JP2004115341A - Method of dispersing dry type silica - Google Patents

Method of dispersing dry type silica Download PDF

Info

Publication number
JP2004115341A
JP2004115341A JP2002283848A JP2002283848A JP2004115341A JP 2004115341 A JP2004115341 A JP 2004115341A JP 2002283848 A JP2002283848 A JP 2002283848A JP 2002283848 A JP2002283848 A JP 2002283848A JP 2004115341 A JP2004115341 A JP 2004115341A
Authority
JP
Japan
Prior art keywords
dispersion
dry silica
silica
sec
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002283848A
Other languages
Japanese (ja)
Other versions
JP4030403B2 (en
Inventor
Yoshinori Tagashira
田頭 宜典
Kenji Fukunaga
福永 顕治
Hiroya Yamashita
山下 博也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2002283848A priority Critical patent/JP4030403B2/en
Publication of JP2004115341A publication Critical patent/JP2004115341A/en
Application granted granted Critical
Publication of JP4030403B2 publication Critical patent/JP4030403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently and industrially manufacturing high concentration and high dispersion dry type silica slurry in a process of forming the dry silica into the slurry using a high speed rotation shearing type dispersing machine. <P>SOLUTION: The method of dispersing the dry type silica is performed by using the high speed rotation shearing type dispersing machine in which the ratio (d/D) of a turbine diameter (d) to the inside diameter (D) of a dispersion vessel is 0.05-0.5 and dispersing the dry type silica under a condition where the turbine peripheral velocity ((u);m/sec) of the high speed rotation shearing type dispersing machine, the discharge quantity (Q;kg/sec) of the turbine, the adding rate ((v):kg/sec) of the dry type silica and the weight (W;kg) of a polar solvent satisfy formula (1) and (2) simultaneously in the addition and dispersion of the dry type silica in a concentration ranging from 10 wt.% to 35 wt.% in the polar solvent. The formula (1) is 5≤(Q×u<SP>2</SP>/W)≤200 and the formula (2) is A≤(v/W)≤B. A and B are shown by the following relations. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高速回転剪断型分散機を使用して乾式シリカを極性溶媒に分散させるための新規な分散方法に関する。詳しくは、高速回転剪断型分散機を使用して乾式シリカを極性溶媒に添加し分散するに際し、高濃度化、高分散化が可能な乾式シリカの分散方法に関する。
【0002】
【従来の技術】
四塩化珪素を原料として酸水素炎中で燃焼させて作る乾式シリカは、透明性が高いことから、インクジェット記録材料やOHP用コート剤の原料として好適に使用されている。
【0003】
上記の乾式シリカは、極性溶媒中に乾式シリカを分散し安定化させた、いわゆる乾式シリカ分散液として各原料に使用されることが多い。
【0004】
かかる乾式シリカ分散液を製造する方法としては、これまで多くの公知の技術が報告されている。
【0005】
例えば、特許文献1に示されるように、極性溶媒中に乾式シリカ微粒子を添加し分散することにより乾式シリカスラリーとした後、これにカチオン性樹脂などの添加剤と混合し、さらに高圧ホモジナイザーや超音波分散機等で微分散処理を行い、乾式シリカ分散液を得る方法が提案されている。さらに特許文献2、特許文献3に示されるように、カチオン性樹脂等の分散助剤等を含む極性溶媒中に乾式シリカを添加し分散して乾式シリカスラリーとした後、さらに高圧ホモジナイザーや超音波分散機等で微分散処理を行い、乾式シリカ分散液を得る方法が提案されている。
【0006】
以下、乾式シリカを極性溶媒中に添加し分散する工程を乾式シリカのスラリー化工程、乾式シリカのスラリー化工程により得られるものを乾式シリカスラリー、さらに高圧ホモジナイザーや超音波分散機等で微分散処理を行った後に得られるものを乾式シリカ分散液と表現する。
【0007】
乾式シリカのスラリー化工程において乾式シリカを極性溶媒に分散させるために使用される分散装置には、一般攪拌機、高速回転剪断型分散機、高速回転遠心放射型攪拌機、混練分散機、及び粉砕分散機などの公知の分散機、またはこれらを複合させたコンビミックスタイプの分散機などを分散槽に備えたバッチ式分散装置、及び乾式シリカ及び極性溶媒を、ポンプ作用によって定量的に分散部分に送り込み、分散を行う連続式分散装置が挙げられる。
【0008】
乾式シリカ分散液を製造する際には、分散液の製造コスト、物流コスト、及び分散液を配合した塗工液の塗工工程における乾燥コストの低減から、分散液の高濃度化、処理時間の効率化が非常に重要である。また、乾式シリカ分散液を製造する上で、乾式シリカのスラリー化工程は必須であり、上記乾式シリカ分散液の高濃度化、処理時間の短縮化を行うためには、まずこのスラリー化工程において、高濃度で、高分散な乾式シリカスラリーを得ることが不可欠である。
【0009】
上記に示した高速回転剪断型分散機を用いて乾式シリカをスラリー化する場合、極性溶媒中に含まれる乾式シリカ濃度が高くなるほどシリカ粒子同士の凝集力が強くなるため、凝集したシリカ粒子を分散しながら乾式シリカを添加しなければならない。従来では、特許文献4にも例示されているように、高速回転剪断型分散機を用いて、分散力をあげるためにタービンの周速を上げることにより、高濃度で、高分散に乾式シリカをスラリー化することが試みられてきた。
【0010】
しかしながら、該高速回転剪断型分散機を用いた乾式シリカのスラリー化工程において、タービンの周速を単に上げただけでは、スラリーの流動状態の悪化、分散機への負荷増大が起こり、得られる乾式シリカスラリーの分散状態は悪く、最悪の場合、スラリーがゲル化するという問題があり、高濃度の乾式シリカスラリーを効率よく得るための分散方法の開発は未だ成功するに至っていない。
【0011】
【特許文献1】特開平11−321079号公報
【特許文献2】特開2001−19421号公報
【特許文献3】特開2002−178626号公報
【特許文献4】特開2002−178626号公報
【発明が解決しようとする課題】
したがって、本発明の目的は、高速回転剪断型分散機を使用して乾式シリカをスラリー化する工程において、高濃度、高分散な乾式シリカスラリーを効率よく、工業的に製造することが可能な方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題について鋭意研究を重ねた結果、高速回転剪断型分散機を用いて乾式シリカをスラリー化する際、単にタービンの周速を単に上昇させる方法では効果がなく、タービンの周速に加えて、タービンの吐出量、乾式シリカの添加速度、及び極性溶媒の重量を特定の関係となるように調整することによって、初めて高濃度で、高分散な乾式シリカスラリーを効率よく製造できることを見出し、本発明を完成させた。
【0013】
即ち、本発明は、タービン径(d)と分散槽内径(D)との比(d/D)が0.05〜0.5である高速回転剪断型分散機を用いて、乾式シリカを極性溶媒中に添加して分散させる方法であって、該高速回転剪断型分散機のタービンの周速(u;m/秒)、タービンの吐出量(Q;kg/秒)、乾式シリカの添加速度(v:kg/秒)、及び極性溶媒の重量(W;kg)が式(1)及び(2)を同時に満足する範囲となる条件下において乾式シリカの分散を行うことを特徴とする乾式シリカの分散方法である。
【0014】
5≦(Q×u/W)≦200 (1)
A≦(v/W)≦B       (2)
【0015】
【数2】

Figure 2004115341
【0016】
【発明の実施の形態】
本発明において用いられる乾式シリカは、四塩化珪素を原料として酸水素炎中で燃焼させて得られる、「ヒュームドシリカ」とも称されており、特に制限なく使用される。一般に乾式シリカは、比表面積が30〜500m/gのものが市販されており、これらの乾式シリカは、本発明において好適に使用される。
【0017】
本発明において、対象とする乾式シリカスラリー中のシリカ濃度は、10〜35重量%である。即ち、シリカ濃度が35重量%より高い場合、乾式シリカが極性溶媒中に取り込まれるときの乾式シリカの凝集力が極端に強くなるため、スラリーの流動性が極端に悪くなり、高速回転剪断型分散機を使用した分散が困難となる。また、10重量%より少ない場合、乾式シリカの分散効率が低く、長時間の分散が必要となり好ましくない。
【0018】
本発明において用いられる極性溶媒は、乾式シリカが分散し易い極性溶媒であれば特に制限はない。かかる極性溶媒としては、水やメタノール、エタノール、イソプロピルアルコール等のアルコール類、エーテル類、ケトン類などの極性溶媒が使用でき、また、水と上記極性溶媒との混合溶媒も使用できる。さらに、上記の極性溶媒に予め界面活性剤、カチオン性樹脂等の添加剤を配合してもよい。
【0019】
本発明において、高速回転剪断型分散機は、図1に代表的な構造を示すように、分散槽3内で、ステーターと呼ばれる固定環1の内壁に沿い、1mm以内のクリアランスを保った状態でタービン(回転翼)2を高速回転させ、処理液を分散する分散機である。
【0020】
該高速回転剪断型分散機を用いて乾式シリカをスラリー化する際、タービン・ステーター間に発生する剪断力、及びキャビテーションによる衝撃力により、極性溶媒中において凝集する乾式シリカを分散し、極性溶媒中での凝集現象を抑制する。
【0021】
本発明に用いられる高速回転剪断型分散機は、上述した機能を有するものであれば特に限定されない。具体例を挙げると、ウルトラミキサー(みづほ工業製)、ホモジナイザー(IKA製)、ホモミキサー、ホモジェッター(特殊機化工業製)、クリアミックス(エムテクニックス製)、更には該高速回転剪断型分散機にディスパー型の高速回転遠心放射型攪拌機やプロペラ型の一般攪拌機、あるいはアンカー型、プラネタリー型の混練分散機を組み合わせて使用するコンビミックスタイプなどがあるが、好ましくは、極性溶媒の界面中央部にボルテックスを形成させ、添加した乾式シリカがボルテックスによってタービンへと直接的に取り込まれるような流動状態を発生させる分散機、ウルトラミキサー、ホモジェッターを用いるのが好ましい。
【0022】
また、該高速回転剪断型分散機は、前記図1に示すように、タービン径(d)と分散槽内径(D)との比(d/D)が0.05〜0.5、好ましくは、0.1〜0.4の範囲にあるものが使用される。即ち、d/Dが0.05より小さい場合、タービン径に対する分散槽内径が大きすぎるため、特に、分散槽内壁付近における流速が遅くなり、スラリーの分散状態が悪くなる。また、d/Dが0.5より大きい場合、タービン径に対する分散槽内径が小さすぎ、スラリーにかかる剪断力が大きくなりすぎるため、スラリーの流動状態が大きく乱れ、分散機への負荷が増大する。
【0023】
また、本発明に使用する高速回転剪断型分散機は、上記分散槽内径が、50〜1500mm、特に100〜1200mmのものが一般的である。
【0024】
本発明において、極性溶媒は予め高速回転剪断型分散機中に供給され、これに乾式シリカを特定の供給速度で供給して分散が行われる。かかる乾式シリカを極性溶媒中に添加する方法としては、特に限定されず、高速回転剪断型分散機中の極性溶媒の液面に乾式シリカを直接添加する方法、高速回転剪断型分散機のタービン近くに乾式シリカの添加口を設置し、渦の中心部に乾式シリカを添加する方法などが好適に採用される。
【0025】
本発明においては、高速回転剪断型分散機のタービンの周速(u;m/秒)、吐出量(Q;kg/秒)、及び極性溶媒の重量(W;kg)が式(1)の範囲となる条件において乾式シリカを添加し分散を行うことが重要である。
【0026】
5≦(Q×u/W)≦200   (1)
上記式において、(Q×u/W)の単位は(J/kg/秒)となるので、(Q×u/W)は極性溶媒が単位質量、単位時間当たりにタービンに通過するときに与えられる分散エネルギーと考えられる。
【0027】
本発明にあっては、タービンの周速、吐出量、及び極性溶媒の重量によって特定される極性溶媒の単位重量あたりの分散エネルギーを上記一定の範囲内に調整することが重要であり、後記する乾式シリカの添加速度の調整との組み合わせによって、乾式シリカが高濃度で、高分散した乾式シリカスラリーを得ることができる。
【0028】
即ち、前記(Q×u/W)が式(1)で示される範囲より小さい場合は、スラリーに与える分散エネルギーが不足するため、乾式シリカの分散状態が悪くなり、スラリーのゲル化を引き起こすため好ましくない。また(Q×u/W)が式(1)で示される範囲より大きい場合は、極性溶媒にかかる剪断力が大きすぎるため、乾式シリカのスラリー化において、スラリーの流動状態の悪化、分散機への負荷増大が起こる。更には、極性溶媒中の取り込まれた乾式シリカの凝集が顕著となり、スラリーがゲル化する。この現象は、乾式シリカを添加した場合、乾式シリカが極性溶媒中に取り込まれる速度は速いが、表面が十分ぬれていない状態で乾式シリカが多量に極性溶媒中に取り込まれるためではないかと推定される。
【0029】
前記タービンの吐出量とは、分散槽内の処理液がタービンに吸引された後、タービン・ステーター間から吐出される量を示している。一般的に吐出量(Q;m/分)は、タービンの回転数(n;1/分)、タービン径(d;m)、及び吐出係数(K;−)により(3)式で求められる。
【0030】
Q=K×n×d   (3)
高速回転剪断型分散機を用いる場合、吐出量は0.005〜2m/分、特に、0.01〜1.5m/分の範囲で用いることが好ましい。かかる吐出量の調整は、タービンの大きさ、羽根の角度などの形状、タービン・ステーター間のクリアランスなどにより調整することができる。また、タービンの周速は、式(1)の範囲内で、タービンの吐出量、及び極性溶媒の重量を勘案して調整することが好ましい。
【0031】
一般に、乾式シリカは嵩密度が低く、極性溶媒界面において堆積、凝集し易いため、本発明においては、乾式シリカが極性溶媒界面上に堆積しないように添加速度を調整することが必要である。具体的には、高速回転剪断型分散機の運転条件を勘案して乾式シリカの添加速度を決定することが必要である。即ち、乾式シリカの添加速度(v;kg/秒)、及び極性溶媒の重量(W;kg)との比によって表される、極性溶媒の単位重量あたりの乾式シリカの添加速度が、前記式(2)で示される範囲に調整することが重要である。
【0032】
A≦(v/W)≦B  (2)
【0033】
【数3】
Figure 2004115341
【0034】
式(2)は、乾式シリカの添加速度を、極性溶媒にかかる分散エネルギーとの関係で一定の範囲内に保った状態で調整することを示している。即ち、(v/W)が式(2)で示される範囲より小さいときは、乾式シリカの添加速度が遅く、乾式シリカをスラリー化するのに要する時間がかかるため、工業的生産には適さない。また式(2)で示される範囲より大きいときは、逆に添加速度が速くなりすぎて分散しきれず、スラリーがゲル化するため、好ましくない。即ち、本発明において、乾式シリカのスラリー化において、高濃度で、高分散に、且つ効率よくスラリー化するためには、式(2)の範囲を満足することが重要である。
【0035】
本発明において、前述した式(1)及び(2)に示した分散条件を同時に満足することが極めて重要であり、どちらかひとつの条件を欠いても、高濃度で、高分散に、且つ効率よくスラリー化することができない。
【0036】
乾式シリカ分散液の粘度は、インクジェット記録材料やOHP用コート剤の塗工液として使用する際に、低粘度であることが好ましい。従って、本発明の方法を採用することによって、乾式シリカをスラリー化する途中、及びスラリー化後に得られる乾式シリカスラリーの粘度は、1000mPa・s、特に500mPa・s以下に維持することが可能であり、これによって、塗工液に使用するに適した乾式シリカ分散液の製造が可能となる。
【0037】
また、本発明において、乾式シリカをスラリー化する場合、乾式シリカが高濃度になるほど、分散による発熱が多くなるため、乾式シリカのスラリー化を行うときの温度を、15℃以上40℃以下の範囲に保ちながら行うことが好ましい。温度を保つ方法としては、分散槽に加熱用または冷却用ジャケットを設置し、温度を一定に保つ方法が挙げられる。
【0038】
【発明の効果】
以上の説明で理解されるように、本発明の乾式スラリーの分散方法は、高濃度で、高分散に、且つ効率よく乾式シリカを極性溶媒に分散させてスラリー化を行うことが可能であり、工業的に極めて有用な方法である。
【0039】
そして、得られた乾式シリカスラリーは、必要に応じて、更なる分散機により処理して乾式シリカ分散液とし、例えば、インクジェット記録用シートの塗工液の原料などとして好適に使用できる。
【0040】
【実施例】
以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
【0041】
尚、乾式シリカの分散状態を評価するために、下記の方法により行った。
【0042】
(乾式シリカの分散状態の評価)
処理液の可視光吸収スペクトルを、分光光度計(日本分光製)を用いて測定した。まず、光路長10mmのセルを用い、参照セル及び試料セルにそれぞれイオン交換水で満たし、全波長範囲にわたってゼロ点校正を行った。次に処理液の濃度を1.5重量%になるようにイオン交換水で希釈し、試料セルに該希釈液を入れて、測定波長(λ)460〜700nmの範囲の吸光度(τ)を測定した。log(λ)とlog(τ)をプロットし、下記に示す式(4)を用いて直線の傾き(−n)を最小二乗法により求めた。
【0043】
τ=αλ−n    (4)
こうして求めたnは光散乱指数と呼ばれ、本発明における乾式シリカの分散状態を示す指標として採用した。nが高いほど乾式シリカの分散状態が良いことを示す。
【0044】
(粘度の測定)
乾式シリカスラリー300gを500cc容器に採取し、B型粘度計(トキメック製、BL)を用いて60rpmの条件においてスラリーの粘度を測定した。
【0045】
実施例1
乾式シリカの分散条件において、周速uを9.4(m/秒)、吐出量Qを0.61(kg/秒)に設定した。予め分散槽にイオン交換水を1600g仕込んだ後、比表面積300m/gの乾式シリカ粉(レオロシールQS30、トクヤマ製)500gを分散槽に添加しながら、ウルトラミキサー(みづほ工業製)によりスラリー化を行った。このときの添加速度v/Wを2.1×10−4(1/秒)、d/Dを0.30とした。分散条件を表1に、このときの得られた乾式シリカスラリーの物性を表2に示す。このときの分散エネルギー(Q×u/W)は33.7(J/kg/秒)であり、分散エネルギー及び添加速度は、式(1)、(2)の範囲内であった。得られた乾式シリカスラリーのn値は2.7であり、乾式シリカの分散状態は良好であった。
【0046】
比較例1
周速uを4.7(m/秒)、吐出量Qを0.30(kg/秒)、添加速度v/Wを5.6×10−5(1/秒)、及び乾式シリカの添加量300gに変更した以外は実施例1と同様のスラリー化を行った。分散条件を表1に、このときの得られた乾式シリカスラリーの物性を表2に示す。このときの分散エネルギー(Q×u/W)は4.2(J/kg/秒)であり、分散エネルギーが式(1)の範囲より小さかったため、得られた乾式シリカスラリーのn値は1.7であり、乾式シリカの分散状態が悪かった。
【0047】
比較例2
周速uを18.8(m/秒)、吐出量Qを1.22(kg/秒)、添加速度v/Wを4.7×10−4(1/秒)に変更した以外は、実施例1と同様のスラリー化を行った。乾式シリカ添加開始後、乾式シリカ粉は迅速にイオン交換水中に取り込まれていたが、乾式シリカ粉の添加量が480gになった時点で流動性が急激に悪くなり、スラリー全体がゲル化したため、目標とした500g全量を添加できなかった。このときの分散エネルギー(Q×u/W)は269.5(J/kg/秒)であり、分散エネルギーが式(1)の範囲よりも大きかった。
【0048】
実施例2
乾式シリカの分散条件において、周速uを18.3(m/秒)、吐出量Qを7.00(kg/秒)に設定した。予め分散槽にイオン交換水を200kg仕込んだ後、比表面積300m/gの乾式シリカ(レオロシールQS30、トクヤマ製)50kgを分散槽に添加しながら、ウルトラミキサー(みづほ工業製)によりスラリー化を行った。このときの添加速度v/Wを1.1×10−4(1/秒)、d/Dを0.13とした。分散条件を表1に、このときの得られた乾式シリカスラリーの物性を表2に示す。このときの分散エネルギー(Q×u/W)は11.7(J/kg/秒)であり、分散エネルギー及び添加速度は、式(1)、(2)の範囲内であった。得られた乾式シリカスラリーのn値は2.8であり、乾式シリカの分散状態が良好であった。
【0049】
比較例3
添加速度v/Wを4.2×10−4(1/秒)に変更した以外は、実施例2と同様のスラリー化を行った。乾式シリカ粉は迅速にイオン交換水中に取り込まれていたが、乾式シリカ粉の添加量が40kgになった時点で流動性が急激に悪くなり、スラリー全体がゲル化したため、目標とした50kg全量を添加できなかった。このときの分散エネルギー(Q×u/W)は11.7であり、乾式シリカの添加速度が式(2)の範囲よりも大きかった。
【0050】
実施例3
乾式シリカの分散条件において、周速uを10.6(m/秒)、吐出量Qを0.68(kg/秒)に設定した。予め分散槽にイオン交換水を2400g仕込んだ後、比表面積90m/gの乾式シリカ粉(レオロシールQS09、トクヤマ製)600gを分散槽に添加しながら、ウルトラミキサー(みづほ工業製)によりスラリー化を行った。このときの添加速度v/Wを2.3×10−4(1/秒)、d/D=0.24とした。分散条件を表1に、このときの得られた乾式シリカスラリーの物性を表2に示す。このときの分散エネルギー(Q×u/W)は32.0(J/kg/秒)であり、分散エネルギー及び添加速度は、式(1)、(2)の範囲内であった。得られた乾式シリカスラリーのn値は3.0であり、乾式シリカの分散状態が良好であった。
【0051】
実施例4
乾式シリカの分散条件において、周速uを11.0(m/秒)、吐出量Qを0.63(kg/秒)に設定した。予め分散槽にイオン交換水を1600g仕込んだ後、比表面積300m/gの乾式シリカ粉(レオロシールQS30、トクヤマ製)400gを分散槽に添加しながら、ホモジナイザー(IKA製)によりスラリー化を行った。このときの添加速度v/Wを1.7×10−4(1/秒)、d/Dを0.20とした。分散条件を表1に、このときの得られた乾式シリカスラリーの物性を表2に示す。このときの分散エネルギー(Q×u/W)は32.0(J/kg/秒)であり、分散エネルギー及び添加速度は式(1)、(2)の範囲内であった。得られた乾式シリカスラリーのn値は2.5であり、乾式シリカの分散状態が良好であった。
【0052】
実施例5
乾式シリカの分散条件において、周速uを15.7(m/秒)、吐出量Qを3.38(kg/秒)に設定した。予め分散槽にイオン交換水を40kg仕込んだ後、比表面積300m/gの乾式シリカ(レオロシールQS30、トクヤマ製)10kgを分散槽に添加しながら、ウルトラミキサー1基、プロペラミキサー1基、及びアンカー1基を設置したコンビミックスタイプの分散機(みづほ工業製)によりスラリー化を行った。このときの添加速度v/Wを1.2×10−4(1/秒)、d/D=0.12に設定し、分散条件を表1に、このときの得られた乾式シリカスラリーの物性を表2に示す。このときの分散エネルギー(Q×u/W)は20.8(J/kg/秒)であり、分散エネルギー及び添加速度は式(1)、(2)の範囲内であった。得られた乾式シリカスラリーのn値は2.6であり、乾式シリカの分散状態が良好であった。
【0053】
比較例4
乾式シリカの分散条件において、周速uを16.5(m/秒)、吐出量Qを1.06(kg/秒)に設定した。予め分散槽にイオン交換水を1280g仕込んだ後、比表面積300m/gの乾式シリカ(レオロシールQS30、トクヤマ製)340gを分散槽に添加しながら、ウルトラミキサー(みづほ工業製)によりスラリー化を行った。このときの添加速度v/Wを4.2×10−4(1/秒)、d/D=0.32とした。分散条件を表1に、このときの得られた乾式シリカスラリーの物性を表2に示す。このときの分散エネルギー(Q×u/W)は225.7(J/kg/秒)であり、分散エネルギーが式(1)の範囲よりも大きかったため、乾式シリカスラリーのn値は2.1であり、乾式シリカの分散状態が悪く、乾式シリカスラリーは高粘度であった。
【0054】
【表1】
Figure 2004115341
【0055】
【表2】
Figure 2004115341
【0056】
表1、表2に見られるように、タービンの周速、吐出量、乾式シリカの添加速度、及び極性溶媒の重量を式(1)、(2)を同時に満足する範囲に調整することにより、乾式シリカの分散状態が良く、低粘度な乾式シリカスラリーが得られた。
【0057】
また、式(1)、(2)で示した範囲内で乾式シリカのスラリー化を行った実施例1〜5によって得られた乾式シリカスラリーは、式(1)の範囲外で乾式シリカのスラリー化を行った比較例1、4によって得られた乾式シリカスラリーと比較してn値が高く、分散状態が良好であり、かつ低粘度であった。また、式(1)で示した範囲外で乾式シリカのスラリー化を行った比較例2、式(2)の範囲外で乾式シリカのスラリー化を行った比較例3に関しては、目標とする乾式シリカの濃度に達する前にスラリー全体がゲル化した。
【図面の簡単な説明】
【図1】本発明に使用する高速回転剪断型分散機の代表的な構造を示す概略図
【符号の説明】
1 ステーター
2 タービン
3 分散槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel dispersion method for dispersing fumed silica in a polar solvent using a high-speed rotary shear disperser. More specifically, the present invention relates to a method for dispersing dry silica capable of increasing the concentration and dispersing property when adding and dispersing dry silica to a polar solvent using a high-speed rotary shearing disperser.
[0002]
[Prior art]
Dry silica produced by burning silicon tetrachloride as a raw material in an oxyhydrogen flame has high transparency and is therefore suitably used as a raw material for ink jet recording materials and OHP coating agents.
[0003]
The above-mentioned dry silica is often used for each raw material as a so-called dry silica dispersion in which the dry silica is dispersed and stabilized in a polar solvent.
[0004]
As a method for producing such a fumed silica dispersion, many known techniques have been reported so far.
[0005]
For example, as shown in Patent Document 1, a dry silica slurry is prepared by adding and dispersing dry silica fine particles in a polar solvent, and then mixed with an additive such as a cationic resin. There has been proposed a method of performing fine dispersion treatment with an ultrasonic disperser or the like to obtain a dry silica dispersion. Further, as shown in Patent Documents 2 and 3, after dry silica is added to and dispersed in a polar solvent containing a dispersing agent such as a cationic resin and the like to obtain a dry silica slurry, a high-pressure homogenizer or an ultrasonic There has been proposed a method of performing fine dispersion treatment with a disperser or the like to obtain a dry silica dispersion.
[0006]
Hereinafter, the step of adding and dispersing dry silica in a polar solvent is a step of slurrying dry silica, and a step obtained by the step of slurrying dry silica is finely dispersed with a dry silica slurry, and further a high-pressure homogenizer or an ultrasonic disperser. Is obtained as a dry silica dispersion.
[0007]
The dispersing apparatus used for dispersing the dry silica in the polar solvent in the dry silica slurrying step includes a general stirrer, a high-speed rotating shear type disperser, a high-speed rotary centrifugal radiation type stirrer, a kneading disperser, and a pulverizing disperser. Such as a known disperser, or a batch disperser equipped with a dispersing tank such as a combimix type disperser in which these are combined, and dry silica and a polar solvent, quantitatively sent to the dispersion portion by a pump action, A continuous dispersion apparatus for performing dispersion is used.
[0008]
When producing a fumed silica dispersion, the production cost of the dispersion, the distribution cost, and the reduction of the drying cost in the coating process of the coating liquid containing the dispersion, the concentration of the dispersion is increased, the processing time is increased. Efficiency is very important. Further, in producing a dry silica dispersion, a step of slurrying the dry silica is indispensable. In order to increase the concentration of the dry silica dispersion and to shorten the processing time, first, in this slurry step, It is essential to obtain a high-concentration, high-dispersion dry silica slurry.
[0009]
When slurrying dry silica using the high-speed rotary shearing disperser shown above, the higher the dry silica concentration contained in the polar solvent, the stronger the cohesive force between the silica particles becomes. While the fumed silica must be added. Conventionally, as exemplified in Patent Document 4, by using a high-speed rotary shearing type disperser and increasing the peripheral speed of a turbine to increase the dispersing force, dry silica can be concentrated and dispersed at a high concentration. Slurries have been attempted.
[0010]
However, in the process of slurrying dry silica using the high-speed rotary shearing type disperser, simply increasing the peripheral speed of the turbine deteriorates the flow state of the slurry and increases the load on the disperser, resulting in the resulting dry type. The dispersion state of the silica slurry is poor, and in the worst case, there is a problem that the slurry gels, and the development of a dispersion method for efficiently obtaining a high-concentration dry silica slurry has not yet been successful.
[0011]
[Patent Document 1] JP-A-11-321079 [Patent Document 2] JP-A-2001-19421 [Patent Document 3] JP-A-2002-178626 [Patent Document 4] JP-A-2002-178626 [Invention] Issues to be solved]
Accordingly, an object of the present invention is to provide a high-concentration, high-dispersion dry silica slurry that can be efficiently and industrially produced in a step of slurrying dry silica using a high-speed rotary shear disperser. Is to provide.
[0012]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the above problems, and as a result, when slurried dry silica using a high-speed rotary shear disperser, simply increasing the peripheral speed of the turbine is ineffective, Efficient production of high-concentration, high-dispersion dry silica slurry for the first time by adjusting the discharge rate of the turbine, the addition rate of the dry silica, and the weight of the polar solvent in addition to the peripheral speed so that they have a specific relationship. They have found that they can do this and have completed the present invention.
[0013]
That is, the present invention uses a high-speed rotary shearing type dispersing machine in which the ratio (d / D) of the turbine diameter (d) to the inner diameter (D) of the dispersion tank is 0.05 to 0.5 to convert the dry silica into a polar silica. A method of adding and dispersing in a solvent, comprising a peripheral speed of a turbine (u; m / sec), a discharge rate of a turbine (Q; kg / sec), and a rate of addition of dry silica in the high-speed rotary shear disperser. (V: kg / sec), and dry silica is dispersed under the condition that the weight (W; kg) of the polar solvent satisfies the formulas (1) and (2) simultaneously. Is a dispersion method.
[0014]
5 ≦ (Q × u 2 / W) ≦ 200 (1)
A ≦ (v / W) ≦ B (2)
[0015]
(Equation 2)
Figure 2004115341
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The dry silica used in the present invention is also called "fumed silica" obtained by burning silicon tetrachloride as a raw material in an oxyhydrogen flame, and is used without any particular limitation. Generally, dry silica having a specific surface area of 30 to 500 m 2 / g is commercially available, and these dry silicas are suitably used in the present invention.
[0017]
In the present invention, the silica concentration in the target dry silica slurry is 10 to 35% by weight. That is, when the silica concentration is higher than 35% by weight, the cohesive force of the dry silica when the dry silica is taken into the polar solvent becomes extremely strong, so that the fluidity of the slurry becomes extremely poor and the high-speed rotational shearing dispersion Dispersion using a machine becomes difficult. On the other hand, when the content is less than 10% by weight, the dispersion efficiency of the fumed silica is low, and long-time dispersion is required, which is not preferable.
[0018]
The polar solvent used in the present invention is not particularly limited as long as the dry silica disperses easily. As such a polar solvent, polar solvents such as water, alcohols such as methanol, ethanol and isopropyl alcohol, ethers and ketones can be used, and a mixed solvent of water and the above-mentioned polar solvent can also be used. Further, additives such as a surfactant and a cationic resin may be previously added to the polar solvent.
[0019]
In the present invention, as shown in FIG. 1, the high-speed rotary shearing dispersing machine is arranged along the inner wall of the stationary ring 1 called a stator in the dispersion tank 3 while maintaining a clearance of 1 mm or less. This is a disperser that rotates a turbine (rotary blade) 2 at high speed and disperses the processing liquid.
[0020]
When slurrying dry silica using the high-speed rotary shearing type disperser, the shear force generated between the turbine and the stator, and the impact force due to cavitation, disperse the dry silica that aggregates in the polar solvent, and disperse the dry silica in the polar solvent. To suppress the aggregation phenomenon.
[0021]
The high-speed rotary shearing type disperser used in the present invention is not particularly limited as long as it has the above-described functions. Specific examples include an ultra mixer (manufactured by Mizuho Kogyo), a homogenizer (manufactured by IKA), a homomixer, a homojetter (manufactured by Tokushu Kika Kogyo), a clear mix (manufactured by M Technics), and a high-speed rotation shearing dispersion. There are a disperser type high-speed rotation centrifugal radiation type stirrer and a propeller type general stirrer, or a combination type using a combination of an anchor type and a planetary type kneading and dispersing machine. It is preferable to use a disperser, an ultra mixer, or a homojetter that forms a fluid state in which vortex is formed in the part and the added dry silica is directly taken into the turbine by the vortex.
[0022]
As shown in FIG. 1, the high-speed rotary shearing disperser has a ratio (d / D) of a turbine diameter (d) to a dispersion tank inner diameter (D) of 0.05 to 0.5, preferably, 0.5 to 0.5. , 0.1 to 0.4 are used. That is, when d / D is smaller than 0.05, the inner diameter of the dispersion tank with respect to the turbine diameter is too large, so that the flow velocity particularly near the inner wall of the dispersion tank becomes slow, and the dispersion state of the slurry becomes poor. If d / D is larger than 0.5, the inner diameter of the dispersion tank with respect to the turbine diameter is too small, and the shearing force applied to the slurry becomes too large, so that the flow state of the slurry is greatly disturbed and the load on the disperser increases. .
[0023]
The high-speed rotary shearing type disperser used in the present invention generally has an inner diameter of the dispersion tank of 50 to 1500 mm, particularly 100 to 1200 mm.
[0024]
In the present invention, the polar solvent is supplied in advance to a high-speed rotary shear disperser, and the silica is supplied thereto at a specific supply speed to perform dispersion. The method for adding the dry silica to the polar solvent is not particularly limited, and a method of directly adding dry silica to the liquid surface of the polar solvent in the high-speed rotary shearing disperser, near the turbine of the high-speed rotary shearing disperser. A method in which an addition port for dry silica is provided in the vortex, and dry silica is added to the center of the vortex, is suitably employed.
[0025]
In the present invention, the peripheral speed (u; m / sec), discharge rate (Q; kg / sec), and weight (W; kg) of the polar solvent of the turbine of the high-speed rotary shearing disperser are represented by the formula (1). It is important to add and disperse the fumed silica under the conditions falling within the above range.
[0026]
5 ≦ (Q × u 2 / W) ≦ 200 (1)
In the above formula, since the unit of (Q × u 2 / W) is (J / kg / sec), (Q × u 2 / W) is obtained when the polar solvent passes through the turbine per unit mass per unit time. Is considered to be the dispersion energy given to
[0027]
In the present invention, it is important to adjust the dispersion energy per unit weight of the polar solvent specified by the peripheral speed of the turbine, the discharge rate, and the weight of the polar solvent to be within the above-mentioned certain range, which will be described later. In combination with the adjustment of the addition rate of the dry silica, a dry silica slurry in which the dry silica has a high concentration and is highly dispersed can be obtained.
[0028]
That is, when the (Q × u 2 / W) is smaller than the range represented by the formula (1), the dispersion energy given to the slurry is insufficient, so that the dispersion state of the dry silica is deteriorated and the slurry gels. Therefore, it is not preferable. When (Q × u 2 / W) is larger than the range represented by the formula (1), the shearing force applied to the polar solvent is too large. The load on the system increases. Further, aggregation of the dry silica taken in the polar solvent becomes remarkable, and the slurry gels. This phenomenon is presumed to be due to the fact that when dry silica is added, the dry silica is incorporated into the polar solvent at a high speed, but a large amount of dry silica is incorporated into the polar solvent in a state where the surface is not sufficiently wet. You.
[0029]
The discharge amount of the turbine indicates an amount discharged from between the turbine and the stator after the processing liquid in the dispersion tank is sucked into the turbine. In general, the discharge rate (Q; m 3 / min) is obtained from the equation (3) using the turbine speed (n; 1 / min), the turbine diameter (d; m), and the discharge coefficient (K;-). Can be
[0030]
Q = K × n × d 3 (3)
When a high-speed rotary shearing type disperser is used, the discharge rate is preferably in the range of 0.005 to 2 m 3 / min, particularly 0.01 to 1.5 m 3 / min. The discharge amount can be adjusted by the size of the turbine, the shape of the blade such as the angle, the clearance between the turbine and the stator, and the like. In addition, it is preferable that the peripheral speed of the turbine is adjusted in consideration of the discharge amount of the turbine and the weight of the polar solvent within the range of Expression (1).
[0031]
Generally, dry silica has a low bulk density and easily deposits and aggregates at the polar solvent interface. Therefore, in the present invention, it is necessary to adjust the addition rate so that the dry silica does not deposit on the polar solvent interface. Specifically, it is necessary to determine the addition rate of the dry silica in consideration of the operating conditions of the high-speed rotary shearing disperser. That is, the addition rate of the dry silica per unit weight of the polar solvent, which is represented by the ratio of the addition rate of the dry silica (v; kg / sec) and the weight of the polar solvent (W; kg), is expressed by the above formula ( It is important to adjust to the range shown in 2).
[0032]
A ≦ (v / W) ≦ B (2)
[0033]
[Equation 3]
Figure 2004115341
[0034]
Equation (2) shows that the addition rate of the fumed silica is adjusted while keeping it within a certain range in relation to the dispersion energy applied to the polar solvent. That is, when (v / W) is smaller than the range represented by the formula (2), the addition rate of the dry silica is slow, and it takes a long time to slurry the dry silica, so that it is not suitable for industrial production. . On the other hand, if it is larger than the range represented by the formula (2), the addition rate is too high to disperse completely and the slurry gels, which is not preferable. That is, in the present invention, it is important to satisfy the range of the expression (2) in order to efficiently and slurry the fumed silica in a high-concentration, high-dispersion manner.
[0035]
In the present invention, it is extremely important to simultaneously satisfy the dispersion conditions shown in the above-described formulas (1) and (2). Even if one of the conditions is omitted, high concentration, high dispersion, and efficiency can be achieved. Cannot be slurried well.
[0036]
The viscosity of the fumed silica dispersion is preferably low when it is used as a coating liquid for ink jet recording materials or OHP coating agents. Therefore, by employing the method of the present invention, the viscosity of the dry silica slurry obtained during and after slurrying the dry silica can be maintained at 1000 mPas, particularly 500 mPas or less. This makes it possible to produce a dry silica dispersion suitable for use in a coating liquid.
[0037]
Further, in the present invention, when the dry silica is slurried, the higher the concentration of the dry silica, the greater the heat generated by the dispersion. Therefore, the temperature at which the dry silica is slurried is in the range of 15 ° C to 40 ° C. It is preferable to carry out while maintaining. As a method for maintaining the temperature, a method for installing a heating or cooling jacket in the dispersion tank and maintaining the temperature constant may be mentioned.
[0038]
【The invention's effect】
As understood from the above description, the method for dispersing a dry slurry of the present invention has a high concentration, a high dispersion, and can efficiently perform a slurry by dispersing dry silica in a polar solvent, This is an industrially useful method.
[0039]
Then, the obtained dry silica slurry is treated with a further disperser to form a dry silica dispersion, if necessary, and can be suitably used, for example, as a raw material of a coating liquid for an inkjet recording sheet.
[0040]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
[0041]
In order to evaluate the dispersion state of the fumed silica, the following method was used.
[0042]
(Evaluation of dispersion state of fumed silica)
The visible light absorption spectrum of the treatment liquid was measured using a spectrophotometer (manufactured by JASCO Corporation). First, using a cell having an optical path length of 10 mm, the reference cell and the sample cell were each filled with ion-exchanged water, and zero point calibration was performed over the entire wavelength range. Next, the treatment liquid is diluted with ion-exchanged water so as to have a concentration of 1.5% by weight, and the diluted liquid is put in a sample cell, and the absorbance (τ) in the range of measurement wavelength (λ) of 460 to 700 nm is measured. did. Log (λ) and log (τ) were plotted, and the slope (−n) of the straight line was obtained by the least squares method using the following equation (4).
[0043]
τ = αλ- n (4)
The n obtained in this manner is called a light scattering index, and was adopted as an index indicating the dispersion state of the dry silica in the present invention. The higher the value of n, the better the dispersion of the fumed silica.
[0044]
(Measurement of viscosity)
300 g of the dry silica slurry was collected in a 500 cc container, and the viscosity of the slurry was measured using a B-type viscometer (manufactured by Tokimec, BL) at 60 rpm.
[0045]
Example 1
Under the dispersion conditions of the fumed silica, the peripheral speed u was set to 9.4 (m / sec), and the discharge amount Q was set to 0.61 (kg / sec). Were charged 1600g of deionized water in advance dispersion tank, dry silica powder with a specific surface area of 300 meters 2 / g (Reolosil QS30, manufactured by Tokuyama), while adding to 500g of dispersion tank, a slurry by Ultra Mixer (Mizuho Kogyo) went. At this time, the addition speed v / W was 2.1 × 10 −4 (1 / sec), and the d / D was 0.30. Table 1 shows the dispersion conditions, and Table 2 shows the physical properties of the obtained dry silica slurry. At this time, the dispersion energy (Q × u 2 / W) was 33.7 (J / kg / sec), and the dispersion energy and the addition rate were within the ranges of Expressions (1) and (2). The n value of the obtained dry silica slurry was 2.7, and the dry silica dispersion was good.
[0046]
Comparative Example 1
The peripheral speed u is 4.7 (m / sec), the discharge amount Q is 0.30 (kg / sec), the addition speed v / W is 5.6 × 10 −5 (1 / sec), and the addition of dry silica A slurry was prepared in the same manner as in Example 1 except that the amount was changed to 300 g. Table 1 shows the dispersion conditions, and Table 2 shows the physical properties of the obtained dry silica slurry. At this time, the dispersion energy (Q × u 2 / W) was 4.2 (J / kg / sec), and the dispersion energy was smaller than the range of the formula (1). 1.7, and the dispersion state of the fumed silica was poor.
[0047]
Comparative Example 2
Except that the peripheral speed u was changed to 18.8 (m / sec), the discharge rate Q was changed to 1.22 (kg / sec), and the addition speed v / W was changed to 4.7 × 10 -4 (1 / sec). A slurry was prepared in the same manner as in Example 1. After the start of the dry silica addition, the dry silica powder was quickly taken into the ion-exchanged water, but when the amount of the dry silica powder reached 480 g, the fluidity rapidly deteriorated and the entire slurry gelled. The target 500 g total amount could not be added. At this time, the dispersion energy (Q × u 2 / W) was 269.5 (J / kg / sec), and the dispersion energy was larger than the range of Expression (1).
[0048]
Example 2
Under the dispersion conditions of the fumed silica, the peripheral speed u was set to 18.3 (m / sec), and the discharge amount Q was set to 7.00 (kg / sec). After 200 kg of ion-exchanged water is previously charged in the dispersion tank, 50 kg of dry silica (Reloseal QS30, manufactured by Tokuyama) having a specific surface area of 300 m 2 / g is added to the dispersion tank and slurried with an ultra mixer (manufactured by Mizuho Kogyo). Was. At this time, the addition speed v / W was set to 1.1 × 10 −4 (1 / sec), and the d / D was set to 0.13. Table 1 shows the dispersion conditions, and Table 2 shows the physical properties of the obtained dry silica slurry. At this time, the dispersion energy (Q × u 2 / W) was 11.7 (J / kg / sec), and the dispersion energy and the addition rate were within the ranges of Expressions (1) and (2). The n value of the obtained dry silica slurry was 2.8, and the dry silica dispersion was good.
[0049]
Comparative Example 3
A slurry was prepared in the same manner as in Example 2, except that the addition rate v / W was changed to 4.2 × 10 −4 (1 / sec). The dry silica powder was quickly taken into the ion-exchanged water, but when the addition amount of the dry silica powder reached 40 kg, the fluidity rapidly deteriorated, and the entire slurry gelled. Could not be added. At this time, the dispersion energy (Q × u 2 / W) was 11.7, and the addition rate of the dry silica was higher than the range of the formula (2).
[0050]
Example 3
Under the dispersion condition of the fumed silica, the peripheral speed u was set to 10.6 (m / sec), and the discharge amount Q was set to 0.68 (kg / sec). After 2,400 g of ion-exchanged water is previously charged in the dispersion tank, 600 g of dry silica powder (Reloseal QS09, manufactured by Tokuyama) having a specific surface area of 90 m 2 / g is added to the dispersion tank, and slurried with an ultra mixer (manufactured by Mizuho Industries). went. At this time, the addition speed v / W was set to 2.3 × 10 −4 (1 / second) and d / D = 0.24. Table 1 shows the dispersion conditions, and Table 2 shows the physical properties of the obtained dry silica slurry. At this time, the dispersion energy (Q × u 2 / W) was 32.0 (J / kg / sec), and the dispersion energy and the addition rate were within the ranges of Expressions (1) and (2). The n value of the obtained dry silica slurry was 3.0, and the dry silica dispersion state was good.
[0051]
Example 4
Under the dispersion conditions of the fumed silica, the peripheral speed u was set to 11.0 (m / sec), and the discharge amount Q was set to 0.63 (kg / sec). After 1600 g of ion-exchanged water was previously charged in the dispersion tank, 400 g of dry silica powder (Reloseal QS30, manufactured by Tokuyama) having a specific surface area of 300 m 2 / g was added to the dispersion tank, and a slurry was formed using a homogenizer (manufactured by IKA). . At this time, the addition speed v / W was set to 1.7 × 10 −4 (1 / sec), and the d / D was set to 0.20. Table 1 shows the dispersion conditions, and Table 2 shows the physical properties of the obtained dry silica slurry. At this time, the dispersion energy (Q × u 2 / W) was 32.0 (J / kg / sec), and the dispersion energy and the addition rate were within the ranges of the formulas (1) and (2). The n value of the obtained dry silica slurry was 2.5, and the dry silica dispersion was good.
[0052]
Example 5
Under the dispersion conditions of fumed silica, the peripheral speed u was set to 15.7 (m / sec), and the discharge amount Q was set to 3.38 (kg / sec). After preliminarily charging 40 kg of ion-exchanged water into the dispersion tank, one ultramixer, one propeller mixer, and an anchor are added to the dispersion tank while adding 10 kg of dry silica (Reloseal QS30, manufactured by Tokuyama) having a specific surface area of 300 m 2 / g to the dispersion tank. The slurry was formed by a combimix type disperser (manufactured by Mizuho Kogyo) equipped with one unit. At this time, the addition speed v / W was set to 1.2 × 10 −4 (1 / sec), d / D = 0.12, and the dispersion conditions are shown in Table 1. Table 2 shows the physical properties. At this time, the dispersion energy (Q × u 2 / W) was 20.8 (J / kg / sec), and the dispersion energy and the addition rate were within the ranges of the formulas (1) and (2). The n value of the obtained dry silica slurry was 2.6, and the dry silica was well dispersed.
[0053]
Comparative Example 4
Under the dispersion conditions of the fumed silica, the peripheral speed u was set at 16.5 (m / sec), and the discharge amount Q was set at 1.06 (kg / sec). After 1280 g of ion-exchanged water is previously charged in the dispersion tank, 340 g of dry silica (Reloseal QS30, manufactured by Tokuyama) having a specific surface area of 300 m 2 / g is added to the dispersion tank, and slurry is formed using an ultra mixer (manufactured by Mizuho Kogyo). Was. At this time, the addition speed v / W was set to 4.2 × 10 −4 (1 / sec) and d / D = 0.32. Table 1 shows the dispersion conditions, and Table 2 shows the physical properties of the obtained dry silica slurry. At this time, the dispersion energy (Q × u 2 / W) was 225.7 (J / kg / sec). Since the dispersion energy was larger than the range of the formula (1), the n value of the dry silica slurry was 2. 1, and the dry silica dispersion state was poor, and the dry silica slurry had high viscosity.
[0054]
[Table 1]
Figure 2004115341
[0055]
[Table 2]
Figure 2004115341
[0056]
As can be seen from Tables 1 and 2, by adjusting the peripheral speed of the turbine, the discharge rate, the addition rate of the dry silica, and the weight of the polar solvent so as to satisfy the equations (1) and (2) at the same time, The dispersion state of the dry silica was good, and a low-viscosity dry silica slurry was obtained.
[0057]
The dry silica slurry obtained in Examples 1 to 5 in which the dry silica was slurried in the range shown by the formulas (1) and (2) was the dry silica slurry outside the range of the formula (1). In comparison with the dry silica slurries obtained in Comparative Examples 1 and 4, the n value was higher, the dispersion state was good, and the viscosity was low. Further, in Comparative Example 2 in which the dry silica was slurried outside the range shown by the formula (1), and in Comparative Example 3 in which the dry silica was slurried outside the range of the formula (2), the target dry process was used. The entire slurry gelled before the silica concentration was reached.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a typical structure of a high-speed rotary shearing disperser used in the present invention.
DESCRIPTION OF SYMBOLS 1 Stator 2 Turbine 3 Dispersion tank

Claims (2)

タービン径(d)と分散槽内径(D)との比(d/D)が0.05〜0.5である高速回転剪断型分散機を用いて、乾式シリカを極性溶媒中に添加して分散させる方法であって、該高速回転剪断型分散機のタービンの周速(u;m/秒)、タービンの吐出量(Q;kg/秒)、乾式シリカの添加速度(v:kg/秒)、及び極性溶媒の重量(W;kg)が式(1)及び(2)を同時に満足する範囲となる条件下において乾式シリカの分散を行うことを特徴とする乾式シリカの分散方法。
5≦(Q×u/W)≦200   (1)
A≦(v/W)≦B        (2)
Figure 2004115341
Dry silica is added to a polar solvent by using a high-speed rotary shear disperser having a ratio (d / D) of the turbine diameter (d) to the dispersion tank inner diameter (D) of 0.05 to 0.5. A method of dispersing, wherein a peripheral speed of a turbine (u; m / sec), a discharge amount of a turbine (Q; kg / sec), and an addition speed of dry silica (v: kg / sec) ) And a method for dispersing the dry silica under a condition that the weight (W; kg) of the polar solvent satisfies the formulas (1) and (2) at the same time.
5 ≦ (Q × u 2 / W) ≦ 200 (1)
A ≦ (v / W) ≦ B (2)
Figure 2004115341
極性溶媒中のシリカ濃度が10〜35重量%となるまで乾式シリカを添加する請求項1記載の乾式シリカの分散方法。The method for dispersing dry silica according to claim 1, wherein the dry silica is added until the concentration of silica in the polar solvent becomes 10 to 35% by weight.
JP2002283848A 2002-09-27 2002-09-27 Method for dispersing dry silica Expired - Lifetime JP4030403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283848A JP4030403B2 (en) 2002-09-27 2002-09-27 Method for dispersing dry silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283848A JP4030403B2 (en) 2002-09-27 2002-09-27 Method for dispersing dry silica

Publications (2)

Publication Number Publication Date
JP2004115341A true JP2004115341A (en) 2004-04-15
JP4030403B2 JP4030403B2 (en) 2008-01-09

Family

ID=32277598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283848A Expired - Lifetime JP4030403B2 (en) 2002-09-27 2002-09-27 Method for dispersing dry silica

Country Status (1)

Country Link
JP (1) JP4030403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106652A (en) * 2005-10-17 2007-04-26 Oji Paper Co Ltd Hydrated silicic acid for paper making and method of manufacturing the same
CN116726859A (en) * 2023-07-25 2023-09-12 恩平燕怡新材料有限公司 Strong carbonizer for nano calcium carbonate production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574229A (en) 2018-05-31 2019-12-04 Fas Medic Sa Method and apparatus for energising a solenoid of a valve assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106652A (en) * 2005-10-17 2007-04-26 Oji Paper Co Ltd Hydrated silicic acid for paper making and method of manufacturing the same
CN116726859A (en) * 2023-07-25 2023-09-12 恩平燕怡新材料有限公司 Strong carbonizer for nano calcium carbonate production
CN116726859B (en) * 2023-07-25 2024-04-02 恩平燕怡新材料有限公司 Strong carbonizer for nano calcium carbonate production

Also Published As

Publication number Publication date
JP4030403B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
KR100394049B1 (en) Abrasive Slurry and Manufacturing Method
JP2007031212A (en) Slurry of calcium hydroxide ultrafine particle
JP6705164B2 (en) Method for producing aqueous pigment dispersion
JP6056943B2 (en) Method for producing aqueous pigment dispersion
JPH09142827A (en) Silica dispersion and its production
JP4282848B2 (en) Inorganic particle dispersion composition
JP4030403B2 (en) Method for dispersing dry silica
CN104403575B (en) A kind of preparation method of high accuracy aluminum oxide polishing powder
JP2004035632A (en) Inorganic oxide dispersion having high transparency and ultraviolet shielding ability and dispersion method
JP5114846B2 (en) Method for producing zinc oxide dispersed paste
JP2000239536A (en) Cationic resin-modified silica dispersion and its production
JP4093822B2 (en) Modified silica dispersion and method for producing the same
JP2007161543A (en) Method for producing zinc oxide dispersion paste
JP2004043298A (en) Method for manufacturing silica dispersion liquid
JP2004331479A (en) Wet-type silica dispersion and its manufacturing method
JP4832940B2 (en) Method for producing cationic resin-modified dry silica dispersion
JP3922902B2 (en) Cationic resin-modified silica dispersion and production method thereof
JP4758622B2 (en) Method for producing aqueous pigment dispersion composition, aqueous pigment dispersion composition obtained by the production method and use thereof
JP2005231954A (en) Wet type silica dispersion liquid and method of manufacturing the same
JP2005041701A (en) Method for producing modified dry-process silica dispersion
JPH09286974A (en) Production of abrasive
JP3967570B2 (en) Cationic resin-modified silica dispersion and production method thereof
JP5059369B2 (en) Alkaline silica dispersion and method for producing the same
JP2007210819A (en) Method for dispersing silica dispersion
JP2003306608A (en) Cationic resin-modified silica dispersion and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Ref document number: 4030403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161026

Year of fee payment: 9

EXPY Cancellation because of completion of term