JP2004115778A - Selective light-absorbing composition and method for producing the same - Google Patents

Selective light-absorbing composition and method for producing the same Download PDF

Info

Publication number
JP2004115778A
JP2004115778A JP2003301082A JP2003301082A JP2004115778A JP 2004115778 A JP2004115778 A JP 2004115778A JP 2003301082 A JP2003301082 A JP 2003301082A JP 2003301082 A JP2003301082 A JP 2003301082A JP 2004115778 A JP2004115778 A JP 2004115778A
Authority
JP
Japan
Prior art keywords
selective light
light absorbing
cnt
absorbance
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003301082A
Other languages
Japanese (ja)
Inventor
Jun Tsukamoto
塚本 遵
Junji Sanada
真多 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003301082A priority Critical patent/JP2004115778A/en
Publication of JP2004115778A publication Critical patent/JP2004115778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a selective light-absorbing composition improved in absorbance of a selective light-absorbing material having a light absorption maximum in a specific wavelength region and provide a method for producing the same. <P>SOLUTION: The method for producing the selective light-absorbing composition is to contact the selective light absorbing material having the absorption maximum in the specific wavelength region with a carbon nanotube. The selective light absorbing composition is produced by using the method. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、特定の波長領域に光吸収極大を有する選択的光吸収物質の吸光度を向上した選択的光吸収組成物および該組成物の製造方法に関するものである。 The present invention relates to a selective light absorbing composition in which the absorbance of a selective light absorbing substance having a light absorption maximum in a specific wavelength region is improved, and a method for producing the composition.

 特定の波長を選択的に吸収、透過する色フィルターは、顔料や色素などの選択的光吸収物質からなり、該光吸収物質に固有の光吸収特性を利用している。一般に色フィルターでは色の濃さが要求されるが、色の濃さは選択的光吸収物質に固有の吸光度と該選択的光吸収物質の濃度で決まる。一定の選択的光吸収物質で色の濃さを高めるにはその濃度を増加することや、該選択的光吸収物質からなる組成物の厚みを増やすことが必要になる。 色 A color filter that selectively absorbs and transmits a specific wavelength is made of a selective light-absorbing substance such as a pigment or a dye, and utilizes the light-absorbing characteristics inherent to the light-absorbing substance. In general, a color filter requires color density, and the color density is determined by the absorbance specific to the selective light absorbing substance and the concentration of the selective light absorbing substance. Increasing the color depth with a given selective light-absorbing substance requires increasing the concentration and increasing the thickness of the composition comprising the selective light-absorbing substance.

 また、多層のカーボンナノチューブを分散した溶液にポリ−フェニルアセチレン(PPA)を溶解することによってPPAの色が深められることがB.Z.Tangらによって報告されている(非特許文献1参照)。しかし、同報告書の図8.からもわかるように、この場合は吸収スペクトルがPPAのみの場合と異なっており、色を変えずに吸光度を増やすことはできない。
ビー・ゼット・タン(B. Z. Tang),「マクロモレキュールズ(Macrom     olecules)」, 1999年, 第32巻, p. 2569
BZTang et al. Report that the color of PPA is deepened by dissolving poly-phenylacetylene (PPA) in a solution in which multi-walled carbon nanotubes are dispersed (see Non-Patent Document 1). However, Figure 8. As can be seen from FIG. 7, the absorption spectrum in this case is different from that of only PPA, and the absorbance cannot be increased without changing the color.
BZ Tang, "Macromolecules", 1999, Volume 32, p. 2569

 しかし、選択的光吸収物質の濃度を上げようとすると該物質の分散性が低下してしまうことや該物質が媒体に分散された組成物自体の特性が低下するという問題がある。また、該物質からなる組成物の厚みを増やすことが厚みの制約上、困難になる場合がある。 However, when the concentration of the selective light absorbing substance is increased, there is a problem that the dispersibility of the substance is reduced and the characteristics of the composition itself in which the substance is dispersed in the medium are reduced. In addition, it may be difficult to increase the thickness of the composition composed of the substance due to thickness restrictions.

 そこで、本発明は上記問題点を解決すべく、選択的光吸収物質の濃度を上げたり、該物質からなる組成物の厚みを増やすことなく、さらには色を変えることなく組成物の吸光度を上げることをその目的とするものである。 Thus, the present invention solves the above problems by increasing the concentration of the selective light-absorbing substance or increasing the absorbance of the composition without changing the color without increasing the thickness of the composition comprising the substance. That is the purpose.

 上記課題を達成するために、本発明は下記の構成からなる。 た め In order to achieve the above object, the present invention has the following constitution.

 すなわち、特定の波長領域に光吸収極大を持つ選択的光吸収物質にカーボンナノチューブを接触させる選択的光吸収組成物の製造方法および該製造方法により得られる選択的光吸収組成物である。 That is, a method for producing a selective light absorbing composition in which a carbon nanotube is brought into contact with a selective light absorbing substance having a light absorption maximum in a specific wavelength region, and a selective light absorbing composition obtained by the method.

 本発明の選択的光吸収組成物は、CNTと接触させることによって選択的光吸収物質の吸光度を増大させたものであり、選択的光吸収物質の濃度や、選択的光吸収組成物の厚さを変えることなく吸光度を増大することができ、選択的光吸収物質の量が少なくても、また薄い色フィルターでも濃い色を出すことが可能となり、色が変わることもない。 The selective light absorbing composition of the present invention is one in which the absorbance of the selective light absorbing substance is increased by contacting with CNT, and the concentration of the selective light absorbing substance, the thickness of the selective light absorbing composition, The absorbance can be increased without changing the color, and even if the amount of the selective light absorbing substance is small, a dark color can be obtained even with a thin color filter, and the color does not change.

 本発明者らは選択的光吸収物質の吸光度を該選択的光吸収物質の濃度を増やさずに高める方法を鋭意検討した結果、本発明に到った。すなわち、選択的光吸収性物質にカーボンナノチューブ(以下CNTという)を接触分散させることによって該選択的光吸収物質の吸光度を増大することができることを見出した。なお、ここでいう選択的光吸収物質とは特定の波長領域に光吸収極大を持つ物質である。該選択的光吸収物質は特定の波長領域に光吸収があるため着色しており、着色剤として用いられる。吸光度は物質固有の値であり、一般には濃度制御せずに吸光度を制御することは難しい。本発明はCNTと共に溶液中で分散することによって吸光度が増加することを見出した結果に基づくものであるが、吸光度増加の原因は明らかではない。おそらくCNTに特有な特性に起因すると考えられる。以下、本発明について詳述する。 (4) The present inventors have conducted intensive studies on a method of increasing the absorbance of a selective light absorbing substance without increasing the concentration of the selective light absorbing substance, and as a result, have reached the present invention. That is, it has been found that the absorbance of the selective light absorbing substance can be increased by contacting and dispersing the carbon nanotubes (hereinafter referred to as CNTs) with the selective light absorbing substance. Here, the selective light absorbing substance is a substance having a light absorption maximum in a specific wavelength region. The selective light absorbing substance is colored because it has light absorption in a specific wavelength region, and is used as a coloring agent. The absorbance is a value specific to the substance, and it is generally difficult to control the absorbance without controlling the concentration. The present invention is based on the finding that the absorbance is increased by dispersing in a solution together with CNT, but the cause of the increase in the absorbance is not clear. Probably due to characteristics unique to CNT. Hereinafter, the present invention will be described in detail.

 1.CNT
 CNTはアーク放電法、化学気相成長法(以下CVD法という)、レーザー・アブレーション法等によって作製されるが、本発明に使用されるCNTはいずれの方法によって得られたものであってもよい。また、CNTには1枚の炭素膜(グラッフェン・シート)が円筒状に巻かれた単層カーボンナノチューブ(以下SWCNTという)と、2枚以上の複数のグラッフェン・シートが同心円状に巻かれた多層カーボンナノチューブ(以下MWCNTという)とがあるが、本発明にはSWCNT、MWCNTのいずれも使用される。なかでもSWCNTは直径がMWCNTと比べて細いため(すなわちSWCNT1本当たりの体積はMWCNTと比べて小さいため)、CNTの占める体積密度が同じでもCNTの数密度はMWCNTよりもSWCNTの方が大きい。そのため、選択的光吸収物質とCNTが接触する面積が増えるのでSWCNTの方が本発明には好ましい。
1. CNT
The CNT is produced by an arc discharge method, a chemical vapor deposition method (hereinafter, referred to as a CVD method), a laser ablation method, or the like. The CNT used in the present invention may be obtained by any method. . The CNT has a single-walled carbon nanotube (hereinafter referred to as SWCNT) in which one carbon film (graphene sheet) is wound in a cylindrical shape, and a multi-layer in which two or more sheets of graphene sheet are concentrically wound. There is a carbon nanotube (hereinafter, referred to as MWCNT), and both SWCNT and MWCNT are used in the present invention. Among them, SWCNTs are smaller in diameter than MWCNTs (that is, the volume per SWCNT is smaller than MWCNTs), so that even if the volume density occupied by CNTs is the same, SWCNTs have a larger number density of CNTs than MWCNTs. Therefore, SWCNT is preferred in the present invention because the area where the selective light absorbing substance and CNT come into contact increases.

 SWCNTやMWCNTを上記の方法で作製する際には、同時にフラーレンやグラファイト、非晶性炭素が副生産物として生成され、またニッケル、鉄、コバルト、イットリウムなどの触媒金属も残存するので、これらの不純物を精製することが好ましい。 When SWCNT or MWCNT is produced by the above method, fullerene, graphite, and amorphous carbon are simultaneously produced as by-products, and catalytic metals such as nickel, iron, cobalt, and yttrium remain. Preferably, the impurities are purified.

 また、本発明で使用されるCNTの長さは特に限定されないが、CNTの分散を良くするには短いものを使用することが好ましい。たとえば、CNTの平均長さが2μm以下、より好ましくは0.5μm以下で使用するとCNTの分散性が高まる。CNTは一般に紐状に形成されるので、短いCNTを使用するには短繊維状にカットすることが好ましい。 The length of the CNT used in the present invention is not particularly limited, but it is preferable to use a short CNT in order to improve the dispersion of the CNT. For example, when the average length of the CNT is 2 μm or less, more preferably 0.5 μm or less, the dispersibility of the CNT increases. Since CNTs are generally formed in a string shape, it is preferable to cut them into short fibers in order to use short CNTs.

 以上の不純物の精製や短繊維へのカットには、硝酸、硫酸などによる酸処理とともに超音波処理が有効であり、またフィルターによる分離を併用することは純度を向上させる上でさらに好ましい。 Ultrasonic treatment is effective in purifying the above impurities and cutting into short fibers together with acid treatment with nitric acid, sulfuric acid or the like, and it is more preferable to use separation with a filter in combination to improve the purity.

 なお、カットしたCNTだけではなく、あらかじめ短繊維状に作製したCNTも本発明に好ましく使用される。このような短繊維状CNTは基板上に鉄、コバルトなどの触媒金属を形成し、その表面にCVD法により700〜900℃で炭素化合物を熱分解してCNTを気相成長させることによって基板表面に垂直方向に配向した形状で得られる。このようにして作製された短繊維状CNTは基板から剥ぎ取るなどの方法で取り出すことができる。また、短繊維状CNTはポーラスシリコンのようなポーラスな支持体や、アルミナの陽極酸化膜上に触媒金属を担持させ、その表面にCNTをCVD法にて成長させることもできる。触媒金属を分子内に含む鉄フタロシアニンのような分子を原料とし、アルゴン/水素のガス流中でCVD法を行うことによって基板上にCNTを作製する方法でも配向した短繊維状のCNTを作製することができる。 Not only cut CNTs but also CNTs prepared in short fiber form in advance are preferably used in the present invention. Such a short fibrous CNT forms a catalytic metal such as iron or cobalt on the substrate, and thermally decomposes a carbon compound at 700 to 900 ° C. on the surface by CVD to grow the CNT in a vapor phase. In a shape oriented vertically. The short-fibrous CNT thus produced can be taken out by a method such as peeling off from the substrate. The short fibrous CNTs can be prepared by supporting a catalytic metal on a porous support such as porous silicon or an anodic oxide film of alumina, and growing the CNTs on the surface by CVD. A method of producing CNTs on a substrate by performing a CVD method in a gas flow of argon / hydrogen using a molecule such as iron phthalocyanine containing a catalytic metal in the molecule to produce oriented short fiber CNTs. be able to.

 本発明で用いられるCNTの直径は特に限定されないが、1nm以上、100nm以下、より好ましくは50nm以下が良好に使用される。 直径 The diameter of the CNT used in the present invention is not particularly limited, but is preferably 1 nm or more and 100 nm or less, more preferably 50 nm or less.

 2.選択的光吸収物質
 選択的光吸収物質には共役系重合体、染料、色素、顔料などがあるが、好ましくは共役系重合体、染料、色素、特に好ましくは共役系重合体が使用される。このような共役系重合体としてはポリチオフェン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリ−p−フェニレン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリチエニレンビニレン誘導体などが挙げられる。
2. Selective light-absorbing substance The selective light-absorbing substance includes conjugated polymers, dyes, dyes, pigments, and the like. Preferably, conjugated polymers, dyes, and dyes are used, particularly preferably conjugated polymers. Examples of such conjugated polymers include polythiophene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, poly-p-phenylene polymers, poly-p-phenylenevinylene polymers, and polythienyl polymers. Lenvinylene derivatives and the like.

 上記の重合体のなかでも本発明には、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリチエニレンビニレン誘導体が特に好ましく使用される。 で も Among the above polymers, polythiophene-based polymers, poly-p-phenylenevinylene-based polymers, and polythienylenevinylene derivatives are particularly preferably used in the present invention.

 ポリチオフェン系重合体とはポリチオフェン構造の骨格を持つ重合体に側鎖が付いた構造を有するものである。具体的にはポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−オクチルチオフェン、ポリ−3−デシルチオフェンなどのポリ−3−アルキルチオフェン、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ドデシルオキシチオフェン、などのポリ−3−アルコキシチオフェン、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェン、などのポリ−3−アルコキシ−4−アルキルチオフェンが挙げられる。 The polythiophene-based polymer is a polymer having a polythiophene structure skeleton and a side chain attached thereto. Specifically, poly-3-alkylthiophenes such as poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, poly-3-decylthiophene, and poly-3 Poly-3-alkoxythiophenes such as -methoxythiophene, poly-3-ethoxythiophene, poly-3-dodecyloxythiophene, poly-3-methoxy-4-methylthiophene, poly-3-dodecyloxy-4-methylthiophene And poly-3-alkoxy-4-alkylthiophenes.

 ポリ−p−フェニレンビニレン系重合体とは、ポリ−p−フェニレンビニレンのフェニレン環に置換基が付加したもの、および/またはビニレン基に置換基が付加したものであり、特にフェニレン環の2、5位に置換基が付加したものが好ましく用いられる。例えば、ポリ(2−メトキシ−5−ドデシルオキシ−p−フェニレンビニレン)、ポリ(2−メトキシ−5−(3’,7’−ジメチルオクチルオキシ)−p−フェニレンビニレン)、ポリ(2−メトキシ−5−(2’エチルヘキソキシ−p−フェニレンビニレン)、ポリ(2、5−ビスオクチルオキシ−p−フェニレンビニレン)などが挙げられる。 The poly-p-phenylenevinylene-based polymer is obtained by adding a substituent to a phenylene ring of poly-p-phenylenevinylene and / or a polymer obtained by adding a substituent to a vinylene group. Those having a substituent added at the 5-position are preferably used. For example, poly (2-methoxy-5-dodecyloxy-p-phenylenevinylene), poly (2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -p-phenylenevinylene), poly (2-methoxy -5- (2'ethylhexoxy-p-phenylenevinylene), poly (2,5-bisoctyloxy-p-phenylenevinylene) and the like.

 なお、本発明において重合体とは必ずしも高分子量である必要はなく、共役系からなるオリゴマであっても良い。 In the present invention, the polymer does not necessarily have to have a high molecular weight, and may be an oligomer composed of a conjugated system.

 また、色素や染料としては、スピロ化合物、イミダゾール化合物、ペリレン化合物、フェナジン化合物、フェノチアジン化合物、アゾ化合物、キノン化合物、インジゴ化合物、ジフェニルメタン化合物、トリフェニルメタン化合物、ポリメチン化合物、アクリジン化合物、アクリジノン化合物、クマリン化合物、キナクリドン化合物、キノフタロン化合物、フェノキサジン化合物、フタロシアニン化合物、ポルフィリン化合物、クロロフィル化合物、スクヲリリウム化合物などが使用される。 Examples of the pigments and dyes include spiro compounds, imidazole compounds, perylene compounds, phenazine compounds, phenothiazine compounds, azo compounds, quinone compounds, indigo compounds, diphenylmethane compounds, triphenylmethane compounds, polymethine compounds, acridine compounds, acridinone compounds, and coumarins. Compounds, quinacridone compounds, quinophthalone compounds, phenoxazine compounds, phthalocyanine compounds, porphyrin compounds, chlorophyll compounds, squarylium compounds and the like are used.

 3.接触方法
 上記したように本発明において、選択的光吸収物質としては共役系重合体、染料、色素、顔料などが挙げられるが、上記CNTと選択的光吸収物質を接触させることで、該選択的光吸収物質の吸光度を増大させるものである。ここでは共役系重合体を例に選択的光吸収物質にCNTを接触させるための調製方法について述べる。なお、染料、色素、顔料に応じて適切な溶媒が使用される。共役系重合体とCNTとの接触は、例えば共役系重合体を溶解した溶液中にCNTを分散することによって可能となる。さらに、このようにして調製されたCNT分散溶液を基板に塗布することによって吸光度が増大した選択的光吸収性組成物を得ることができる。また、本発明では塗布された膜状の形態ばかりではなく、選択的光吸収性組成物を含む溶液状態でも使用することも可能である。
3. Contact Method As described above, in the present invention, examples of the selective light absorbing substance include conjugated polymers, dyes, dyes, pigments, and the like. By contacting the CNT with the selective light absorbing substance, It is to increase the absorbance of the light absorbing substance. Here, a preparation method for bringing CNT into contact with a selective light absorbing substance will be described using a conjugated polymer as an example. Note that an appropriate solvent is used depending on the dye, the pigment, and the pigment. Contact between the conjugated polymer and the CNT can be achieved by, for example, dispersing the CNT in a solution in which the conjugated polymer is dissolved. Furthermore, by applying the CNT dispersion solution thus prepared to a substrate, a selective light absorbing composition having an increased absorbance can be obtained. In the present invention, not only a coated film form but also a solution state containing a selective light absorbing composition can be used.

 ここで使用される溶媒としてはメタノール、トルエン、キシレン、クロロホルムなど共役系重合体が可溶なものであれば好ましく使用される。分散溶液の調製法には種々の方法があるが、一例を挙げれば下記のような調製法がある。すなわち、上記の溶媒から選ばれる溶媒にCNTを混入した後、超音波洗浄機や超音波破砕機などによる超音波照射によってCNTを該溶媒中に分散する。次に、このようにして得られた分散液に選択的光吸収物質を溶解し、好ましくは超音波洗浄機で超音波を数時間、より好ましくは約20時間照射することによって塗液を得ることができる。選択的光吸収物質として共役系重合体を使用した場合には共役系重合体溶液にCNTが良好に分散するだけでなく、特にSWCNTでは束状に凝集したCNTを解きながら分散できるという利点もある。 溶媒 As a solvent used here, a solvent in which a conjugated polymer such as methanol, toluene, xylene, chloroform or the like is soluble is preferably used. There are various methods for preparing a dispersion solution. For example, the following preparation methods are available. That is, after the CNTs are mixed in a solvent selected from the above solvents, the CNTs are dispersed in the solvent by ultrasonic irradiation using an ultrasonic cleaner or an ultrasonic crusher. Next, a selective light absorbing substance is dissolved in the dispersion thus obtained, and a coating liquid is obtained by irradiating ultrasonic waves for several hours, more preferably for about 20 hours, preferably with an ultrasonic cleaner. Can be. When a conjugated polymer is used as a selective light absorbing substance, not only CNTs are well dispersed in a conjugated polymer solution, but also SWCNT has an advantage that CNTs aggregated in a bundle can be dispersed while being dissolved. .

 本発明の選択的光吸収組成物の製造において使用されるCNTの量は、溶媒に分散可能な範囲であれば良いが、好ましくは選択的光吸収物質に対しCNTは重量分率で0.01%以上、1%以下の範囲で使用される。1%を越えてCNTを混合すると、CNTに起因する吸収が広い波長領域で増えるため色純度が低下する傾向がある。一方、0.01%より少ないとCNT添加による吸光度向上の効果は認められない。より好ましくは0.01%以上、0.1%以下である。 The amount of CNT used in the production of the selective light absorbing composition of the present invention may be within a range that can be dispersed in a solvent. Preferably, CNT is 0.01% by weight relative to the selective light absorbing substance. % To 1% or less. When the CNTs are mixed in excess of 1%, the absorption due to the CNTs increases in a wide wavelength range, and the color purity tends to decrease. On the other hand, if it is less than 0.01%, the effect of improving the absorbance by adding CNT is not recognized. More preferably, it is 0.01% or more and 0.1% or less.

 また本発明の、特定の波長領域に光吸収極大を持つ選択的光吸収物質にカーボンナノチューブを接触させる選択的光吸収組成物の製造方法によれば、吸収端近傍の吸光度を10%以上増加させることができる。ここで、吸収端とは長波長側から短波長側に向かって吸光スペクトルを見たとき吸光度がゼロ付近付近から急速に立ち上がる波長領域のことである。 According to the method of the present invention for producing a selective light absorbing composition in which a carbon nanotube is brought into contact with a selective light absorbing substance having a light absorption maximum in a specific wavelength region, the absorbance near the absorption edge is increased by 10% or more. be able to. Here, the absorption edge is a wavelength region where the absorbance rapidly rises from near zero when the absorption spectrum is viewed from the long wavelength side to the short wavelength side.

 4.吸光度の定義
 本発明では、吸光度を以下のように定義する。すなわち、ガラス基板に組成物が塗布された測定試料に光を照射し、その場合の入射光の強度をIi、測定試料を透過した光強度をIoとした時、以下のαを吸光度と呼ぶ。
4. Definition of Absorbance In the present invention, absorbance is defined as follows. That is, when a measurement sample in which a composition is applied to a glass substrate is irradiated with light, and the intensity of incident light in that case is Ii, and the light intensity transmitted through the measurement sample is Io, the following α is called absorbance.

      α = log 10 (Ii/Io) (1)
 吸光度は例えば日立製作所(株)製U−3210形自記分光光度計などによって測定される。この吸光度は測定サンプルの量(膜の場合には膜厚)に比例するので、吸光度の比較には測定サンプルの量(膜の場合には濃度、膜厚)を一定にして測定することが必要である。
α = log 10 (Ii / Io) (1)
The absorbance is measured by, for example, a U-3210 self-recording spectrophotometer manufactured by Hitachi, Ltd. Since this absorbance is proportional to the amount of the sample (film thickness in the case of a film), it is necessary to measure the amount of the sample (concentration and film thickness in the case of a film) at a constant value for comparison of absorbance. It is.

 本発明の選択的吸収組成物は、光学測定用、装飾用、ディスプレイ用などでの色フィルターとして好ましく用いることができる。 選 択 The selective absorption composition of the present invention can be preferably used as a color filter for optical measurement, decoration, display and the like.

 また、本発明によって得られる選択的光吸収物質は吸光度が一定の波長範囲で増加するが、特に吸収端近傍での吸光度の増加が顕著である。このような吸収端近傍の吸光度の増加はカーボンナノチューブの接触によって選択的光吸収物質中の共役系構造が発達していることを意味している。したがって、上述のような吸収端近傍に特徴を持つ選択的光吸収物質は、共役系構造が発達することに伴って向上する特性例えば高いキャリア移動度を利用する分野にも好ましく用いられる。特に共役系重合体組成物からなる選択的光吸収物質は半導体特性として利用される分野、例えば有機トランジスタの半導体材料としても好ましく使用される。 選 択 Also, the selective light-absorbing substance obtained by the present invention has an increase in absorbance in a certain wavelength range, but the increase in absorbance in the vicinity of the absorption edge is particularly remarkable. Such an increase in the absorbance near the absorption edge means that the conjugated structure in the selective light absorbing substance has been developed by the contact of the carbon nanotube. Therefore, the selective light-absorbing material having a characteristic in the vicinity of the absorption edge as described above is also preferably used in a field utilizing characteristics that improve with the development of a conjugated structure, for example, high carrier mobility. In particular, the selective light-absorbing substance composed of the conjugated polymer composition is preferably used as a semiconductor material in a field used as a semiconductor property, for example, a semiconductor material of an organic transistor.

 以下、本発明を実施例に基づいてさらに具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

 実施例1
 選択的光吸収物質としてポリ−3−ヘキシルチオフェン(アルドリッチ製、以下P3HTという)を用いた。P3HTは500nm付近に吸収極大を有し、透過光は赤橙色を示す。CNTにはサイエンスラボラトリー社より購入したSWCNT(長さ約2μm程度)を特に精製はせずに使用した。
Example 1
Poly-3-hexylthiophene (manufactured by Aldrich, hereinafter referred to as P3HT) was used as a selective light absorbing substance. P3HT has an absorption maximum near 500 nm, and the transmitted light shows a red-orange color. As the CNT, SWCNT (about 2 μm in length) purchased from Science Laboratory was used without particular purification.

 CNTのP3HTへの分散には、まず0.1mgのCNTをクロロホルム5mLに混入させた後、超音波破砕機(井内盛栄堂(株)US−2)で約30分間、超音波照射を行った。その後、P3HTを100mg加えて、さらに超音波洗浄機(東京理化機器(株)製 超音波ホモジナイザーVCX500)にて超音波照射を120Wで30分間行った。このようにしてP3HTにCNTが0.1重量%分散した分散溶液を得た(試料A)。一方、CNTを含まずにP3HTのみ100mgをクロロホルム5mLに溶解してP3HT溶液を作製した(試料B)。 To disperse the CNTs in P3HT, first, 0.1 mg of CNTs were mixed into 5 mL of chloroform, and then subjected to ultrasonic irradiation for about 30 minutes using an ultrasonic crusher (US-2, Inei Seiseido Co., Ltd.). . Thereafter, 100 mg of P3HT was added, and ultrasonic irradiation was further performed at 120 W for 30 minutes using an ultrasonic cleaner (Ultrasonic Homogenizer VCX500, manufactured by Tokyo Rika Instruments Inc.). In this way, a dispersion in which CNTs were dispersed in P3HT by 0.1% by weight was obtained (sample A). On the other hand, 100 mg of P3HT alone without CNT was dissolved in 5 mL of chloroform to prepare a P3HT solution (sample B).

 その後、試料A,Bの溶液を用いてガラス基板にスピナーでキャスト製膜することによってそれぞれのキャスト膜を得た。キャスト膜の厚みは試料A、Bとも300nmであった。 Thereafter, using the solutions of Samples A and B, a cast film was formed on a glass substrate by a spinner to obtain each cast film. The thickness of the cast film was 300 nm for both samples A and B.

 これらのキャスト膜について吸光度を日立製作所(株)製U−3210形自記分光光度計によって測定した結果を図1に示す。図1に示すように、0.1重量%のCNTを分散した試料AではCNTがない場合(試料B)と比べて吸収端近傍の波長610nmでの吸光度が約2倍増加した。 に つ い て FIG. 1 shows the results of measuring the absorbance of these cast films with a U-3210 type recording spectrophotometer manufactured by Hitachi, Ltd. As shown in FIG. 1, the absorbance at a wavelength of 610 nm near the absorption edge of sample A in which 0.1% by weight of CNTs were dispersed increased about twice as compared with the case without CNT (sample B).

 実施例2
 実施例1で得られた試料Aと試料Bの溶液にそれぞれクロロホルムを加えて1/1000に希釈し、それらの希釈液(試料A’、試料B’)の吸光度の測定結果を図2に示す。この場合にもCNTを0.1重量%含む溶液(試料A’)では吸光度がCNTを含まない試料(試料B’)と比べて吸光度が約4倍に増加した。
Example 2
Chloroform was added to each of the solutions of sample A and sample B obtained in Example 1 to dilute them to 1/1000, and the measurement results of the absorbances of the diluted solutions (sample A ′ and sample B ′) are shown in FIG. . Also in this case, the absorbance of the solution containing 0.1% by weight of CNT (sample A ′) increased about four times compared to the sample not containing CNT (sample B ′).

 実施例3
 4.5mLのブチロラクトンと0.5mLのクロロホルムからなる混合溶液にCNTを0.01mg混ぜて超音波洗浄機を用いて分散した。次に、この分散液にアビシア社製フタロシアニン化合物「ソルスパース」を1mg溶解し、該溶液の色を目視観察した。該フタロシアニン化合物のみの溶液は青緑色を呈したが、CNTをフタロシアニン化合物に対し、0.1重量%加えて分散した溶液では青緑色がより深まった。
Example 3
0.01 mg of CNT was mixed with a mixed solution consisting of 4.5 mL of butyrolactone and 0.5 mL of chloroform and dispersed using an ultrasonic cleaner. Next, 1 mg of a phthalocyanine compound “SOLSPERS” manufactured by Avicia was dissolved in this dispersion, and the color of the solution was visually observed. The solution containing only the phthalocyanine compound exhibited a bluish green color, whereas the solution in which CNT was added to the phthalocyanine compound at 0.1% by weight and dispersed therein deepened the bluish green color.

 本発明は有機高分子半導体を半導体層とするトランジスタ、特にカーボンナノチューブを半導体層に分散したトランジスタ等に好ましく用いることができる。 The present invention can be preferably used for a transistor having an organic polymer semiconductor as a semiconductor layer, particularly a transistor in which carbon nanotubes are dispersed in a semiconductor layer.

ポリ−3−ヘキシルチオフェンへのCNTの添加効果を示した図(キャスト膜)。The figure which showed the addition effect of CNT to poly-3-hexylthiophene (cast film). ポリ−3−ヘキシルチオフェンへのCNTの添加効果を示した図(クロロホルム溶液)。The figure which showed the addition effect of CNT to poly-3-hexylthiophene (chloroform solution).

Claims (5)

特定の波長領域に光吸収極大を持つ選択的光吸収物質にカーボンナノチューブを接触させることを特徴とする選択的光吸収組成物の製造方法。 A method for producing a selective light absorbing composition, comprising contacting a carbon nanotube with a selective light absorbing substance having a light absorption maximum in a specific wavelength region. 選択的光吸収物質が共役系重合体、染料、色素の中の少なくとも1種である請求項1に記載の選択的光吸収組成物の製造方法。 The method for producing a selective light absorbing composition according to claim 1, wherein the selective light absorbing substance is at least one of a conjugated polymer, a dye, and a dye. カーボンナノチューブの濃度が、選択的光吸収物質に対し0.01重量%以上、1重量%以下である請求項1または2に記載の選択的光吸収組成物の製造方法。 3. The method for producing a selective light absorbing composition according to claim 1, wherein the concentration of the carbon nanotubes is 0.01% by weight or more and 1% by weight or less based on the selective light absorbing substance. カーボンナノチューブが単層カーボンナノチューブである請求項1〜3のいずれか1項に記載の選択的光吸収組成物の製造方法。 The method for producing a selective light absorbing composition according to any one of claims 1 to 3, wherein the carbon nanotube is a single-walled carbon nanotube. 請求項1〜4のいずれか1項に記載の選択的光吸収組成物の製造方法により得られる選択的光吸収組成物。 A selective light absorbing composition obtained by the method for producing a selective light absorbing composition according to claim 1.
JP2003301082A 2002-09-02 2003-08-26 Selective light-absorbing composition and method for producing the same Pending JP2004115778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301082A JP2004115778A (en) 2002-09-02 2003-08-26 Selective light-absorbing composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002256780 2002-09-02
JP2003301082A JP2004115778A (en) 2002-09-02 2003-08-26 Selective light-absorbing composition and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004115778A true JP2004115778A (en) 2004-04-15

Family

ID=32301409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301082A Pending JP2004115778A (en) 2002-09-02 2003-08-26 Selective light-absorbing composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004115778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184767A (en) * 2004-12-28 2006-07-13 Seiko Precision Inc Optical filter and its manufacturing method
JP2007321059A (en) * 2006-06-01 2007-12-13 National Institute Of Advanced Industrial & Technology Composite composed of squarylium pigment and carbon nanotube
WO2008038800A1 (en) * 2006-09-28 2008-04-03 Seiko Precision Inc. Optical filter and method for manufacturing same
JP2020519936A (en) * 2017-09-28 2020-07-02 エルジー・ケム・リミテッド Electrochromic composite, electrochromic device including the same, and method for manufacturing electrochromic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184767A (en) * 2004-12-28 2006-07-13 Seiko Precision Inc Optical filter and its manufacturing method
JP2007321059A (en) * 2006-06-01 2007-12-13 National Institute Of Advanced Industrial & Technology Composite composed of squarylium pigment and carbon nanotube
JP4649662B2 (en) * 2006-06-01 2011-03-16 独立行政法人産業技術総合研究所 A composite comprising a squarylium dye and a carbon nanotube.
WO2008038800A1 (en) * 2006-09-28 2008-04-03 Seiko Precision Inc. Optical filter and method for manufacturing same
US20100040865A1 (en) * 2006-09-28 2010-02-18 Takeshi Kinoshita Optical filter and method for manufacturing same
JP2020519936A (en) * 2017-09-28 2020-07-02 エルジー・ケム・リミテッド Electrochromic composite, electrochromic device including the same, and method for manufacturing electrochromic device
US11891571B2 (en) 2017-09-28 2024-02-06 Lg Chem, Ltd. Electrochromic composite, electrochromic element comprising same, and manufacturing method for electrochromic element

Similar Documents

Publication Publication Date Title
Bottari et al. Chemical functionalization and characterization of graphene-based materials
Bottari et al. Phthalocyanine− carbon nanostructure materials assembled through supramolecular interactions
Hu et al. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene
Kaya et al. Effect of pyrene substitution on the formation and sensor properties of phthalocyanine-single walled carbon nanotube hybrids
D'Souza et al. Supramolecular Carbon Nanotube-Fullerene Donor− Acceptor Hybrids for Photoinduced Electron Transfer
Wang et al. Lead phthalocyanine modified carbon nanotubes with enhanced NH3 sensing performance
ES2537515T3 (en) Photovoltaic cell comprising carbon nanotubes that have a pigment on their surfaces
Zhang et al. π–π binding ability of different carbon nano-materials with aromatic phthalocyanine molecules: Comparison between graphene, graphene oxide and carbon nanotubes
Guldi et al. Supramolecular hybrids of [60] fullerene and single‐wall carbon nanotubes
Pagona et al. Electronic interplay on illuminated aqueous carbon nanohorn− porphyrin ensembles
Cambré et al. Nanotube‐based 1D heterostructures coupled by van der Waals forces
Roth et al. Electron-accepting phthalocyanine–pyrene conjugates: towards liquid phase exfoliation of graphite and photoactive nanohybrid formation with graphene
Umeyama et al. Clusterization, Electrophoretic Deposition, and Photoelectrochemical Properties of Fullerene‐Functionalized Carbon Nanotube Composites
Guo et al. Light‐Switchable Single‐Walled Carbon Nanotubes Based on Host–Guest Chemistry
Gaufrès et al. Aggregation control of α-sexithiophene via isothermal encapsulation inside single-walled carbon nanotubes
Wang et al. Nonlinear optical properties of carbon nanotube hybrids in polymer dispersions
de la Escosura et al. New donor–acceptor materials based on random polynorbornenes bearing pendant phthalocyanine and fullerene units
Feng et al. Perylene derivative sensitized multi-walled carbon nanotube thin film
Negra et al. Microwave‐assisted synthesis of a soluble single wall carbon nanotube derivative
Bettini et al. Carbon nanodot-based heterostructures for improving the charge separation and the photocurrent generation
Mahlmeister et al. Helically twisted nanoribbons based on Emissive near-infrared responsive quaterrylene bisimides
Ahmad Makinudin et al. Metal phthalocyanine: fullerene composite nanotubes via templating method for enhanced properties
Gao et al. Synthesis of size controllable cu-phthalocyanine nanofibers by simple solvent diffusion method and their electrochemical properties
Al-Zanganawee et al. Morphological and optical properties of functionalized SWCNTs: P3OT nanocomposite thin films, prepared by spincoating
JP2004115778A (en) Selective light-absorbing composition and method for producing the same