JP2004114221A - Cutting fluid tank - Google Patents

Cutting fluid tank Download PDF

Info

Publication number
JP2004114221A
JP2004114221A JP2002280147A JP2002280147A JP2004114221A JP 2004114221 A JP2004114221 A JP 2004114221A JP 2002280147 A JP2002280147 A JP 2002280147A JP 2002280147 A JP2002280147 A JP 2002280147A JP 2004114221 A JP2004114221 A JP 2004114221A
Authority
JP
Japan
Prior art keywords
tank
cutting fluid
screw shaft
screw
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002280147A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
池田 弘
Kozo Nonaka
野中 耕三
Tomoharu Goshima
五島 智治
Hisatomo Oshima
大島 久朋
Junji Ogawa
小川 淳二
Naoki Kawamura
河村 直紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2002280147A priority Critical patent/JP2004114221A/en
Publication of JP2004114221A publication Critical patent/JP2004114221A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting fluid tank for preventing advancing of putrefaction and emitting of malodor by stagnation of cutting fluid within the tank and corroding of the bottom of the tank by precipitate. <P>SOLUTION: A screw blade is formed on an outer periphery and a screw shaft 11 is rotatably provided within the tank 10 to impart flowability to the cutting fluid within the tank 10. By making a driving motor of a feed screw of a machine main body as a power source, normal and reverse rotation or one-way rotation is transmitted to the screw shaft 11 via a conduction member. The cutting fluid within the tank 10 is made to flow in forward/reverse directions or a fixed direction to prevent the cutting fluid from stagnating within the tank 10. Putrefactive bacteria is prevented from being proliferated due to a liquid surface oil film of the cutting fluid. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
工作機械に使用される切削液タンクであり、詳しくはタンク内の切削液に流動性を付与することにより滞留による腐敗菌増殖を抑制するようにした切削液タンクである。
【0002】
【従来の技術】
工作機械において、回収した切削液から切粉やその他の異物を除去して循環使用する方式が広く使用されている。このような切削液タンクにおける切削液の処理のプロセスの従来技術は、特願2002−222706号の明細書中、〔0002〕の第4行−第11行、〔0013〕第1行−第6行及び図4、図5において、「図4,図5において、図示しないワークテーブルの移動方向に平行して両側に設置された機内コンベア101A,101Bにより運ばれた切粉と切削液の混合物pは図示しない本機ベッドの一端に設けられた一次タンク102に落下する。大きな切粉はリフトチップコンベア103上に堆積しチップバケット104に搬送搬出される。一次タンク102に落下し貯えられた切削液は液面がオーバフロー用の放出口102aに達すると二次タンク105のバケット106に流入する。オーバフローする切削液rには、金属粉を含む微細な異物で液表面に浮遊するものと液中に混在するものとが含まれている。
【0003】
二次タンク105には流れの方向にフィルタ107が設けられている。荒目の金網で周囲を囲み基底部に砂や金属粒子を沈下させ汚泥として回収できるようバケット106は形成されている。バケット106から流出した切削液Sは細目のフィルタ107を通り大部分の切削液中に浮遊する微細な異物は捕捉され取り除かれる。フィルタ107を通過した切削液は、切削液タンクの中に構築された流路105aを通って還流しポンプ109で汲み上げて本機加工部へ供給される。」と記載されている。本願明細書に添付した図2、図3は、特願2002−222706号の明細書に添付した図4、図5を変更なく引用したものである。
【0004】
上述のとおり、従来の切削液タンクにおける切削液の処理の多くは自然還流方式を採っており、タンク内の切削液に流動性を付与しタンク内で澱みを生じさせないようにする装置を付加する配慮が殆ど見られない。
それは、自然還流方式では切削液を攪拌しないので沈澱分離が容易であるためと考えられる。
【0005】
【発明が解決しようとする課題】
従来技術で述べた切削液タンクは、回収した切削液を還流させる場合に、構成する切削液タンク内及び切削液タンク間では多くの場合オーバフローを利用した自然還流方式を採っている。このような場合、強制的に還流させるポンプを設けた位置から遠い位置で生ずる澱みや、タンクの構成によりできた角部で流動性が低下し澱みが生じる。これらの澱みの発生により、回収した切削液に含まれる油分や乳化分が液表面に湯膜を形成し澱む部分が更に拡大する。また、タンク内に流路を構成せずタンクが一室の場合には、四隅の切削液が停留し滞留時間が長くなって腐敗菌の増殖が始まり、次第に悪臭を放つようになり作業環境が悪化するという問題を生じていた。
【0006】
本発明は、従来の切削液タンクの有するこのような問題に鑑みなされたものであり、その目的とするところは、タンク内の切削液に順逆両方向の流動性または一定方向の流動性を付与するためにスクリュー羽根を設けたスクリュー軸を送りねじ用の制御モータで伝導部材を介し駆動するようにしたものである。
制御モータの正逆回転若しくは一方向回転させることによりタンクの切削液に流動性を付与して長期滞留によるタンク内での油膜による腐敗菌の増殖を生じないようにした切削液タンクの提供である。
【0007】
【課題を解決するための手段】
上記目的を達成するために請求項1の切削液タンクは、工作機械に使用される切削液タンクであって、タンク内の切削液に流動性を付与するスクリュー羽根を外周に形成して前記タンク内に回転可能に設けられたスクリュー軸と、機械本体の主軸や送りねじ軸等の駆動モータを動力源とし前記スクリュー軸に正逆回転を伝える伝導部材とを含んでなり、スクリュー軸の正逆回転に対応していずれかの軸線方向に切削液を流動させるものである。
【0008】
請求項1に記載の発明によれば、工作機械において、例えばテーブルを移動位置決めするZ軸制御モータの正逆回転で切削液タンクに設けたスクリュー軸を駆動してタンク内の切削液を順逆の二方向に流動させるようにし、タンク内で切削液に流動性を付与することによりタンクの液面に油膜の生成が困難になり油膜が生長し腐敗菌が増殖して悪臭を発し作業環境が悪化することがない。     必要な場合には、タンク内に追加のスクリュー軸を設け最初のスクリュー軸から接手を介し連結したスクリュー軸を回転させ,最初のスクリュー軸による流動性に追加のスクリュー軸による流動性を更に付加することも可能である。
【0009】
また、請求項2に記載の切削液タンクは、前記スクリュー軸を一方向に回転させるクラッチを前記伝導部材に含んでなり、スクリュー軸の一方向回転により軸線方向の一方にのみ切削液を流動させるものである。
【0010】
請求項2に記載の説明によれば、制御モータの回転をスクリュー軸に伝達する伝導部材に一方向回転のみを伝えるクラッチを含んで構成することによりタンク内の切削液に一定方向の流動性を与えることを目的とするものである。一定方向の流れを強制的に発生させることによりタンク内で澱みを発生する個所を解消できるので、油膜の滞留がなくなり腐敗菌の増殖を抑制することが可能となる。
【0011】
【発明の実施の形態】
以下、本発明の実施の態様を図面にもとづいて説明する。
図1は、タンク内に設けた羽根付のスクリュー軸とこれを駆動する送りねじの制御モータおよび伝導部材の配置説明図である。図1において、ベッド1に軸承部材2A,2Bで支承される送りねじ3は、ハウジング4を介して軸承部材2Aの一端に設けられた制御モータ5で駆動されている。テーブル6は、ベッド1の案内面上に摺動可能に載置されている。テーブル6の下面に取着されボールねじ3と螺合するナット7が制御モータ5の正逆回転で移動することによりテーブル6は位置決めされる。
【0012】
制御モータ5の回転の伝達が可能な範囲に回収した切削液を入れるタンク10が設置されている。タンク10の槽内には、スクリュー羽根が外周に形成されたスクリュー軸11が軸承部材12A,12Bで回転可能に支承されている。
【0013】
そのため、制御モータ5の回転をスクリュー軸11に伝達する伝導部材は中間軸15を含んで構成される。スクリュー軸11には鎖車16が設けられて回転が伝えられる。スクリュー軸11は制御モータ5と同期して正逆回転するので、槽中の切削液は流動性を付与できるが気泡を含みやすい。そのため制御モータ5の回転数を減速して伝達するように伝導部材を設計する必要がある。
【0014】
また、槽中の切削液が常に一定方向に流動するようにスクリュー軸11に一定方向の回転を付与するためのクラッチ13を内装したプーリ14を含んで伝導部材を構成することができる。槽内に一定方向の流動を効果的に形成させるために、スクリュー軸11の軸線の方向に沿った仕切り板17を槽内に設けられる。
なお、タンク10内に最初に設けたスクリュー軸11と連結して複数のスクリュー軸11に回転を伝えタンク10内の切削液に対し流動性を付与し、流路の構成を設計することができる。
【0015】
なお、伝導部材にクラッチ13を含まない場合は、制御モータ5の正逆回転がそのまま伝達されるのでスクリュー軸の回転数とスクリュー軸に付設される羽根の形状と外径寸法の大きさについては設計上の配慮が必要である。
スクリュー軸11の駆動は、送りねじ3用の制御モータ5を使用できるほか主軸用のZ軸制御モータの使用も可能である。
【0016】
前述のようにタンク内の切削液に流動性を付与できるように構成した切削液タンクの作用について次に説明する。
1.スクリュー軸が正逆回転する場合
制御モータ5の回転方向に対応し正逆回転するスクリュー軸11は、テーブル6が移動中のみ回転し位置決めされたときは回転を停止する。
微細な切粉や異物を沈澱槽やフィルタ等で除去した後の切削液がタンク1に集められる。タンク1の切削液は汲み上げポンプにより再び加工部に供給される。
【0017】
タンク1に集められた切削液には若干の油分が液面に浮遊する。汲み上げポンプは液面の油膜を汲み上げることがないので油膜の層が次第に厚くなり切削液自体が空気とふれることがなくなりがちである。
油膜には乳化剤や雑菌が含まれているので腐敗菌の発生が容易であり、増殖が悪臭の原因となる。そこでタンク1内に設けたスクリュー軸11を正逆回転させることにより切削液に流動性を与え液面を攪拌して油膜が生長しないようにしている。スクリュー軸11の羽根を液面下に全く浸漬したときは切削液に流動性を付与し、羽根の一部を液面上にのぞかせて回転させたときは液面の攪拌と、切削液の流動とを生じさせることができる。タンク1の槽が容量が大で液面積が広い場合には液面に澱みの生ずる機会が多くなるので、タンク1の構成に従って複数本のスクリュー軸11を液中で連結して澱みを解消することも可能である。
【0018】
2.スクリュー軸が一方向回転する場合
伝導部材に一方向回転のみを伝達するクラッチ13を組み込んでスクリュー軸11に制御モータ5の一方向回転を伝達している。必要とする切削液の流動方向に対応してスクリュー軸11のねじ方向とクラッチ13の伝達方向が考慮されている。切削液タンク内に澱みが生じないよう槽内に仕切り板17を設けてスクリュー軸11の軸線方向に切削液を流動させる。槽が大きい場合には仕切り板17で流路を構成し、複数のスクリュー軸11により液面の攪拌と流動性とを付与することにより油膜滞留に起因する腐敗菌の発生が抑制される。
【0019】
【発明の効果】
本発明の切削液タンクは上述のとおり構成されているので次に記載する効果を奏する。
【0020】
請求項1に記載の発明は、回収した切削液の液面下にスクリュー軸の羽根を全て沈下させるたことにより切削液を正逆方向に流動させる。羽根は液面に近いと液面を攪拌させるのみで澱みが解消して油膜の生成,生長をなくし切削液に気泡を導入させたことにより腐敗菌の増殖を抑制するという効果を奏する。
または、切削液がタンク内で強制的に送られることにより流路の基底部に異物が沈澱しなくなり、ヘドロ化を防ぎタンク底の腐食を回避できる効果を奏する。
【0021】
請求項2に記載の発明は、スクリュー羽根が液面下にあって一定方向にのみ回転させた場合、切削液は一定方向にのみ流動する。槽中の切削液の流れが止まらないようにすることにより切削液が停滞せず腐敗の機会が少なくなるという効果を奏する。
【図面の簡単な説明】
【図1】タンク内に設けた羽根付スクリュー軸とこれを駆動する送りねで用制御モータ及び伝導部材の配置説明図である。
【図2】従来技術の切削液タンクである。
【図3】従来技術の切削液タンクである。
【符号の説明】
1 ベッド      2,12 軸承部材
3 送りねじ     4 ハウジング
5 制御モータ    6 テーブル
7 ナット      10 タンク
11 スクリュー軸  13 クラッチ
14 プーリ     15 中間軸
16 鎖車      17 仕切り板
[0001]
[Industrial applications]
BACKGROUND ART A cutting fluid tank used for a machine tool, more specifically, a cutting fluid tank that imparts fluidity to a cutting fluid in the tank to suppress the growth of putrefactive bacteria due to stagnation.
[0002]
[Prior art]
2. Description of the Related Art In machine tools, a method of removing chips and other foreign matters from collected cutting fluid and circulating them is widely used. The prior art of the process for processing the cutting fluid in such a cutting fluid tank is disclosed in Japanese Patent Application No. 2002-222706, [0002], line 4 to line 11, [0013] line 1 to line 6. In FIGS. 4 and 5, “a mixture p of the cutting fluid and the cutting fluid carried by the in-machine conveyors 101A and 101B installed on both sides in parallel with the moving direction of the work table not shown in FIGS. Falls into a primary tank 102 provided at one end of the bed (not shown) .Large chips accumulate on a lift chip conveyor 103 and are conveyed to a chip bucket 104. The cuttings dropped and stored in the primary tank 102 When the liquid level reaches the overflow discharge port 102a, the liquid flows into the bucket 106 of the secondary tank 105. The overflowing cutting liquid r contains fine powder containing metal powder. It contains as those mixed in those floating and liquid on the liquid surface in the foreign matter.
[0003]
The secondary tank 105 is provided with a filter 107 in the flow direction. The bucket 106 is formed so that the surroundings may be surrounded by a coarse wire mesh and sand or metal particles may be settled at the base and collected as sludge. The cutting fluid S flowing out of the bucket 106 passes through the fine filter 107 and most of the fine foreign matters floating in the cutting fluid are captured and removed. The cutting fluid that has passed through the filter 107 is recirculated through the flow path 105a formed in the cutting fluid tank, is pumped up by the pump 109, and is supplied to the machine processing section. It is described. FIGS. 2 and 3 attached to the specification of the present application refer to FIGS. 4 and 5 attached to the specification of Japanese Patent Application No. 2002-222706 without change.
[0004]
As described above, most of the processing of the cutting fluid in the conventional cutting fluid tank employs a natural reflux method, and a device for imparting fluidity to the cutting fluid in the tank so as not to cause stagnation in the tank is added. There is almost no consideration.
This is probably because the natural reflux method does not agitate the cutting fluid and facilitates sedimentation and separation.
[0005]
[Problems to be solved by the invention]
The cutting fluid tank described in the related art employs a natural recirculation system utilizing overflow in many cases in the constituent cutting fluid tank and between the cutting fluid tanks when the collected cutting fluid is refluxed. In such a case, stagnation occurs at a position distant from the position where the pump for forcibly refluxing is provided, or stagnation occurs due to a decrease in fluidity at a corner formed by the configuration of the tank. Due to the generation of these stagnations, the oil and emulsified components contained in the recovered cutting fluid form a hot water film on the surface of the liquid, and the portion that stagnates further increases. In addition, if the tank is a single chamber without forming a flow path in the tank, the cutting fluid at the four corners stays, the residence time becomes longer, the growth of putrefactive bacteria begins, and the working environment gradually becomes odorous. There was a problem of worsening.
[0006]
The present invention has been made in view of such a problem that a conventional cutting fluid tank has, and an object thereof is to impart fluidity in both forward and reverse directions or fluidity in a certain direction to the cutting fluid in the tank. For this purpose, a screw shaft provided with screw blades is driven by a control motor for a feed screw via a transmission member.
Provided is a cutting fluid tank in which fluid is imparted to the cutting fluid in the tank by rotating the control motor in a forward or reverse direction or in one direction so as to prevent the growth of putrefactive bacteria due to an oil film in the tank due to long-term stagnation. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the cutting fluid tank according to claim 1 is a cutting fluid tank used for a machine tool, wherein a screw blade that imparts fluidity to the cutting fluid in the tank is formed on an outer periphery of the tank. A screw shaft rotatably provided therein, and a transmission member that transmits forward and reverse rotation to the screw shaft using a drive motor such as a main shaft or a feed screw shaft of a machine main body as a power source, and The cutting fluid is caused to flow in any of the axial directions in accordance with the rotation.
[0008]
According to the invention described in claim 1, in the machine tool, for example, the screw shaft provided in the cutting fluid tank is driven by the forward / reverse rotation of the Z-axis control motor for moving and positioning the table, and the cutting fluid in the tank is reversed. By making the fluid flow in two directions and imparting fluidity to the cutting fluid in the tank, it becomes difficult to generate an oil film on the liquid surface of the tank, the oil film grows, putrefactive bacteria multiply and emits a bad smell, and the working environment deteriorates I can't. If necessary, an additional screw shaft is provided in the tank and the screw shaft connected via the joint is rotated from the first screw shaft to further add the flowability of the additional screw shaft to the flowability of the first screw shaft. It is also possible.
[0009]
Further, the cutting fluid tank according to claim 2 includes a clutch for rotating the screw shaft in one direction in the conductive member, and allows the cutting fluid to flow only in one of the axial directions by one-direction rotation of the screw shaft. Things.
[0010]
According to the description of claim 2, by including a clutch that transmits only one-way rotation to the transmission member that transmits the rotation of the control motor to the screw shaft, cutting fluid in the tank can be made to flow in one direction. It is intended to give. By forcibly generating a flow in a certain direction, the place where stagnation occurs in the tank can be eliminated, so that the oil film does not stay and the growth of putrefactive bacteria can be suppressed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of the arrangement of a bladed screw shaft provided in a tank, a feed screw control motor for driving the screw shaft, and a transmission member. In FIG. 1, a feed screw 3 supported on a bed 1 by bearing members 2A and 2B is driven by a control motor 5 provided at one end of the bearing member 2A via a housing 4. The table 6 is slidably mounted on the guide surface of the bed 1. The table 6 is positioned by the nut 7 attached to the lower surface of the table 6 and screwed with the ball screw 3 being moved by the forward and reverse rotation of the control motor 5.
[0012]
A tank 10 for storing the collected cutting fluid in a range where the rotation of the control motor 5 can be transmitted is provided. In the tank of the tank 10, a screw shaft 11 having screw blades formed on the outer periphery is rotatably supported by bearing members 12A and 12B.
[0013]
Therefore, the transmission member that transmits the rotation of the control motor 5 to the screw shaft 11 includes the intermediate shaft 15. A chain wheel 16 is provided on the screw shaft 11 to transmit rotation. Since the screw shaft 11 rotates forward and backward in synchronization with the control motor 5, the cutting fluid in the tank can impart fluidity, but tends to contain bubbles. Therefore, it is necessary to design the transmission member so as to transmit the rotation speed of the control motor 5 at a reduced speed.
[0014]
Further, the transmission member can be configured to include a pulley 14 having a clutch 13 therein for imparting rotation of the screw shaft 11 in a certain direction so that the cutting fluid in the tank always flows in a certain direction. In order to effectively form a flow in a certain direction in the tank, a partition plate 17 is provided in the tank along the direction of the axis of the screw shaft 11.
In addition, it connects with the screw shaft 11 provided first in the tank 10, transmits rotation to the plurality of screw shafts 11, imparts fluidity to the cutting fluid in the tank 10, and can design the configuration of the flow path. .
[0015]
In the case where the clutch 13 is not included in the transmission member, the forward and reverse rotation of the control motor 5 is transmitted as it is, so that the rotation speed of the screw shaft, the shape of the blade attached to the screw shaft, and the size of the outer diameter are determined. Design considerations are required.
For driving the screw shaft 11, a control motor 5 for the feed screw 3 can be used, and a Z-axis control motor for the main shaft can also be used.
[0016]
The operation of the cutting fluid tank configured to impart fluidity to the cutting fluid in the tank as described above will now be described.
1. When the screw shaft rotates forward and backward, the screw shaft 11 that rotates forward and backward corresponding to the rotation direction of the control motor 5 rotates only while the table 6 is moving and stops rotating when it is positioned.
The cutting fluid from which fine chips and foreign matter have been removed by a settling tank or a filter is collected in the tank 1. The cutting fluid in the tank 1 is supplied again to the processing section by the pump.
[0017]
In the cutting fluid collected in the tank 1, some oil floats on the fluid level. Since the pump does not pump up the oil film on the liquid surface, the oil film layer is gradually thickened and the cutting fluid itself does not tend to come into contact with air.
Since the oil film contains an emulsifier and various germs, it is easy to generate putrefactive bacteria, and its proliferation causes a bad smell. Therefore, by rotating the screw shaft 11 provided in the tank 1 forward and backward, fluidity is given to the cutting fluid to agitate the liquid surface so that the oil film does not grow. When the blades of the screw shaft 11 are completely immersed beneath the liquid surface, the cutting fluid is given fluidity. When a part of the blades is rotated while looking at the liquid surface, stirring of the liquid surface and flow of the cutting fluid are performed. And can be generated. If the tank of the tank 1 has a large capacity and a large liquid area, stagnation is likely to occur on the liquid surface. Therefore, a plurality of screw shafts 11 are connected in the liquid according to the configuration of the tank 1 to eliminate stagnation. It is also possible.
[0018]
2. When the screw shaft rotates in one direction, a clutch 13 that transmits only one direction rotation is incorporated in the transmission member, and the one direction rotation of the control motor 5 is transmitted to the screw shaft 11. The screw direction of the screw shaft 11 and the transmission direction of the clutch 13 are considered in accordance with the required flow direction of the cutting fluid. A partition plate 17 is provided in the cutting fluid tank so that stagnation does not occur in the cutting fluid tank, and the cutting fluid flows in the axial direction of the screw shaft 11. When the tank is large, a partition plate 17 forms a flow path, and a plurality of screw shafts 11 impart stirring and fluidity to the liquid surface, thereby suppressing the generation of putrefactive bacteria due to oil film stagnation.
[0019]
【The invention's effect】
Since the cutting fluid tank of the present invention is configured as described above, the following effects can be obtained.
[0020]
According to the first aspect of the present invention, the cutting fluid flows in the forward and reverse directions by sinking all the blades of the screw shaft below the level of the collected cutting fluid. When the blade is close to the liquid surface, stagnation is eliminated only by stirring the liquid surface, the oil film is not formed, growth is eliminated, and bubbles are introduced into the cutting fluid, thereby suppressing the growth of putrefactive bacteria.
Alternatively, since the cutting fluid is forcibly sent in the tank, the foreign matter does not settle at the base of the flow path, and there is an effect that sludge is prevented and corrosion of the tank bottom can be avoided.
[0021]
According to the second aspect of the invention, when the screw blade is below the liquid level and is rotated only in a certain direction, the cutting fluid flows only in a certain direction. By preventing the flow of the cutting fluid in the tank from stopping, there is an effect that the cutting fluid does not stagnate and the opportunity for decay is reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory view of the arrangement of a bladed screw shaft provided in a tank, a feed control motor for driving the screw shaft, and a transmission member.
FIG. 2 is a prior art cutting fluid tank.
FIG. 3 is a prior art cutting fluid tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bed 2, 12 Bearing member 3 Feed screw 4 Housing 5 Control motor 6 Table 7 Nut 10 Tank 11 Screw shaft 13 Clutch 14 Pulley 15 Intermediate shaft 16 Chain wheel 17 Partition plate

Claims (2)

工作機械に使用される切削液タンクであって、タンク内の切削液に流動性を付与するスクリュー羽根を外周に形成して前記タンク内に回転可能に設けられたスクリュー軸と、機械本体の主軸や送りねじ軸等の駆動モータを動力源とし前記スクリュー軸に正逆回転を伝える伝導部材とを含んでなり、スクリュー軸の正逆回転に対応して切削液を流動させることを特徴とする切削液タンク。A cutting fluid tank used in a machine tool, wherein a screw shaft that provides fluidity to the cutting fluid in the tank is formed on the outer periphery and is rotatably provided in the tank, and a main shaft of a machine body. And a transmission member that transmits forward and reverse rotation to the screw shaft using a driving motor such as a feed screw shaft or the like as a power source, and the cutting fluid flows in response to forward and reverse rotation of the screw shaft. Liquid tank. 前記スクリュー軸を一方向に回転させるクラッチを前記伝導部材に含んでなり、スクリュー軸の一方向回転により軸線方向の一方にのみ切削液を流動させることを特徴とする請求項1に記載の切削液タンク。The cutting fluid according to claim 1, wherein the transmission member includes a clutch that rotates the screw shaft in one direction, and the cutting fluid flows only in one of the axial directions by the one-way rotation of the screw shaft. tank.
JP2002280147A 2002-09-26 2002-09-26 Cutting fluid tank Pending JP2004114221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280147A JP2004114221A (en) 2002-09-26 2002-09-26 Cutting fluid tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280147A JP2004114221A (en) 2002-09-26 2002-09-26 Cutting fluid tank

Publications (1)

Publication Number Publication Date
JP2004114221A true JP2004114221A (en) 2004-04-15

Family

ID=32274920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280147A Pending JP2004114221A (en) 2002-09-26 2002-09-26 Cutting fluid tank

Country Status (1)

Country Link
JP (1) JP2004114221A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122112A1 (en) 2014-12-25 2016-06-30 Okuma Corporation Cutting fluid tank
DE102015122134A1 (en) 2014-12-25 2016-06-30 Okuma Corporation Cutting fluid tank
CN108942232A (en) * 2018-09-27 2018-12-07 昆山京元登精密机械有限公司 The corresponding compound multiaxis NC maching center of tool changing formula
CN108942231A (en) * 2018-09-27 2018-12-07 昆山京元登精密机械有限公司 Intelligent combined type multiaxis NC maching center
CN109128972A (en) * 2018-09-27 2019-01-04 昆山京元登精密机械有限公司 High stability multiaxis NC maching center filling structure
CN109249279A (en) * 2018-09-27 2019-01-22 昆山京元登精密机械有限公司 High stationarity combined type processing numer centre processes structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122112A1 (en) 2014-12-25 2016-06-30 Okuma Corporation Cutting fluid tank
DE102015122134A1 (en) 2014-12-25 2016-06-30 Okuma Corporation Cutting fluid tank
JP2016120579A (en) * 2014-12-25 2016-07-07 オークマ株式会社 Cutting liquid tank
JP2016120562A (en) * 2014-12-25 2016-07-07 オークマ株式会社 Cutting liquid tank
US9873173B2 (en) 2014-12-25 2018-01-23 Okuma Corporation Cutting fluid tank
US9878414B2 (en) 2014-12-25 2018-01-30 Okuma Corporation Cutting fluid tank
CN108942232A (en) * 2018-09-27 2018-12-07 昆山京元登精密机械有限公司 The corresponding compound multiaxis NC maching center of tool changing formula
CN108942231A (en) * 2018-09-27 2018-12-07 昆山京元登精密机械有限公司 Intelligent combined type multiaxis NC maching center
CN109128972A (en) * 2018-09-27 2019-01-04 昆山京元登精密机械有限公司 High stability multiaxis NC maching center filling structure
CN109249279A (en) * 2018-09-27 2019-01-22 昆山京元登精密机械有限公司 High stationarity combined type processing numer centre processes structure
CN109249279B (en) * 2018-09-27 2024-06-04 昆山京元登精密机械有限公司 Intelligent combined type multiaxis numerical control machining center
CN108942232B (en) * 2018-09-27 2024-06-25 昆山京元登精密机械有限公司 Corresponding tool changing type composite multi-axis numerical control machining center

Similar Documents

Publication Publication Date Title
US6096198A (en) Apparatus for conditioning metal cutting fluids
CN1215985C (en) Sewage treatment device
CN1204952C (en) Apparatus for removing removed substance from fluid
KR100888691B1 (en) The self-inhalation cavitation aerator and the air flotation system using the device
JP2004114221A (en) Cutting fluid tank
JP2002167594A (en) Water-soluble coolant liquid containing electrolytic ion water mixed thereinto and production apparatus therefor
CN208022733U (en) A kind of air floatation machine
CN106915833A (en) A kind of emulsifying liquid waste water embrane method reuse technology
CN112851060A (en) Sludge conveying device for environment-friendly sludge treatment
KR102146032B1 (en) Water soluble cutting water and its manufacturing method based on electric water
JP2008264741A (en) Paint waste liquid separation apparatus and paint waste liquid separation method
JP2008044046A (en) Conveying and disposing device of cutting waste
EP2826548B1 (en) Waste water treatment system
JP2005296850A (en) Low speed stirrer
US6200202B1 (en) System and method for supplying slurry to a semiconductor processing machine
CN115745124A (en) Multidirectional transformation type emulsion treatment dispersing equipment and method
CN217025386U (en) Water-saving device for grading water resource
JPH04166280A (en) Flotation cyclone device
CN216155588U (en) MBBR + MBR integration sewage treatment plant
CN1919403A (en) Method and apparatus for separating oil and water
WO2023171601A1 (en) Machine tool system, and hydraulic liquid and processing liquid for machine tools
CN112794419A (en) A flocculation and precipitation floater splitter for power plant waste water treatment
CN105900913A (en) Ecological balance system for oxygen consuming aquatic animal density cultivation
CN213454516U (en) Cooling device for producing metal working fluid
JP7371902B2 (en) Air bubble supply facility

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041007

RD12 Notification of acceptance of power of sub attorney

Effective date: 20041013

Free format text: JAPANESE INTERMEDIATE CODE: A7432