼のZn含有塗料の塗膜中のZn含有量(X)は、下記の式(1)で規定する量であり、該塗膜の膜厚が5〜50μmであることが好ましい。
  70≧X≧70−{2.7×(Cr+3.3Mo)}・・・・・(1)
     ただし、Xは塗膜中のZn含有量(質量%)、
         Crはステンレス鋼中のCr含有量(質量%)、
         Moはステンレス鋼中のMo含有量(質量%)。
The Zn content (X) in the coating film of the Zn-containing coating material of the ferrite stainless steel for the automobile fuel tank and the fuel tank peripheral member is an amount defined by the following formula (1), and the thickness of the coating film is Is preferably 5 to 50 μm.
70 ≧ X ≧ 70− {2.7 × (Cr + 3.3Mo)} (1)
Where X is the Zn content (% by mass) in the coating film,
Cr is the Cr content (% by mass) in stainless steel,
Mo is the Mo content (% by mass) in stainless steel.

 前記自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼のZn含有塗料のZnの平均粒子径は3μm以下であることが好ましい。 The average particle diameter of Zn in the Zn-containing paint of the ferrite stainless steel for the automobile fuel tank and the fuel tank peripheral member is preferably 3 μm or less.

 本発明によると、隙間部の耐食性を塗料中のZnの犠牲防食により補うことで、高価なCr、Niなどを多量に含有させたステンレス鋼に代わり、Cr、Ni含有量を低めに抑えた安価なフェライト系ステンレス鋼を得ることができる。その結果、該ステンレス鋼は、塩害環境下での外面耐食性とガソリン耐食性に優れ、高強度および良好な加工性と、それらの良好なバランスが要求される自動車などの燃料タンクおよびその周辺部材として使用することが可能になった。 According to the present invention, the corrosion resistance of the gap is compensated for by sacrificial corrosion prevention of Zn in the paint, thereby replacing expensive stainless steel containing a large amount of Cr, Ni, etc., and lowering the Cr and Ni content to a low price. A ferritic stainless steel can be obtained. As a result, the stainless steel is excellent in outer surface corrosion resistance and gasoline corrosion resistance under salt damage environment, high strength and good workability, and used as a fuel tank for automobiles and the like and its peripheral members that require a good balance between them. It became possible to do.

 本発明の自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼の好適成分とその含有量(質量%)は下記の通りである。 好 適 The preferred components and their contents (% by mass) of the ferritic stainless steel for automobile fuel tanks and fuel tank peripheral members of the present invention are as follows.

Cr: 含有量11〜20%
 Crは、耐酸化性および耐食性の向上に有効な元素であり、Cr含有量が11%未満であると無塗装使用された場合、赤錆の発生が著しく、塗料を塗布しても隙間部、端面での十分な耐食性確保が難しい。十分な耐酸化性および耐食性を得るためには11%以上が必要である。一方、20%を越えて含有すると、鋼そのものの耐食性が向上し、赤錆の発生が見られず、塗料塗布の必要性が少なくなる。そして、例えr値が高い場合でも、強度の増大や延性の低下などのために加工性が低下する。このため、Cr量を11〜20%の範囲と規定する。加工性を考慮すると12%〜18%とするのが好ましく、さらに、溶接部の耐食性を考慮すると、14〜18%とするのがより好ましい。
Cr: Content of 11 to 20%
Cr is an element effective for improving oxidation resistance and corrosion resistance. When the Cr content is less than 11%, when used without painting, red rust is remarkably generated. It is difficult to secure sufficient corrosion resistance in steel. To obtain sufficient oxidation resistance and corrosion resistance, 11% or more is required. On the other hand, when the content exceeds 20%, the corrosion resistance of the steel itself is improved, no generation of red rust is observed, and the necessity of applying a paint is reduced. And, even when the r value is high, the workability is reduced due to an increase in strength and a decrease in ductility. For this reason, the amount of Cr is specified in the range of 11 to 20%. It is preferably 12% to 18% in consideration of workability, and more preferably 14 to 18% in consideration of corrosion resistance of a welded portion.

C: 含有量0.1%以下
 Cは、粒界を強化し、耐二次加工脆性を向上させるので0.0005%以上含有させることが好ましいが、一方、多過ぎると炭化物となって粒界に析出して、耐二次加工脆性および粒界腐食性に悪影響を及ぼす元素である。特にCの含有量が0.1%を超えると、この悪影響が顕著に現れるので、0.1%以下に限定する。なお、耐二次加工脆性の向上の観点からは、0.002%超、0.008%以下とするのが好ましい。
C: Content of 0.1% or less C is preferably contained in an amount of 0.0005% or more because it strengthens the grain boundaries and improves the resistance to secondary working brittleness. Is an element that has an adverse effect on secondary work brittleness resistance and intergranular corrosion. In particular, when the content of C exceeds 0.1%, this adverse effect appears remarkably, so the content is limited to 0.1% or less. In addition, from the viewpoint of improving the secondary work brittleness resistance, the content is preferably more than 0.002% and 0.008% or less.

Si: 含有量1.0%以下
 Siは、耐酸化性および耐食性の向上に有効な元素であり、0.2%以上含有されるのが好ましい。一方、1.0%を超えて含むと鋼が脆化し、溶接部の耐二次加工脆性も劣化するので、1.0%以下の範囲で含有させる。より好適なのは0.75%以下である。
Si: Content 1.0% or less Si is an element effective for improving oxidation resistance and corrosion resistance, and is preferably contained 0.2% or more. On the other hand, if the content exceeds 1.0%, the steel becomes brittle, and the secondary working brittleness resistance of the welded portion also deteriorates. Therefore, the content is made 1.0% or less. More preferred is 0.75% or less.

Mn: 含有量1.5%以下
 Mnは、耐酸化性を改善するのに有効な元素であり、0.5%以上の含有が好ましいが、過剰に含有すると鋼の靭性を劣化させ、また溶接部の耐二次加工脆性をも劣化させる。よって、その含有量は1.5%以下とする。より好適なのは1.3%以下である。
Mn: Content 1.5% or less Mn is an element effective for improving oxidation resistance. The content of Mn is preferably 0.5% or more. It also deteriorates the secondary work brittleness resistance of the part. Therefore, the content is 1.5% or less. More preferred is 1.3% or less.

P: 含有量0.06%以下
 Pは、粒界に偏析しやすく、燃料タンクの深絞り成形等の強加工を施した後の粒界の強度を低減させる元素である。したがって、耐二次加工脆性(強加工した後にわずかな衝撃により割れる現象)の向上のためには、できる限り少なくするのが望ましいが、余りに低く制限すると製鋼コストの上昇を招く。このため、P含有量は0.06%以下とする。より好適なのは0.03%以下である。
P: content 0.06% or less P is an element that easily segregates at the grain boundary and reduces the strength of the grain boundary after performing strong working such as deep drawing of a fuel tank. Therefore, in order to improve the secondary work brittleness resistance (the phenomenon of breaking due to a slight impact after strong working), it is desirable to reduce the strength as much as possible. However, if it is too low, the steelmaking cost will increase. Therefore, the P content is set to 0.06% or less. More preferably, it is 0.03% or less.

S: 含有量0.03%以下
 Sは、ステンレス鋼の耐食性に有害な元素であるが、製鋼時の脱硫コストを考慮して、0.03%を上限として許容することができる。より好適なのは、MnやTiで固定できる0.01%以下である。
S: content of 0.03% or less S is an element harmful to the corrosion resistance of stainless steel, but in consideration of desulfurization costs during steelmaking, 0.03% can be allowed as an upper limit. More preferable is 0.01% or less which can be fixed with Mn or Ti.

Al: 含有量1.0%以下
 Alは、製鋼上の脱酸剤として必要な元素である。その効果を得るためには、0.01%以上の含有が好ましいが、過度に含有されると介在物に起因する表面外観や耐食性の劣化を招くので、1.0%以下とする。より好適なのは0.50%以下である。
Al: Content 1.0% or less Al is an element necessary as a deoxidizing agent on steelmaking. In order to obtain the effect, the content is preferably 0.01% or more. However, if it is excessively contained, the surface appearance and the corrosion resistance are deteriorated due to the inclusions. More preferably, it is 0.50% or less.

N: 含有量0.04%以下
 Nは、粒界を強化してタンク等に加工した際の耐二次加工脆性を向上させる。その効果を得るためには、0.0005%以上の含有が好ましいが、過度に含有すると、窒化物となって粒界に析出し、耐食性に悪影響を及ぼす元素である。このため、Nの含有量は0.04%以下とする。より好適なのは0.02%以下である。
N: 0.04% or less N enhances the secondary working brittleness when strengthening the grain boundaries and working into a tank or the like. In order to obtain the effect, the content is preferably 0.0005% or more. However, if the content is excessive, the element is converted into a nitride, which precipitates at the grain boundary and adversely affects the corrosion resistance. Therefore, the content of N is set to 0.04% or less. More preferable is 0.02% or less.

Nb: 含有量0.002〜0.8%、
Ti: 含有量0.01〜1.0%
 NbおよびTiは、固溶状態のCおよびNを化合物として固定することによりr値を向上させる元素である。これらの効果はNbの含有量を0.002%以上、Tiの含有量を0.01%以上として、単独含有または複合含有することにより発現する。一方、Nbが0.8%を超えると靭性の劣化が顕著となり、また、Tiが1.0%を超えると表面外観および靭性の劣化を招くので、これらの値を上限とする。より好適なのはNbは0.003〜0.4%であり、Tiは0.05〜0.4%である。
Nb: content 0.002 to 0.8%,
Ti: Content 0.01 to 1.0%
Nb and Ti are elements that improve the r value by fixing C and N in a solid solution state as a compound. These effects are exhibited when the content of Nb is set to 0.002% or more and the content of Ti is set to 0.01% or more, and contained alone or in combination. On the other hand, when Nb exceeds 0.8%, the toughness deteriorates remarkably, and when Ti exceeds 1.0%, the surface appearance and the toughness deteriorate. Therefore, these values are set as upper limits. More preferably, Nb is 0.003-0.4% and Ti is 0.05-0.4%.

 上記の主要成分に加えて、下記成分をさらに単独または複合で含有するのが好ましい。
Mo: 含有量3.0%以下
 Moは、耐食性向上に有効な元素であり、外面塩害腐食性を向上させる。そのためには、Mo含有量は0.5%以上とするのが好ましいが、3.0%を超えると、加工性の劣化を招く。このため、Mo含有量は3.0%以下とする。好適範囲は、加工性および耐食性の観点から0.5〜1.6%である。
In addition to the above main components, the following components are preferably further contained alone or in combination.
Mo: Mo content of 3.0% or less Mo is an element effective for improving corrosion resistance and improves external salt damage corrosion resistance. For this purpose, the Mo content is preferably set to 0.5% or more, but if it exceeds 3.0%, workability is deteriorated. Therefore, the Mo content is set to 3.0% or less. A preferred range is 0.5 to 1.6% from the viewpoint of workability and corrosion resistance.

Ni: 含有量2.0%以下
 Niは、ステンレス鋼の耐食性を向上させる元素であり、0.2%以上の含有が好ましい。2.0%を超えて含有すると、鋼が硬質化し、またオーステナイト相の生成により、応力腐食割れが発生しやすくなる。このため、Niの含有量は2.0%以下である。より好適なのは0.2〜0.8%である。
Ni: content 2.0% or less Ni is an element that improves the corrosion resistance of stainless steel, and is preferably contained at 0.2% or more. If the content exceeds 2.0%, the steel is hardened, and stress corrosion cracking tends to occur due to the formation of an austenite phase. Therefore, the content of Ni is 2.0% or less. More preferred is 0.2-0.8%.

Cu: 含有量2.0%以下
 Cuは、耐食性向上に有効な元素である。その効果を得るためには、0.05%以上の含有が好ましいが、鋼を硬質化するとともに生産性を低下させるので2.0%を上限とする。なお、加工性、耐食性の観点から好適範囲は0.5%未満である。
Cu: 2.0% or less Cu is an element effective for improving corrosion resistance. In order to obtain the effect, the content is preferably 0.05% or more. However, since the steel is hardened and the productivity is lowered, the upper limit is 2.0%. The preferred range is less than 0.5% from the viewpoint of workability and corrosion resistance.

B: 含有量0.0003〜0.005%
 Bは、二次加工脆性改善に有効な元素である。特に燃料タンク周辺部材は複雑な成形加工が施され、しかも氷点下の寒冷地で使用されることも多い。また、Bは粒界強度を高めることにも有効である。ただし、その効果を得るには0.0003%以上の含有が必要である。一方、0.005%超の含有は鋼の加工性、靭性を損なうのでその範囲は0.0003〜0.005%である。好ましいのは0.0005〜0.0010%である。
B: Content 0.0003-0.005%
B is an element effective for improving the brittleness in secondary working. In particular, fuel tank peripheral members are subjected to complicated forming processes, and are often used in cold regions below freezing. B is also effective in increasing the grain boundary strength. However, in order to obtain the effect, the content needs to be 0.0003% or more. On the other hand, if the content exceeds 0.005%, the workability and toughness of steel are impaired, so the range is 0.0003 to 0.005%. Preferred is 0.0005 to 0.0010%.

Co: 含有量0.3%以下
 Coは、二次加工脆性、鋼板の靭性改善に有効な元素である。特に燃料タンクやフィラーパイプ、燃料タンクバンドなどの燃料系周辺部材は複雑な成形加工が施され、しかも氷点下の寒冷地で使用されることも多い。ただし、その効果は含有量が0.3%以上になると鋼が硬質化し、特に加工性が低下するので、上限を0.3%とした。好ましいのは0.05〜0.2%である。
Co: Content of 0.3% or less Co is an element effective for improving the brittleness in secondary working and the toughness of a steel sheet. In particular, fuel-related peripheral members such as fuel tanks, filler pipes, and fuel tank bands are subjected to complicated forming and are often used in cold regions below the freezing point. However, the effect is that if the content is 0.3% or more, the steel becomes hard, and particularly the workability is lowered, so the upper limit was made 0.3%. Preferred is 0.05-0.2%.

Mg: 含有量0.0032%以下
 Mgは、酸化物系介在物となりTiNの晶出核として働き、TiNがδ−フェライトの晶出核として働くため、スラブの等軸結晶率に有効に働く。その結果、鋼板の加工性、靭性、リジングの改善に有効な元素である。しかし、含有量が0.0032%超になると過剰Mgが酸化物系介在物として鋼中に分散し、耐食性や加工性を損なうため、その上限を0.0032%とした。好ましいのは0.0015〜0.0030%である。
Mg: Content 0.0032% or less Mg becomes oxide-based inclusions and functions as crystallization nuclei of TiN, and TiN functions as crystallization nuclei of δ-ferrite, thus effectively acting on the equiaxed crystal ratio of the slab. As a result, it is an effective element for improving the workability, toughness, and ridging of a steel sheet. However, if the content exceeds 0.0032%, excess Mg is dispersed in the steel as oxide-based inclusions, impairing corrosion resistance and workability, so the upper limit was made 0.0032%. Preferred is 0.0015-0.0030%.

 なお、本発明のステンレス鋼においては、上記の各成分のほかに、不可避的不純物として、Zrを0.5%以下、Caを0.1%以下、Taを0.3%以下、Wを0.3%以下、Snを0.3%以下の範囲で含有していても本発明の効果が特に減じることはない。 In the stainless steel of the present invention, in addition to the above components, unavoidable impurities include Zr of 0.5% or less, Ca of 0.1% or less, Ta of 0.3% or less, and W of 0% or less. The effect of the present invention is not particularly reduced even if Sn is contained in the range of 0.3% or less and Sn is contained in the range of 0.3% or less.

 本発明の自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼は、フェライト系ステンレス鋼の一般的な製造方法をそのまま適用して製造することができるが、熱間圧延工程および冷間圧延工程の一部条件を特定条件とするのが好ましい。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉あるいは電気炉等で溶製し、VOD法により二次精錬を行うのが好ましい。溶製した溶鋼は、公知の製造方法に従って鋼素材とすることができるが、生産性および品質の観点から、連続鋳造法によるのが好ましい。連続鋳造して得られた鋼素材は、例えば、1000〜1250℃に加熱され、熱間圧延により所望の板厚の熱延板とされる。もちろん、板材以外として加工することもできる。 The automotive fuel tank and the ferrite stainless steel for fuel tank peripheral members of the present invention can be manufactured by directly applying a general method for manufacturing a ferritic stainless steel, but the hot rolling process and the cold rolling process can be performed. It is preferable to set some conditions as specific conditions. In steelmaking, it is preferable that steel containing the essential components and components added as necessary is melted in a converter or an electric furnace, and the secondary refining is performed by a VOD method. The molten steel can be made into a steel material according to a known production method, but from the viewpoint of productivity and quality, it is preferable to use a continuous casting method. The steel material obtained by continuous casting is heated to, for example, 1000 to 1250 ° C., and is hot-rolled into a hot-rolled sheet having a desired thickness. Of course, it can also be processed as a material other than a plate material.

 得られた熱延板は、要求される強度レベルに応じて600〜900℃の温度範囲で箱焼鈍または800〜1100℃、好ましくは900〜1100℃の温度範囲で連続焼鈍(熱延板焼鈍)した後、酸洗、冷間圧延工程を経て冷延板とされる。この冷間圧延工程では、生産上の都合により、必要に応じて中間焼鈍を含む2回以上の冷間圧延を行ってもよい。この場合、r値の高い鋼板を得るには、前述した熱間圧延の最終パスの線圧を確保するとともに、1回または2回以上の冷間圧延からなる冷延工程の総圧下率を75%以上、好ましくは82%以上とする。
 冷延板は700〜1050℃、より好ましくは850〜1000℃の連続焼鈍(冷延板焼鈍)、次いで酸洗を施されて、冷延焼鈍板となる。また、用途によっては、冷延焼鈍後に軽度の圧延を加えて、鋼板の形状、品質調整を行うこともできる。冷延焼鈍板または品質調整された冷延焼鈍板が、Zn含有塗料の塗布に供される。
The obtained hot rolled sheet is box-annealed at a temperature range of 600 to 900 ° C or continuous annealing at a temperature range of 800 to 1100 ° C, preferably 900 to 1100 ° C (hot rolled sheet annealing) depending on the required strength level. After that, a pickling and a cold rolling process are performed to obtain a cold rolled sheet. In this cold rolling step, two or more times of cold rolling including intermediate annealing may be performed as necessary according to production reasons. In this case, in order to obtain a steel plate having a high r-value, the linear pressure in the final pass of the hot rolling described above is ensured, and the total rolling reduction in the cold rolling process including one or two or more cold rollings is reduced to 75%. % Or more, preferably 82% or more.
The cold-rolled sheet is subjected to continuous annealing (cold-rolled sheet annealing) at 700 to 1050 ° C., more preferably 850 to 1000 ° C., and then pickled to form a cold-rolled annealed sheet. In addition, depending on the use, the shape and quality of the steel sheet can be adjusted by applying light rolling after cold rolling annealing. The cold-rolled annealed plate or the quality-controlled cold-rolled annealed plate is subjected to the application of the Zn-containing paint.

 本発明に使用されるZn含有塗料は、通常、バインダー、添加剤および溶剤または希釈剤からなるが、その組成、調製方法は特に限定されない。Zn含有塗料を塗布して常温放置または必要に応じて加熱(焼付け)して乾燥すると、バインダー、添加剤とZnとからなる硬化した塗膜が形成される。前記添加剤は、塗料の分散または塗膜の乾燥、硬化、諸物性の改良のために添加されるものであり、乾燥剤、硬化剤、可塑剤、乳化剤等である。 Zn The Zn-containing paint used in the present invention usually comprises a binder, an additive and a solvent or diluent, but the composition and preparation method are not particularly limited. When a Zn-containing paint is applied and left at room temperature or, if necessary, heated (baked) and dried, a cured coating film composed of a binder, an additive and Zn is formed. The additives are added for the purpose of dispersing a paint or drying, curing, and improving various physical properties of a coating film, and include a drying agent, a curing agent, a plasticizer, and an emulsifier.

 Zn含有塗料には、硬化剤の種類によって常温硬化型と加熱硬化型がある。
 バインダーとしては、アクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、シリコーン樹脂、ビニルアセタール樹脂、ポリウレタン樹脂、ポリアリレート樹脂、フェノール樹脂、エポキシ樹脂、アルキド樹脂、ポリアミド樹脂、ポリイミド樹脂等やこれらの樹脂の組合わせ等が用いられる。無機バインダーとしては、フッ化カルシウム、フッ化バリウム、ケイ酸ソーダ等が用いられる。
The Zn-containing paints include a room temperature curing type and a heat curing type depending on the type of curing agent.
Examples of the binder include an acrylic resin, a vinyl chloride resin, a vinyl acetate resin, a silicone resin, a vinyl acetal resin, a polyurethane resin, a polyarylate resin, a phenol resin, an epoxy resin, an alkyd resin, a polyamide resin, and a polyimide resin. Matching or the like is used. As the inorganic binder, calcium fluoride, barium fluoride, sodium silicate or the like is used.

Zn粒子: 平均粒子径3μm以下
 Znは、犠牲防食によりステンレス鋼等のFe−Cr系合金の耐食性を確保するために、特に重要な元素である。その平均粒子径は3μm以下である。平均粒子径が3μmを超えると、塗膜が薄い場合には、塗膜のステンレス鋼への密着性が悪くなる。またZn粒子が塗膜中に微細に分散していた方が、Znの犠牲防食性能が向上する傾向にあり、この点からも平均粒子径が3μm以下であるのが好ましい。より好ましい平均粒子径は0.5〜2.5μmであり、さらに好ましい平均粒子径は1.0〜2.0μmである。
 なお、Zn粒子の粒子径は、1個のZn粒子の最大粒子径と最小粒子径を測定し、これを加算して2で除した数値である。平均粒子径はZn含有塗料の塗布後の乾燥塗膜の断面を顕微鏡観察(倍率400倍)で各5視野観察し、視野中の全てのZn粒子の粒子径を前記に従って測定し、これらの粒子径を算術平均して求めた数値である。
Zn particles: Average particle diameter of 3 μm or less Zn is a particularly important element for securing the corrosion resistance of Fe—Cr alloys such as stainless steel by sacrificial corrosion protection. Its average particle size is 3 μm or less. If the average particle size exceeds 3 μm, the adhesion of the coating film to stainless steel will be poor if the coating film is thin. In addition, when the Zn particles are finely dispersed in the coating film, the sacrificial corrosion protection performance of Zn tends to be improved, and from this viewpoint, the average particle diameter is preferably 3 μm or less. A more preferred average particle size is 0.5 to 2.5 μm, and a still more preferred average particle size is 1.0 to 2.0 μm.
The particle diameter of the Zn particles is a value obtained by measuring the maximum particle diameter and the minimum particle diameter of one Zn particle, adding the measured values, and dividing by two. The average particle diameter was determined by observing the cross section of the dried coating film after applying the Zn-containing paint in five visual fields by microscopic observation (magnification: 400 times), and measuring the particle diameters of all Zn particles in the visual field as described above. It is a numerical value obtained by arithmetically averaging the diameter.

 ステンレス鋼の耐食性は、孔食指数(Cr+3.3Mo)と正の相関があることが知られている。そこで、本発明者は、塗膜中のZn含有量とステンレス鋼の孔食指数の関係を調査した結果から、図1に示すように、塗膜中のZn含有量が、70−{2.7×(Cr+3.3Mo)}以上である場合に、耐食性が十分に発揮され、ステンレス鋼の加工品の隙間部に要求される塩害外面耐食性をも十分満足できることを見出した。 It is known that the corrosion resistance of stainless steel has a positive correlation with the pitting corrosion index (Cr + 3.3Mo). Then, the present inventor investigated the relationship between the Zn content in the coating film and the pitting corrosion index of stainless steel, and as shown in FIG. 1, the Zn content in the coating film was 70-702. It has been found that when it is not less than 7 × (Cr + 3.3Mo)}, the corrosion resistance is sufficiently exhibited, and the salt-corrosion outer surface corrosion resistance required for the clearance of the stainless steel processed product can be sufficiently satisfied.

 一方、Zn含有量が、塗膜全体の質量で70%を超えるとステンレス鋼表面への一次密着性が乏しくなる。特に飛び石等を受けた場合、塗膜そのものが剥離しやすく、また密着性も乏しくなり有効Zn量を確保することが難しい。また、Zn含有量が多くなると、塗料の調製時にZnが塗料の下に沈殿し、絶えず攪拌しないと塗料が不均一になるため、塗布作業の効率が悪くなる。そこで、効率よくZnを用いるためにZn含有量は耐食性と密着性の観点からその上限を70%と決定し、合わせて70−{2.7×(Cr+3.3Mo)}以上を満たす範囲に決定した。 On the other hand, if the Zn content exceeds 70% by mass of the whole coating film, the primary adhesion to the stainless steel surface becomes poor. In particular, when a stepping stone or the like is received, the coating film itself is easily peeled, and the adhesion is poor, so that it is difficult to secure an effective Zn amount. In addition, when the Zn content is large, Zn precipitates under the paint at the time of preparing the paint, and the paint becomes non-uniform if not constantly stirred, so that the efficiency of the coating operation deteriorates. Therefore, in order to use Zn efficiently, the upper limit of the Zn content is determined to be 70% from the viewpoint of corrosion resistance and adhesion, and the total is determined to satisfy the range of 70− {2.7 × (Cr + 3.3Mo)} or more. did.

 以上の状況から、塗膜中のZn含有量(X)は下記の実験式(1)式で規定される範囲であることが重要である。
   70≧X≧70−{2.7×(Cr+3.3Mo)}・・・・・(1)
 ただし、Xは塗膜中のZnの含有量(質量%)で、
     Crはステンレス鋼のCr含有量(質量%)であり、
     Moはステンレス鋼のMo含有量(質量%)である。
From the above situation, it is important that the Zn content (X) in the coating film is within the range defined by the following empirical formula (1).
70 ≧ X ≧ 70− {2.7 × (Cr + 3.3Mo)} (1)
Here, X is the content (% by mass) of Zn in the coating film,
Cr is the Cr content (% by mass) of the stainless steel,
Mo is the Mo content (% by mass) of the stainless steel.

塗膜中のZn含有量は、前記したように孔食指数、換言すれば、ステンレス鋼(Fe−Cr系合金)の耐食性に依存するので、耐食性の高い場合には、塗膜中のZn含有量をより少なくできるが、耐食性の低い場合には、塗膜中のZn含有量をより多くする必要がある。塗膜中のZn含有量を低減することができれば塗料の比重が軽くなり、作業性やコスト面でも有利であるのは言うまでもない。
 ただし、ステンレス鋼中のCr含有量が20質量%を超えると、中性塩化物環境での耐食性が十分となり、塗膜が不要となるので、本発明が対象とするステンレス鋼は、前述したように、Cr含有量が20質量%以下の場合に限られる。
As described above, the Zn content in the coating film depends on the pitting corrosion index, in other words, the corrosion resistance of the stainless steel (Fe—Cr alloy). Although the amount can be reduced, if the corrosion resistance is low, it is necessary to increase the Zn content in the coating film. Needless to say, if the Zn content in the coating film can be reduced, the specific gravity of the coating material becomes lighter, and workability and cost are also advantageous.
However, if the Cr content in the stainless steel exceeds 20% by mass, corrosion resistance in a neutral chloride environment becomes sufficient, and a coating film becomes unnecessary, so that the stainless steel targeted by the present invention is as described above. In addition, it is limited to the case where the Cr content is 20% by mass or less.

 なお、乾燥塗膜中のZn含有量は、乾燥塗膜が鋼板に付着した状態で鋼板の質量W1 を測定した後、塗膜剥離剤:ネオリバー(登録商標;関西ペイント株式会社製)を用いて、塗膜を鋼板から剥離し、鋼板を乾燥させた。その後、再び鋼板の質量W2 を測定した。続いて、除却した塗膜を硫酸または過塩素酸に溶解し、その溶液を原子吸光法で分析し、Zn含有量W3 を求めた。W3 /(W1 −W2 )×100(質量%)から乾燥塗膜中のZn含有量が計算される。 Incidentally, Zn content in the dried coating, after drying the coating film was measured mass W 1 of the steel sheet in a state of adhering to the steel sheet, the coating release agent: Neoriba; using (R manufactured by Kansai Paint Co., Ltd.) Then, the coating film was peeled off from the steel sheet, and the steel sheet was dried. Thereafter, the mass W 2 of the steel sheet was measured again. Then, to dissolve the retirement coating film in sulfuric acid or perchloric acid, and analyzed the solution with an atomic absorption method to determine the Zn content W 3. The Zn content in the dried coating film is calculated from W 3 / (W 1 −W 2 ) × 100 (% by mass).

塗膜: 膜厚5〜50μm
 塗膜の膜厚は乾燥膜厚で5〜50μmである。これは、ステンレス鋼の耐食性とZn含有塗料の塗膜のステンレス鋼に対する密着性の観点から決定される。すなわち、膜厚が5μm未満だとZn含有量が多くなるのに伴い密着性を確保することが難しくなる。また、Znの犠牲防食能力は塗膜の単位面積当たりのZn含有量に依存するが、膜厚が5μm以下であると有効Zn含有量を十分確保できない。一方、膜厚が50μmを超えると、品質過剰になるとともに、塗膜の乾燥時間が長くなり作業効率を低下させる。なお、過度な膜厚は密着性にも悪影響を及ぼすことがある。好ましい膜厚は10〜30μm、特に好ましい膜厚は15〜25μmである。
 なお、乾燥膜厚は、塗布後の乾燥塗膜の断面を顕微鏡(倍率400倍)で各5視野観察し、各視野について3箇所の膜厚を求め、これらを平均したものを平均膜厚とし、さらに5視野の平均膜厚を平均して求めた。
Coating: 5 to 50 μm thick
The thickness of the coating film is 5 to 50 μm as a dry film thickness. This is determined from the viewpoint of the corrosion resistance of the stainless steel and the adhesion of the coating film of the Zn-containing paint to the stainless steel. That is, if the film thickness is less than 5 μm, it becomes difficult to secure the adhesion as the Zn content increases. Further, the sacrificial anticorrosion ability of Zn depends on the Zn content per unit area of the coating film, but if the film thickness is 5 μm or less, a sufficient effective Zn content cannot be secured. On the other hand, when the film thickness exceeds 50 μm, the quality becomes excessive, and the drying time of the coating film becomes longer, thereby lowering the working efficiency. Note that an excessive thickness may adversely affect the adhesion. A preferred thickness is 10 to 30 μm, and a particularly preferred thickness is 15 to 25 μm.
In addition, the dry film thickness is obtained by observing the cross section of the dried coating film after application with a microscope (magnification: 400 times) in each of five visual fields, obtaining film thicknesses at three locations for each visual field, and averaging these values to obtain an average film thickness. Further, the average film thickness in five visual fields was averaged.

 本発明に使用される塗料のステンレス鋼への塗布方法は、スプレー塗装、刷毛塗り、塗料中への浸漬など、特に限定されない。具体的には、フィラーパイプや燃料タンクなどの加工品の生産ラインに合わせて適宜選択すればよい。
 例えば、鋼板を燃料タンクや、燃料パイプ、燃料バンド等の燃料タンク周辺部材に油圧プレス、対向液圧成形、スピニング加工、パイプ加工等所定の手法で成形加工し、その後、シーム溶接、レーザー溶接、スポット溶接等により所定の構造形状に組み立てた部材に部分的もしくは全面的にZn含有塗料を塗布する。
 常温硬化型の場合は、塗料を塗布後、常温放置する。また加熱硬化型の場合は、塗料を塗布後、加熱して乾燥(焼付け)する。その結果、バインダーとZn粒子と添加剤からなる硬化膜、すなわち、耐食性に優れる塗膜が形成される。
The method of applying the paint used in the present invention to stainless steel is not particularly limited, such as spray painting, brush painting, immersion in the paint, and the like. Specifically, it may be appropriately selected according to the production line of processed products such as filler pipes and fuel tanks.
For example, a steel plate is formed into a fuel tank, a fuel pipe, a fuel tank peripheral member such as a fuel band by a hydraulic press, opposed hydraulic forming, spinning, pipe processing, etc., followed by seam welding, laser welding, A Zn-containing paint is partially or entirely applied to a member assembled into a predetermined structure by spot welding or the like.
In the case of a room temperature curing type, the coating is applied and then left at room temperature. In the case of a heat-curing type, after applying a coating material, it is heated and dried (baked). As a result, a cured film composed of a binder, Zn particles, and an additive, that is, a coating film having excellent corrosion resistance is formed.

 本発明においては、Zn粒子を含有する塗膜をステンレス鋼の加工品表面に形成するが、その範囲は加工品に形成された隙間部を全て含む範囲であれば、加工品の局部の面であっても、加工品の全面であっても構わない。前記塗膜によって耐食性を高める必要があるのは隙間部であるから、その部分が最低限被覆されていれば、ステンレス鋼の加工品全体の耐食性も十分保持できる。 In the present invention, the coating film containing Zn particles is formed on the surface of the processed stainless steel product, and the range is a range including all the gaps formed in the processed product. Or the entire surface of the processed product. Since it is necessary to enhance the corrosion resistance by the coating film in the gap, if the portion is covered at least, the corrosion resistance of the entire stainless steel workpiece can be sufficiently maintained.

 このように、Zn含有塗料をステンレス鋼に塗布して得られたZn含有塗料塗布型ステンレス鋼は、強度、溶接部特性、加工性および耐食性に優れ、かつこれらのバランスがよいので、自動車燃料タンクおよび燃料タンク周辺部材への適用が可能である。 As described above, a Zn-containing paint-coated stainless steel obtained by applying a Zn-containing paint to stainless steel is excellent in strength, weld properties, workability, and corrosion resistance, and has a good balance among them. And application to fuel tank peripheral members.

 以下、発明例および比較例を挙げて本発明をより具体的に説明する。
(例1〜69)
 表1に示す成分組成の13種類のステンレス鋼を連続鋳造し、通常の熱間圧延条件で5.0mm厚の熱延板を製造した。この熱延板を980℃で1時間連続焼鈍した後、酸洗し、板厚2.3mmまで冷延し、900℃の中間焼鈍−酸洗後、0.8mmまで冷間圧延し、920℃の仕上げ焼鈍−酸洗を施した冷延焼鈍板を得た。
Hereinafter, the present invention will be described more specifically with reference to invention examples and comparative examples.
(Examples 1 to 69)
Thirteen kinds of stainless steels having the component compositions shown in Table 1 were continuously cast, and a hot-rolled sheet having a thickness of 5.0 mm was manufactured under ordinary hot rolling conditions. This hot-rolled sheet was continuously annealed at 980 ° C. for 1 hour, pickled, cold rolled to a sheet thickness of 2.3 mm, intermediately annealed at 900 ° C., pickled, cold rolled to 0.8 mm, and 920 ° C. Finish annealing-pickling to obtain a cold rolled annealed sheet.

 この冷延焼鈍板を、図2に示すL字型試験片1(幅80mm、長辺150mm、短辺50mm)にプレス加工し、試験片2枚の短辺から構成される面(幅80mm、短辺50mm)の上部から20mmを中心としてシーム溶接し、シーム溶接部7を有する試験片1を調製した。この試験片1の全面に、乾燥塗膜中のZn含有量が表2に示す量になる塗料を表2に示す乾燥平均膜厚になるようにスプレー塗布し、1時間放置し乾燥して、塗膜を硬化させ、Zn含有塗料塗布型ステンレス鋼の試験片1を得た。なお、乾燥塗膜の膜厚とZn含有量および平均粒子径の測定は前述した通りである。
 次に、試験片2枚を突き合せた部分に、隙間部2を形成するために、プラスチッククリップ3を被せた。
This cold-rolled annealed plate is pressed into an L-shaped test piece 1 (width 80 mm, long side 150 mm, short side 50 mm) shown in FIG. 2 and a surface (width 80 mm, width 80 mm, A test piece 1 having a seam weld 7 was prepared by seam welding centered at 20 mm from the top of the short side (50 mm). On the entire surface of the test piece 1, a paint having a Zn content in the dried coating film in the amount shown in Table 2 was spray-coated so as to have a dry average film thickness shown in Table 2, and left for 1 hour to dry. The coating film was cured to obtain a test piece 1 of a stainless steel coated with a Zn-containing paint. The measurement of the thickness, the Zn content, and the average particle diameter of the dried coating film is as described above.
Next, a plastic clip 3 was put on a portion where two test pieces were butted to form a gap 2.

 この試験片1に、耐食性などを測定するための加工、処理を下記の要領で実施した。
 隙間部2の耐食性は、試験片1の表面(塗料の塗布あり)に、プラスチックと金属の隙間部を形成するために、プラスチッククリップ3を被せて評価した。
 エリクセン試験は、試験片1の底面表面に、JIS B7729およびJIS B7777に規定されたエリクセン試験機と試験方法に準拠し、直径15mm、高さ8mmのポンチを使用して、ドーム状の張出し4を設けて、評価した。
The test piece 1 was processed and processed for measuring corrosion resistance and the like in the following manner.
The corrosion resistance of the gap 2 was evaluated by placing a plastic clip 3 on the surface of the test piece 1 (with paint applied) to form a gap between plastic and metal.
In the Erichsen test, a dome-shaped overhang 4 was formed on the bottom surface of the test piece 1 using a punch having a diameter of 15 mm and a height of 8 mm on the bottom surface of the test piece 1 in accordance with the Erichsen tester and the test method specified in JIS B7729. Provided and evaluated.

 また、クロスカット試験は、試験片1の底面表面に、図2に示すように、長さ60mm、幅80mmの矩形の中に描いた長さ115mmの対角線上に、両端から20mm空けて、クロスカットし、クロスカット部5を設けて評価した。
 グラベロ試験は、試験片1の底面の表面(幅40mm、長さ100mm)に、玄武岩(平均砕石、平均粒子径8〜12mm)100gを、常温(20℃)、圧力7kgf/cm2 で、垂直に投石して、底面の表面に飛び石による傷を付け、グラベロ試験部6を設けて評価した。グラベロ試験部6の形成はASTM D3170に準じた装置を用いて実施した。
In the cross-cut test, as shown in FIG. 2, a cross-cut test was performed on the bottom surface of the test piece 1 on a diagonal line having a length of 115 mm drawn in a rectangle having a length of 60 mm and a width of 80 mm. It was cut and provided with a cross-cut portion 5 for evaluation.
In the gravure test, 100 g of basalt (average crushed stone, average particle size 8 to 12 mm) was vertically placed on the surface (width 40 mm, length 100 mm) of the bottom surface of the test piece 1 at normal temperature (20 ° C.) and pressure 7 kgf / cm 2 . And the surface of the bottom surface was scratched by a stepping stone, and a gravure test part 6 was provided for evaluation. The gravure test section 6 was formed using an apparatus according to ASTM D3170.

 次に、試験片1の6部分、すなわち、飛び石試験(常温)によるグラベロ試験部6、15mmφの張出し(エリクセン)4、クロスカット部5、プラスチッククリップ3による隙間部2および端面を対象に、SAE J2334に準拠した塩乾湿複合サイクル試験(CCT)により、図3に示す条件のサイクルを120サイクル繰返した後の、錆発生状況を目視観察し、下記のような5段階で耐食性(腐食性)を評価した。結果を表2に示した。
   1: 赤錆(直径2mmを超える点錆)・・・・・不合格
   2: 軽微な赤錆(直径2mm以下の点錆)・・・不合格
   3: しみ錆(直径2mmを超える点錆)・・・・合格
   4: 軽微なしみ錆(直径2mm以下の点錆)・・合格
   5: 錆なし・・・・・・・・・・・・・・・・合格
Next, the SAE was applied to six parts of the test piece 1, namely, a gravure test part 6 by a stepping stone test (normal temperature), a 15 mmφ overhang (Erichsen) 4, a cross cut part 5, a gap part 2 and an end face by a plastic clip 3. After 120 cycles of the cycle under the conditions shown in FIG. 3 were repeated by the salt dry / wet combined cycle test (CCT) according to J2334, the state of rust generation was visually observed, and the corrosion resistance (corrosion) was evaluated in the following five stages. evaluated. The results are shown in Table 2.
1: Red rust (point rust exceeding 2mm in diameter) ... failed 2: Minor red rust (point rust of 2mm or less in diameter) ... failed 3: Spot rust (point rust exceeding 2mm in diameter) ...・ ・ Pass 4: Minor spotted rust (point rust of 2mm or less in diameter) ・ ・ Pass 5: No rust ・ ・ ・ ・ ・ ・ ・ Pass

 成形加工性の調査は、JIS 13B号試験片を用いる引張試験を、JIS Z2254に準拠して行い、深絞り性の指標であるr値、張出し性の指標である伸びElで評価した。
 さらに、ポンチ径33mmφ、ブランク径70mmの条件で円筒深絞り加工し、割れの有無を観察した。
 また、前記深絞り加工品を1200ppm の蟻酸と450ppm の酢酸を含む劣化ガソリンに20日間浸漬する腐食試験を行い、試験後の表面外観および質量変化から、質量変化が0.05g/m2以下で、外観に赤変のない場合を合格○、それ以外を不合格×として評価した。
 耐食性試験において不合格が3個以上ある場合、またはガソリン腐食試験が不合格の場合を総合評価で不合格とした。
For the investigation of the formability, a tensile test using a JIS No. 13B test piece was performed in accordance with JIS Z2254, and evaluated by the r value as an index of deep drawability and the elongation El as an index of overhang property.
Furthermore, cylindrical deep drawing was performed under the conditions of a punch diameter of 33 mmφ and a blank diameter of 70 mm, and the presence or absence of cracks was observed.
Further, a corrosion test was conducted in which the deep drawn product was immersed in a deteriorated gasoline containing 1200 ppm of formic acid and 450 ppm of acetic acid for 20 days, and from the surface appearance and the mass change after the test, the mass change was 0.05 g / m 2 or less. , The case where there was no redness in the appearance was evaluated as “good”, and the others were evaluated as “fail”.
When there were three or more failures in the corrosion resistance test, or when the gasoline corrosion test failed, the overall evaluation was regarded as failure.

 得られた試験結果を、表2に併せて示す。その結果、発明例はすべて、特に塩害環境下での外面耐食性に優れるのみならず、合金元素低減により加工性に優れる上に、さらに劣化ガソリン中における耐食性も十分であることがわかる。 The obtained test results are also shown in Table 2. As a result, it can be seen that all of the invention examples are not only excellent in outer surface corrosion resistance especially in a salt damage environment, but also excellent in workability due to reduction of alloying elements, and are also sufficient in corrosion resistance in deteriorated gasoline.

Figure 2004115911
Figure 2004115911

Figure 2004115911
Figure 2004115911

Figure 2004115911
Figure 2004115911

Figure 2004115911
Figure 2004115911

Figure 2004115911
Figure 2004115911

耐食性の合否判定に及ぼす鋼板の孔食指数(Cr+3.3Mo)と塗膜中のZn含有量との関係を示すグラフ。The graph which shows the relationship between the pitting corrosion index (Cr + 3.3Mo) of a steel plate and the Zn content in a coating film which affect the pass / fail judgment of corrosion resistance. 試験片の表面に耐食性等の評価のために施した前処理状況を示す説明図(b)と側面図(a)。Explanatory drawing (b) and a side view (a) showing the pretreatment state performed for the evaluation of corrosion resistance etc. on the surface of a test piece. 試験片の塩乾湿複合サイクル試験のフローと条件を示す図。The figure which shows the flow and conditions of the salt dry-wet combined cycle test of a test piece.

符号の説明Explanation of reference numerals

 1: L字型試験片
 2: 隙間部
 3: プラスチッククリップ
4: エリクセンによるドーム状張出し
 5: クロスカット部
 6: グラベロ試験部
 7: シーム溶接部
1: L-shaped test piece 2: gap 3: plastic clip 4: dome-shaped overhang by Erichsen 5: cross cut 6: gravero test 7: seam weld

Claims (7)

質量%でC:0.1%以下、Si:1.0%以下、Mn:1.5%以下、P:0.06%以下、S:0.03%以下、Al:1.0%以下、Cr:11〜20%およびN:0.04%以下を含み、かつ、Nb:0.002〜0.8%および/またはTi:0.01〜1.0%を含有し、残部はFeおよび不可避的不純物からなる鋼に、Zn含有塗料を塗布したことを特徴とするZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼。   C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.06% or less, S: 0.03% or less, Al: 1.0% or less by mass% , Cr: 11 to 20% and N: 0.04% or less, and Nb: 0.002 to 0.8% and / or Ti: 0.01 to 1.0%, the balance being Fe A ferrite stainless steel for a Zn-containing paint-coated automobile fuel tank and a fuel tank peripheral member, wherein a Zn-containing paint is applied to steel comprising unavoidable impurities. 前記ステンレス鋼が、さらに質量%でMo:3.0%以下、Cu:2.0%以下およびNi:2.0%以下の群からなる少なくとも1種を含有することを特徴とする請求項1に記載のZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼。   2. The stainless steel according to claim 1, further comprising at least one selected from the group consisting of Mo: 3.0% or less, Cu: 2.0% or less, and Ni: 2.0% or less by mass%. 2. A ferritic stainless steel for a Zn-containing paint-coated automotive fuel tank and fuel tank peripheral members according to 1.  前記ステンレス鋼が、さらに質量%でB:0.0003〜0.005%を含有することを特徴とする請求項1または2に記載のZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼。 The ferrite for a Zn-containing paint-coated automobile fuel tank and a fuel tank peripheral member according to claim 1 or 2, wherein the stainless steel further contains B: 0.0003 to 0.005% by mass%. Series stainless steel.  前記ステンレス鋼が、さらに質量%でCo:0.3%以下を含有することを特徴とする請求項1〜3のいずれかに記載のZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼。 4. The ferrite for a Zn-containing paint-coated automotive fuel tank and a fuel tank peripheral member according to claim 1, wherein the stainless steel further contains 0.3% or less of Co by mass%. Series stainless steel.  前記ステンレス鋼が、さらに質量%でMg:0.0032%以下を含有することを特徴とする請求項1〜4のいずれかに記載のZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼。 5. The ferrite for a Zn-containing paint-coated automotive fuel tank and a fuel tank peripheral member according to claim 1, wherein the stainless steel further contains Mg: 0.0032% or less by mass%. Series stainless steel.  前記Zn含有塗料の塗膜中のZn含有量(X)が、下記の式(1)で規定する量であり、該塗膜の膜厚が5〜50μmであることを特徴とする請求項1〜5のいずれかに記載のZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼。
  70≧X≧70−{2.7×(Cr+3.3Mo)}・・・・・(1)
    ただし、Xは塗膜中のZn含有量(質量%)、
        Crはステンレス鋼中のCr含有量(質量%)、
        Moはステンレス鋼中のMo含有量(質量%)。
The Zn content (X) in the coating film of the Zn-containing paint is an amount defined by the following formula (1), and the thickness of the coating film is 5 to 50 μm. 7. A ferrite stainless steel for a Zn-containing paint-coated automotive fuel tank and a fuel tank peripheral member according to any one of claims 5 to 5.
70 ≧ X ≧ 70− {2.7 × (Cr + 3.3Mo)} (1)
Where X is the Zn content (% by mass) in the coating film,
Cr is the Cr content (% by mass) in stainless steel,
Mo is the Mo content (% by mass) in stainless steel.
 前記Zn含有塗料のZnの平均粒子径が3μm以下であることを特徴とする請求項1〜6のいずれかに記載のZn含有塗料塗布型自動車燃料タンクおよび燃料タンク周辺部材用フェライト系ステンレス鋼。 The ferrite stainless steel for a Zn-containing paint-coated automobile fuel tank and a fuel tank peripheral member according to any one of claims 1 to 6, wherein the Zn-containing paint has an average particle diameter of Zn of 3 µm or less.
JP2003314265A 2002-09-06 2003-09-05 Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts Expired - Fee Related JP3941762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314265A JP3941762B2 (en) 2002-09-06 2003-09-05 Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002261773 2002-09-06
JP2003314265A JP3941762B2 (en) 2002-09-06 2003-09-05 Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts

Publications (2)

Publication Number Publication Date
JP2004115911A true JP2004115911A (en) 2004-04-15
JP3941762B2 JP3941762B2 (en) 2007-07-04

Family

ID=32301502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314265A Expired - Fee Related JP3941762B2 (en) 2002-09-06 2003-09-05 Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts

Country Status (1)

Country Link
JP (1) JP3941762B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137360A (en) * 2004-11-15 2006-06-01 Nippon Steel & Sumikin Stainless Steel Corp Fuel tank or fuel pipe excellent in salt damage/corrosion resistance
US7843298B2 (en) 2004-12-27 2010-11-30 Hitachi Industrial Equipment Systems Co., Ltd Power distribution transformer and tank therefor
WO2012086706A1 (en) * 2010-12-21 2012-06-28 新日鐵住金ステンレス株式会社 Oil feed pipe and method for producing same
KR101165792B1 (en) * 2006-11-21 2012-07-18 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Surface-treated stainless-steel sheet excellent in salt damage/corrosion resistance and weld reliability for automotive fuel tank and for automotive fuel pipe and surface-treated stainless-steel welded pipe with excellent suitability for pipe expansion processing for automotive petrol pipe
JP2012211379A (en) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd FERRITIC STAINLESS STEEL EXCELLENT IN SECONDARY WORKABILITY AND Cr EVAPORATION RESISTANCE

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137360A (en) * 2004-11-15 2006-06-01 Nippon Steel & Sumikin Stainless Steel Corp Fuel tank or fuel pipe excellent in salt damage/corrosion resistance
US7843298B2 (en) 2004-12-27 2010-11-30 Hitachi Industrial Equipment Systems Co., Ltd Power distribution transformer and tank therefor
US8143985B2 (en) 2004-12-27 2012-03-27 Hitachi Industrial Equipment Systems Co., Ltd. Power distribution transformer and tank therefor
US8432244B2 (en) 2004-12-27 2013-04-30 Hitachi Industrial Equipment Systems Co., Ltd. Power distribution transformer and tank therefor
KR101165792B1 (en) * 2006-11-21 2012-07-18 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Surface-treated stainless-steel sheet excellent in salt damage/corrosion resistance and weld reliability for automotive fuel tank and for automotive fuel pipe and surface-treated stainless-steel welded pipe with excellent suitability for pipe expansion processing for automotive petrol pipe
WO2012086706A1 (en) * 2010-12-21 2012-06-28 新日鐵住金ステンレス株式会社 Oil feed pipe and method for producing same
JP2012197071A (en) * 2010-12-21 2012-10-18 Nippon Steel & Sumikin Stainless Steel Corp Oil feed pipe, and method for producing same
JP2012211379A (en) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd FERRITIC STAINLESS STEEL EXCELLENT IN SECONDARY WORKABILITY AND Cr EVAPORATION RESISTANCE

Also Published As

Publication number Publication date
JP3941762B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP5079795B2 (en) Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and method for producing the same
JP5258253B2 (en) Surface-treated stainless steel plate for automobile fuel tanks and automobile fuel pipes with excellent salt corrosion resistance and welded part reliability, and surface-treated stainless steel welded pipes for automobile oil supply pipes with excellent pipe expansion workability
JP5574061B2 (en) Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and corrosion resistance and its manufacturing method
EP1179608A2 (en) Fuel tank made of ferritic stainless steel
KR20030078028A (en) Corrosion-resistant fuel tank and fuel-filler tube for motor vehicle
JP6406475B1 (en) Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same
JP5906733B2 (en) Surface-treated steel sheet with excellent post-painting corrosion resistance and its manufacturing method
JP5732741B2 (en) Sn-Zn plated high-strength steel sheet for press working with excellent corrosion resistance and method for producing the same
EP1378548B1 (en) Chromium containing ferritic stainless steel comprising a corrosion resistant film containing small metal particles
JP3941762B2 (en) Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts
JP3485457B2 (en) Corrosion-resistant steel plates for fuel tanks with excellent corrosion resistance and weldability
JP4469030B2 (en) Aluminum plated steel plate for automobile fuel tank with excellent corrosion resistance
JP3133231B2 (en) Rust-proof steel plate for fuel tanks with excellent workability, corrosion resistance and weldability
JP2938402B2 (en) Rust-proof steel plate for fuel tanks with excellent press moldability and corrosion resistance after molding
JP2004211158A (en) Galvanized steel for welding, and electric resistance welded tube thereof
JP5862166B2 (en) Corrosion-resistant steel for ship outfitting
JP3048278B2 (en) High-strength hot-rolled original sheet alloyed hot-dip galvanized steel sheet with excellent weld fatigue properties and method for producing the same
JP2007277714A (en) Hot dip plated high strength steel sheet for deep drawing and its production method
JP2938406B2 (en) Rust-proof steel plate for automotive fuel tanks with excellent weld tightness and press workability
JP7327676B2 (en) Resistance spot welding member and its resistance spot welding method
JP2004330993A (en) Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance
JP2000144336A (en) Hich corrosion resistance chromium-containing steel excellent in oxidation resistance and intergranular corrosion resistance
JP4305103B2 (en) Fe-Cr alloy for automobile undercarriage
JPH09209080A (en) High tensile strength electric resistance welded tube excellent in corrosion resistance and its production
JPH08246048A (en) Production of seawater corrosion resisting steel for use in high temperature and high humidity environment, excellent in toughness in weld heat-affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051025

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Ref document number: 3941762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees