JP2004114124A - Electronic part and its manufacturing method - Google Patents

Electronic part and its manufacturing method Download PDF

Info

Publication number
JP2004114124A
JP2004114124A JP2002283318A JP2002283318A JP2004114124A JP 2004114124 A JP2004114124 A JP 2004114124A JP 2002283318 A JP2002283318 A JP 2002283318A JP 2002283318 A JP2002283318 A JP 2002283318A JP 2004114124 A JP2004114124 A JP 2004114124A
Authority
JP
Japan
Prior art keywords
solder
terminal portion
mass
mainly composed
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283318A
Other languages
Japanese (ja)
Inventor
Masaru Fujiyoshi
藤吉 優
Masayoshi Date
伊達 正芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002283318A priority Critical patent/JP2004114124A/en
Publication of JP2004114124A publication Critical patent/JP2004114124A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve joining strength by inhibiting decrease in thickness of terminals in electronic parts having terminals with Ag used as the main component. <P>SOLUTION: The electronic parts are those equipped with terminals having Ag as the main component and those whose terminals are joined with solder having Sn and Zn as the main component through an Ag-Zn compound layer. The solder having Sn and Zn as the main component desirably contains 5-12% Zn in mass percentage with the remainder substantially composed of Sn, or else it desirably contains 1-10% Bi or 1-5% In, in addition to 5-12% Zn in mass percentage, with the remainder substantially composed of Sn. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、Agを主成分とする端子部を具備する電子部品および電子部品の製造方法に関するものである。
【0002】
【従来の技術】
エレクトロニクス分野では、電子部品と回路を構成するための配線板を電気的に接続する手法としてはんだ接合が用いられている。このはんだ接合用のはんだとしてはSnとPbを主とするSn−Pb系はんだが長年に渡り用いられてきた。しかし今日、Sn−Pb系はんだに含まれるPbによる自然環境への影響が問題とされており、Sn−Pb系はんだの代わりにPbを含まないPbフリーはんだの使用が検討されている。その最も有力な候補としてSn−Ag−Cu系はんだが考えられている(例えば、特許文献1参照。)。
特許文献1で提案されているSn−Ag−Cu系はんだは、Sn−Pb共晶はんだの融点と比較して約40℃上昇するが、耐熱疲労特性、高温特性に優れるといった特徴を有する。
【0003】
また別の候補としてSn−Zn系はんだが検討されている。Sn−Zn系はんだは、Sn−Pb共晶はんだの融点と比較して約15℃上昇する程度で、Pbフリーはんだとしては比較的低温での接合が可能であり、またSn−Ag−Cu系はんだと比べて低コストという特徴を有する。これらの利点を有する一方でSn−Zn系はんだは、はんだ表面で酸化皮膜を形成しやすい為に、被接合体の端子部に用いられているCuとの濡れ性が低いことが指摘されている。また、Sn−Zn系はんだでは接合界面にCu−Zn化合物を形成し、これが接合強度を低下させることが指摘されている。
これらの欠点に対して、接合界面に亜鉛の平均含有量が88〜99.5wt%のZnを主とする層を形成することが提案されている(特許文献2参照。)。Znを主とする層の具体的な形成方法は不明であるが、特許文献2にはこの層が形成できれば上述の欠点を解消できることが提案されている。
【0004】
一方、はんだにより接合される電子機器を構成する電子部品や回路基板には、エポキシ樹脂やポリイミドといった樹脂材料が多く用いられているが、基板の耐熱性や平坦度、剛性が要求されるような場合にはセラミック基板が用いられている。一般にセラミック基板における端子部および導体層の形成は、セラミックのグリーンシート上に導電粒子と有機成分を混錬してペースト状にしたものを印刷した後、高温まで加熱してセラミックスおよび導電粒子の焼成を行う。導電粒子としては融点がセラミックスの焼成温度に近いAgやCuを主とする粉末が用いられる。
【0005】
【特許文献1】
特開平5−50286号公報
【特許文献2】
特開平10−303518号公報(実施例1等)
【0006】
【発明が解決しようとする課題】
Sn−Ag−Cu系はんだは、耐熱疲労特性、高温特性の点では有利である。しかし、Sn−Ag−Cu系はんだを用いてAgを主成分とする端子部を接合する場合、接合後にAgを主成分とする端子部の厚さの減少が見られる。これは一般に食われと称される現象であるが、本来、食われを生じていない端子部の剥離強度は、はんだ及びはんだ接合部の機械的強度より高い。しかし食われを生じた端子部の剥離強度は厚さの減少に伴い著しく低下し、外部からの負荷に対して剥離を発生しやすくなる。この剥離強度の低下は、これらの端子部により接合されている電子部品の断線不良の原因となるため問題である。
【0007】
Agを主成分とする端子部の食われは、Sn−Ag−Cu系はんだ中のAg含有量を増やすことにより抑制できることが知られている。しかしながら、元来Sn−Ag−Cu系はんだはSn−Pb共晶はんだと比較すると、融点が約40℃高いことが欠点であり、Ag含有量を増量するとSn−Ag−Cu系はんだの融点はさらに上昇するため、はんだ付け温度をより高温にする必要がある。この結果、Ag含有量を増量することによる端子部の食われ対策では、はんだ接合時に電子部品に熱損傷を生じやすくなることが新たに問題となる。加えて、はんだ自体が高価なものになり製品コストを増加するという問題も生じる。
【0008】
本発明の目的は、Agを主成分とする端子部を具備する電子部品における端子部の食われを抑制し、接合強度の改善を行なうことである。
【0009】
【課題を解決するための手段】
本発明者は、Agを主成分とする端子部を具備する電子部品における食われは、はんだ接合時に溶融したSn−Ag−Cu系はんだへ端子部からAgが溶出することで生じることに着目した。そしてSn−Ag−Cu系はんだに替えてSnとZnを主成分とするはんだを用い、Ag−Zn化合物層を介して接合することにより、Agの溶出を防ぎ、接合強度を大きく改善できることを見いだし、本発明に到達した。
【0010】
すなわち本発明は、Agを主成分とする端子部を具備する電子部品であって、端子部はAg−Zn化合物層を介してSnとZnを主成分とするはんだが接合されていることを特徴とする電子部品である。
【0011】
好ましくはSnとZnを主成分とするはんだは質量%でZnを5〜12%含み、残部実質的にSnからなる。
また、好ましくはSnとZnを主成分とするはんだは質量%でZnを5〜12%含み、且つBiを1〜10%またはInを1〜5%含み、残部実質的にSnからなる。
【0012】
別の本発明は、SnとZnを主成分とするはんだによりAgを主成分とする端子部をはんだ付けし、はんだと端子部との接合界面にAg−Zn化合物層を形成することを特徴とする電子部品の製造方法である。
上記の製造方法においてSnとZnを主成分とするはんだは質量%でZnを5〜12%含み、残部実質的にSnからなるはんだによりAgを主成分とすることが好ましい。さらに、SnとZnを主成分とするはんだは質量%でZnを5〜12%含み、且つBiを1〜10%またはInを1〜5%含み、残部実質的にSnからなることが好ましい。
【0013】
【発明の実施の形態】
本発明の重要な特徴は、Agを主とする端子部を、Ag−Zn化合物層を介してSnとZnを主成分とするはんだにより接合することである。
本発明でAgを主とする端子部の接合にSnとZnを主成分とするはんだを用い、Ag−Zn化合物層を介して接合するのは、端子部側において、接合後に端子部の食われは殆ど観察されず、接合後の端子部における剥離強度の低下を生じ難いからである。
【0014】
また、SnとZnを主成分とするはんだ側においては、Ag−Zn化合物を形成する為、従来SnとZnを主成分とするはんだをCuの端子部に適用した際に問題であった、Cu−Zn化合物の形成による接合強度の低下を生じないからである。このAg−Zn化合物層は、はんだの溶融時間が長くなっても層の厚さ変化が小さく、端子部の食われを増加させる原因とならない。ここで、Ag−Zn化合物層とは組成比はAg:Zn=1:2(Znを約55質量%含有)またはAg:Zn=1:1(Znを約38質量%含有)の金属間化合物相からなる層である。主には組成比がAg:Zn=1:2である金属間化合物相である。このAg−Zn化合物層は、SnとZnを主成分とするはんだを、Agを主成分とする端子部上で融点〜融点+30℃に加熱して溶融、接合することで形成することができる。
この際、SnとZnを主成分とするはんだはSn−Ag−Cu系のはんだと比べて融点が約20℃低いので、接合時の電子部品における熱損傷の問題も生じ難い。
【0015】
本発明において端子部の食われを抑制できる理由を以下に詳述する。
既に述べたようにSn−Ag−Cu系はんだにおけるAgを主成分とする端子部の食われは、はんだ接合時における溶融したSn−Ag−Cu系はんだへの端子部からのAgの溶出により生じる現象である。本発明者の検討では、溶融したSn−Ag−Cu系はんだをAgを主成分とする端子部に接触させた場合、Agは溶存可能な限界量まで溶融はんだ中へ溶出する。Sn−Ag−Cu系はんだにおいてAgを主成分とする端子部の食われが大きいのは、溶融したSn−Ag−Cu系はんだ中に溶存可能なAg濃度が高い為である。これに対し本発明で用いるSnとZnを主成分とするはんだは、Sn−Ag−Cu系はんだと比べて溶融状態で溶存可能なAg濃度が非常に低い。一例を挙げると、Sn−9Zn(融点:199℃)とSn−3Ag−0.5Cu(融点:221℃)とを比較すると、各はんだのはんだ付け温度において溶存可能なAg濃度は、それぞれ約0.2%(はんだ付け温度:220〜230℃)、4.5%(はんだ付け温度:240〜250℃)である。
このようにSnとZnを主成分とするはんだでは溶存可能なAg濃度が低い為、はんだ接合時に生じる端子部の食われを抑制することができるのである。
【0016】
なお、本発明においてSnとZnを主成分とするはんだとは、SnとZnとを合計で90質量%以上含有するはんだあり、溶融状態で溶存可能なAgの濃度を著しく増加することがない程度にBi、In、Al、Ni、Au、Sb、P、Cu、Ag等を含有するものも本発明のはんだに含まれる。
また本発明においてAgを主成分とする端子部とは、Agの含有量が50質量%以上の端子部であり、具体的には例えばAg−Pd端子部や、Ag−Pt端子部、Ag端子部等である。
【0017】
本発明のSnとZnを主成分とするはんだは質量%でZnを5〜12%含み、残部実質的にSnからなることが好ましい。
Znを5〜12質量%とする理由は、この範囲でははんだの液相線温度と固相線温度との差が小さいからである。この差が小さいことにより、凝固過程での偏析や、固液共存時間が長くなることにより生じる接続欠陥等を抑制できる。加えて、Znが12質量%以下では、溶融はんだに溶存可能なAg濃度が特に低く、より端子部における食われを抑制できるからである。また、12質量%以下とすることで、はんだ表面の酸化や、表面の酸化により生じる濡れ性の劣化を抑制することができる。
【0018】
また、本発明のSnとZnを主成分とするはんだは質量%でZnを5〜12%含み、且つBiを1〜10%またはInを1〜5%含み、残部実質的にSnからなることが好ましい。Zn含有量を5〜12質量%とする理由は上記と同様である。
Biを含有させる理由は、Agの食われを抑制する効果を損なうことなく融点を低下させることにある。Biによる融点の低下は、その含有量が1.0質量%以上で明確となる。一方、Biの含有量が10質量%以上では、Sn−Bi低温共晶が生成し、製品使用時の熱負荷により再溶融する。それゆえ、Biの含有量は1〜10質量%の範囲が好ましい。
【0019】
Inを含有させる理由は、Agの食われを抑制する効果を損なうことなく融点を低下させることと、濡れ性を改善することにある。Inによる融点低下、濡れ性改善の効果は、その含有量が1.0質量%で明確となる。一方、Inの含有量が5質量%以上では、常温においてβ−Sn相がα−Sn相に相転移しやすくなり、接合部の熱疲労特性が低下する。それゆえ、Inの含有量は1〜5質量%の範囲とすることが好ましい。
【0020】
別の本発明は、上述のSnとZnを主成分とするはんだによりAgを主成分とする端子部をはんだ付けし、はんだと該端子部との接合界面にAg−Zn化合物層を形成する電子部品の製造方法である。この製造方法によれば、上述と同様の理由により端子部における食われを抑制することができる。本発明の製造方法により端子部の食われを抑制できる理由、及び好ましい組成等は、上述の本発明の電子部品における説明と同様である。
【0021】
はんだ付けの方法としては、フローはんだ付けによる端子部のはんだ付け、はんだ粉末を含むはんだペーストによる端子部のはんだ付け、個々のボールを凝固単位として凝固されてなるはんだボールによる端子部のはんだ付け等が挙げられる。前記のはんだ付けのうち第2、第3の方法は、はんだを端子部に載せた後、はんだが溶融する温度以上に加熱して、溶融はんだと端子部を反応させること(以下リフローと称する)によりはんだバンプを形成して、はんだ付けを行なうことができる。
【0022】
【実施例】
質量%でSn−9Zn、Sn−9Zn−1In 、Sn−8Zn−3Bi、Sn−3Ag−0.5CuそしてSn−4Ag−0.5Cuの組成を有する、直径760umのはんだボールを用意した。これらのはんだボールを、Ag−Pd端子部に載せた後、リフローを施すことによりはんだバンプを形成した。リフロー温度は240℃とした。
【0023】
次に上述した各条件におけるはんだバンプと該端子部との接合強度を評価するため、はんだバンプの引き剥がし試験を実施した。この手法では、端子部を形成した基板を固定した状態で、はんだバンプをツイーザで掴み、はんだバンプを引き剥がすことにより接合強度を測定する。引き剥がし速度は100μm/sとし、20個のはんだバンプに関して測定した。また引き剥がし試験後に破面観察を行い端子部の剥離確率を求めた。
また、各条件につき5個のはんだバンプについて、端子部の食われ量を測定した。測定は、端子部を樹脂埋めした後、断面研磨を行い、光学顕微鏡像をもとに該端子部の厚さ変化を測定した。端子部の厚さ変化は、はんだ接合前の端子部の厚みから、接合後の端子部の厚さを引いた値として求めた。
また、リフローを行った後、さらにリフローを2回、つまり合計リフロー3回行ったものについても同様の評価を行った。
【0024】
はんだ接合後の接合界面断面の一例としてSn−9ZnおよびSn−3Ag−0.5Cuはんだにより形成したバンプにおける、リフロー3回後の接合界面の光学顕微鏡像を、それぞれ図1(a)、図1(b)に示す。
図1(b)より、Sn−Ag−Cu系はんだ(Sn−3Ag−0.5Cuはんだ)バンプについては該端子部において食われを生じていることがわかる。これに対し、図1(a)に示すSnとZnを主成分とするはんだ(Sn−9Znはんだ)バンプについては、食われは見られない。なお、図1(a)において接合界面に形成している化合物層は組成比がAg:Zn=1:2の金属間化合物相である。
表1に各はんだバンプにおける端子部の食われ量の平均値を示す。Sn−Zn系はんだバンプでは食われが見られないのに対して、Sn−Ag−Cu系はんだバンプでは食われを生じており、特にはんだ中のAg含有量の低いSn−3Ag−0.5Cuはんだバンプでは食われが著しい。
【0025】
【表1】

Figure 2004114124
【0026】
これらについて引き剥がし試験を行った結果、食われが見られないSn−Zn系のはんだバンプでは、全てのはんだバンプにおいてはんだ部分で破断したのに対し、Sn−Ag−Cu系はんだバンプでは高い割合で端子部の剥離により破断を生じた。
端子部剥離確率、及び接合強度の平均値を表1に併せて示す。また表1に示す結果をもとに、リフロー回数と強度、食われ量と端子部剥離確率の関係をまとめた結果をそれぞれ図2、図3に示す。
【0027】
図2に示すように、端子部の剥離により破断を生じたSn−Ag−Cu系はんだバンプでは、はんだで破断を生じた場合よりも強度が低くなっている。また、図3から端子部での剥離による破断は、端子部の食われ量が大きいほど高い頻度で生じている。
これに対して、端子部の食われを生じないSn−Zn系のはんだでは、端子部の剥離を生じることが無く、リフローを3回行った場合にも接合強度の低下は見られない。
以上より、Agを主成分とする端子部を、SnとZnを主成分とするはんだによりAg−Zn化合物層を介して接合することで接合強度を改善できることがわかる。加えて、本発明の電子部品では断線を生じ難いことがわかる。
【0028】
【発明の効果】
本発明によればAgを主成分とする端子部を有する電子部品における端子部の食われの問題を改善することができ、Agを主成分とする端子部を具備する電子部品のPbフリー化にとって欠くことのできない技術となる。
【図面の簡単な説明】
【図1】Sn−3Ag−0.5Cu、Sn−9Znはんだバンプにおけるリフロー3回後の接合界面の光学顕微鏡像を示す。
【図2】各条件におけるAgを主成分とする端子部と各々のはんだバンプとの接合強度を示す。
【図3】端子部の食われ量と端子部剥離確率との関係を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic component having a terminal portion mainly composed of Ag and a method for manufacturing the electronic component.
[0002]
[Prior art]
2. Description of the Related Art In the electronics field, soldering is used as a technique for electrically connecting an electronic component and a wiring board for forming a circuit. As this solder for solder bonding, Sn—Pb-based solder mainly composed of Sn and Pb has been used for many years. However, today, the influence of Pb contained in the Sn-Pb-based solder on the natural environment has been regarded as a problem, and the use of Pb-free solder containing no Pb instead of the Sn-Pb-based solder has been studied. Sn-Ag-Cu-based solder is considered as the most promising candidate (for example, see Patent Document 1).
The Sn-Ag-Cu-based solder proposed in Patent Document 1 has a characteristic that it has about 40 ° C. increase in melting point of the Sn—Pb eutectic solder, but is excellent in heat-resistant fatigue characteristics and high-temperature characteristics.
[0003]
As another candidate, a Sn—Zn-based solder is being studied. The Sn-Zn-based solder can be joined at a relatively low temperature as a Pb-free solder by increasing the melting point of the Sn-Pb eutectic solder by about 15 [deg.] C., and the Sn-Ag-Cu-based solder can be used. It has the feature of lower cost than solder. While having these advantages, it has been pointed out that the Sn—Zn-based solder has a low wettability with Cu used for the terminal portion of the joined body because an oxide film is easily formed on the solder surface. . In addition, it has been pointed out that a Sn—Zn-based solder forms a Cu—Zn compound at a bonding interface, which lowers bonding strength.
In view of these drawbacks, it has been proposed to form a layer mainly composed of Zn with an average zinc content of 88 to 99.5 wt% at the bonding interface (see Patent Document 2). Although the specific method of forming the layer mainly composed of Zn is unknown, Patent Document 2 proposes that if the layer can be formed, the above-described disadvantage can be solved.
[0004]
On the other hand, resin materials such as epoxy resin and polyimide are often used for electronic components and circuit boards that constitute electronic devices to be joined by solder, but heat resistance, flatness, and rigidity of the boards are required. In this case, a ceramic substrate is used. In general, the formation of terminals and conductive layers on a ceramic substrate involves kneading conductive particles and organic components on a ceramic green sheet, printing the paste, and then heating to a high temperature to fire the ceramics and conductive particles. I do. As the conductive particles, powder mainly composed of Ag or Cu whose melting point is close to the firing temperature of the ceramics is used.
[0005]
[Patent Document 1]
JP-A-5-50286 [Patent Document 2]
JP-A-10-303518 (Example 1 and the like)
[0006]
[Problems to be solved by the invention]
Sn-Ag-Cu solder is advantageous in terms of heat fatigue resistance and high temperature characteristics. However, in the case where a terminal portion mainly composed of Ag is joined using Sn-Ag-Cu-based solder, the thickness of the terminal portion mainly composed of Ag is reduced after joining. Although this is a phenomenon generally called erosion, the peel strength of the terminal portion which is not originally eroded is higher than the mechanical strength of the solder and the solder joint. However, the peel strength of the eroded terminal portion is significantly reduced as the thickness is reduced, and the terminal portion is liable to be peeled by an external load. This decrease in peel strength is a problem because it causes disconnection failure of the electronic components joined by these terminals.
[0007]
It is known that erosion of the terminal portion containing Ag as a main component can be suppressed by increasing the Ag content in the Sn-Ag-Cu-based solder. However, the Sn-Ag-Cu-based solder originally has a disadvantage that the melting point is about 40 ° C. higher than that of the Sn-Pb eutectic solder, and when the Ag content is increased, the melting point of the Sn-Ag-Cu-based solder becomes As the temperature rises further, the soldering temperature needs to be higher. As a result, in the countermeasure against the erosion of the terminal portion by increasing the Ag content, a new problem that the electronic component is liable to be thermally damaged at the time of soldering becomes a new problem. In addition, there is a problem that the solder itself becomes expensive and the product cost increases.
[0008]
An object of the present invention is to suppress the erosion of a terminal part in an electronic component having a terminal part containing Ag as a main component and improve the bonding strength.
[0009]
[Means for Solving the Problems]
The present inventor has paid attention to the fact that erosion in an electronic component having a terminal portion containing Ag as a main component occurs due to elution of Ag from the terminal portion into the Sn-Ag-Cu-based solder melted during solder joining. . Then, by using a solder containing Sn and Zn as main components instead of the Sn-Ag-Cu-based solder and joining through the Ag-Zn compound layer, it is found that elution of Ag can be prevented and the joining strength can be greatly improved. Reached the present invention.
[0010]
That is, the present invention is an electronic component including a terminal portion mainly composed of Ag, wherein the terminal portion is bonded to a solder mainly composed of Sn and Zn via an Ag-Zn compound layer. Electronic component.
[0011]
Preferably, the solder containing Sn and Zn as main components contains 5 to 12% by mass of Zn and the balance substantially consists of Sn.
Preferably, the solder containing Sn and Zn as main components contains 5 to 12% of Zn by mass%, 1 to 10% of Bi or 1 to 5% of In, and the balance substantially consists of Sn.
[0012]
Another feature of the present invention is that a terminal portion mainly composed of Ag is soldered with a solder mainly composed of Sn and Zn, and an Ag-Zn compound layer is formed at a bonding interface between the solder and the terminal portion. This is a method of manufacturing an electronic component.
In the above-described manufacturing method, it is preferable that the solder containing Sn and Zn as main components contains 5 to 12% of Zn by mass%, and the balance is mainly made of Ag by a solder substantially consisting of Sn. Further, it is preferable that the solder containing Sn and Zn as main components contains 5 to 12% of Zn by mass%, 1 to 10% of Bi or 1 to 5% of In, and the remainder substantially consists of Sn.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An important feature of the present invention is that a terminal portion mainly composed of Ag is joined with a solder mainly composed of Sn and Zn via an Ag-Zn compound layer.
In the present invention, soldering mainly composed of Sn and Zn is used for bonding of the terminal part mainly composed of Ag, and the bonding is performed via the Ag-Zn compound layer. Is hardly observed, and the peel strength at the terminal portion after the bonding is hardly reduced.
[0014]
On the solder side mainly composed of Sn and Zn, an Ag-Zn compound is formed. Therefore, when a solder mainly composed of Sn and Zn is conventionally applied to a terminal portion of Cu, there is a problem. This is because the bonding strength does not decrease due to the formation of the -Zn compound. This Ag-Zn compound layer has a small change in the thickness of the layer even when the melting time of the solder is long, and does not cause an increase in erosion of the terminal portion. Here, the Ag—Zn compound layer is an intermetallic compound having a composition ratio of Ag: Zn = 1: 2 (containing about 55% by mass of Zn) or Ag: Zn = 1: 1 (containing about 38% by mass of Zn). It is a layer composed of phases. It is mainly an intermetallic compound phase having a composition ratio of Ag: Zn = 1: 2. This Ag-Zn compound layer can be formed by heating and melting and joining a solder containing Sn and Zn as main components on a terminal portion containing Ag as a main component from a melting point to a melting point + 30 ° C.
At this time, since the melting point of the solder containing Sn and Zn as main components is lower than that of the Sn-Ag-Cu-based solder by about 20 ° C., the problem of thermal damage in the electronic component at the time of joining hardly occurs.
[0015]
The reason why the terminal portion can be prevented from being eroded in the present invention will be described in detail below.
As described above, the erosion of the terminal portion containing Ag as a main component in the Sn-Ag-Cu-based solder is caused by the elution of Ag from the terminal portion into the molten Sn-Ag-Cu-based solder at the time of soldering. It is a phenomenon. According to the study of the present inventor, when a molten Sn-Ag-Cu-based solder is brought into contact with a terminal portion containing Ag as a main component, the Ag elutes into the molten solder to a dissolvable limit amount. The reason why the terminal portion containing Ag as a main component in the Sn-Ag-Cu-based solder is largely eroded is that the concentration of Ag that can be dissolved in the molten Sn-Ag-Cu-based solder is high. On the other hand, the solder containing Sn and Zn as main components used in the present invention has a very low Ag concentration that can be dissolved in a molten state as compared with the Sn—Ag—Cu-based solder. As an example, when comparing Sn-9Zn (melting point: 199 ° C.) and Sn-3Ag-0.5Cu (melting point: 221 ° C.), the Ag concentration that can be dissolved at the soldering temperature of each solder is about 0%. 0.2% (soldering temperature: 220 to 230 ° C.) and 4.5% (soldering temperature: 240 to 250 ° C.).
As described above, since the concentration of soluble Ag is low in the solder containing Sn and Zn as main components, it is possible to suppress the erosion of the terminal portion at the time of soldering.
[0016]
In the present invention, the solder containing Sn and Zn as main components refers to a solder containing Sn and Zn in a total amount of 90% by mass or more, which does not significantly increase the concentration of Ag that can be dissolved in a molten state. Containing Bi, In, Al, Ni, Au, Sb, P, Cu, Ag, etc. are also included in the solder of the present invention.
In the present invention, the terminal portion containing Ag as a main component is a terminal portion having an Ag content of 50% by mass or more, and specifically, for example, an Ag-Pd terminal portion, an Ag-Pt terminal portion, or an Ag terminal. Department etc.
[0017]
It is preferable that the solder of the present invention containing Sn and Zn as main components contains 5 to 12% of Zn by mass%, and the remainder substantially consists of Sn.
The reason why Zn is set to 5 to 12% by mass is that in this range, the difference between the liquidus temperature and the solidus temperature of the solder is small. When the difference is small, segregation in the solidification process and connection defects caused by prolonged solid-liquid coexistence time can be suppressed. In addition, when the Zn content is 12% by mass or less, the concentration of Ag that can be dissolved in the molten solder is particularly low, so that erosion at the terminal portion can be further suppressed. Further, by setting the content to 12% by mass or less, it is possible to suppress the oxidation of the solder surface and the deterioration of wettability caused by the oxidation of the surface.
[0018]
The solder of the present invention containing Sn and Zn as main components contains 5 to 12% by mass of Zn, 1 to 10% of Bi or 1 to 5% of In, and the balance substantially consists of Sn. Is preferred. The reason for setting the Zn content to 5 to 12% by mass is the same as above.
The reason for containing Bi is to lower the melting point without impairing the effect of suppressing the erosion of Ag. The decrease in the melting point due to Bi becomes apparent when the content is 1.0% by mass or more. On the other hand, when the content of Bi is 10% by mass or more, a Sn-Bi low-temperature eutectic is generated and remelted due to a heat load during use of the product. Therefore, the content of Bi is preferably in the range of 1 to 10% by mass.
[0019]
The reason for containing In is to lower the melting point without impairing the effect of suppressing the erosion of Ag and to improve the wettability. The effect of lowering the melting point and improving the wettability by In becomes clear when the content is 1.0% by mass. On the other hand, when the In content is 5% by mass or more, the β-Sn phase is likely to undergo a phase transition to the α-Sn phase at room temperature, and the thermal fatigue characteristics of the joint are reduced. Therefore, the content of In is preferably in the range of 1 to 5% by mass.
[0020]
According to another aspect of the present invention, there is provided an electronic device in which an Ag-Zn compound layer is formed at a bonding interface between a solder and the terminal portion by soldering a terminal portion mainly composed of Ag with the above-described solder mainly containing Sn and Zn. This is a method for manufacturing parts. According to this manufacturing method, erosion at the terminal portion can be suppressed for the same reason as described above. The reason why the terminal portion can be prevented from being eroded by the manufacturing method of the present invention, the preferable composition, and the like are the same as those described above for the electronic component of the present invention.
[0021]
Examples of the soldering method include soldering the terminals by flow soldering, soldering the terminals with a solder paste containing solder powder, soldering the terminals with solder balls solidified using individual balls as solidification units, and the like. Is mentioned. In the second and third methods of the above-mentioned soldering, after the solder is placed on the terminal portion, the solder is heated to a temperature at which the solder melts or more, and the molten solder reacts with the terminal portion (hereinafter, referred to as reflow). To form solder bumps and perform soldering.
[0022]
【Example】
A solder ball having a composition of Sn-9Zn, Sn-9Zn-1In, Sn-8Zn-3Bi, Sn-3Ag-0.5Cu and Sn-4Ag-0.5Cu by mass% and having a diameter of 760 μm was prepared. After placing these solder balls on the Ag-Pd terminal portions, reflow was performed to form solder bumps. The reflow temperature was 240 ° C.
[0023]
Next, in order to evaluate the bonding strength between the solder bump and the terminal under the above-described conditions, a peeling test of the solder bump was performed. In this method, a solder bump is grasped with a tweezer in a state where a substrate on which a terminal portion is formed is fixed, and the bonding strength is measured by peeling the solder bump. The peeling speed was set to 100 μm / s, and the measurement was performed on 20 solder bumps. After the peeling test, the fracture surface was observed to determine the peeling probability of the terminal portion.
Further, the amount of erosion of the terminal portion was measured for five solder bumps under each condition. In the measurement, after the terminal portion was filled with a resin, a cross section was polished, and a change in thickness of the terminal portion was measured based on an optical microscope image. The thickness change of the terminal portion was obtained as a value obtained by subtracting the thickness of the terminal portion after joining from the thickness of the terminal portion before soldering.
In addition, after reflow was performed, the same evaluation was also performed for the case where reflow was further performed twice, that is, the total reflow was performed three times.
[0024]
FIGS. 1A and 1B show optical microscope images of a bonding interface after three reflows of a bump formed of Sn-9Zn and Sn-3Ag-0.5Cu solder as an example of a bonding interface cross section after solder bonding. It is shown in (b).
From FIG. 1B, it can be seen that the Sn-Ag-Cu-based solder (Sn-3Ag-0.5Cu solder) bump is eroded at the terminal. On the other hand, the solder (Sn-9Zn solder) bump containing Sn and Zn as main components shown in FIG. In FIG. 1A, the compound layer formed at the bonding interface is an intermetallic compound phase having a composition ratio of Ag: Zn = 1: 2.
Table 1 shows the average value of the amount of erosion of the terminal portion in each solder bump. While no erosion was observed with the Sn-Zn-based solder bumps, erosion occurred with the Sn-Ag-Cu-based solder bumps, and particularly Sn-3Ag-0.5Cu having a low Ag content in the solder. Erosion is remarkable in solder bumps.
[0025]
[Table 1]
Figure 2004114124
[0026]
As a result of performing a peeling test on these, Sn-Zn based solder bumps in which no erosion was observed broke at the solder portion in all solder bumps, whereas Sn-Ag-Cu based solder bumps exhibited a high percentage. In this case, breakage occurred due to peeling of the terminal portion.
Table 1 also shows the terminal part peeling probability and the average value of the bonding strength. Further, based on the results shown in Table 1, the results obtained by summarizing the relationship between the number of reflows and the strength, the amount of erosion, and the terminal portion peeling probability are shown in FIGS. 2 and 3, respectively.
[0027]
As shown in FIG. 2, the strength of the Sn—Ag—Cu solder bump that has been broken due to the peeling of the terminal portion is lower than that of the case that the solder has broken. Further, as shown in FIG. 3, breakage due to peeling at the terminal portion occurs more frequently as the amount of erosion of the terminal portion increases.
On the other hand, in the case of the Sn—Zn-based solder in which the terminal portion is not eroded, the terminal portion does not peel off, and the bonding strength does not decrease even when reflow is performed three times.
From the above, it can be seen that the joining strength can be improved by joining the terminal portion mainly composed of Ag with the solder mainly composed of Sn and Zn via the Ag-Zn compound layer. In addition, it can be seen that the electronic component of the present invention hardly causes disconnection.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the problem of the erosion of the terminal part in the electronic component which has a terminal part which has Ag as a main component can be improved, and it becomes Pb-free of the electronic component which has the terminal part which has Ag as a main component. It will be an indispensable technology.
[Brief description of the drawings]
FIG. 1 shows an optical microscope image of a bonding interface of a Sn-3Ag-0.5Cu, Sn-9Zn solder bump after three reflows.
FIG. 2 shows the bonding strength between a terminal portion mainly composed of Ag and each solder bump under each condition.
FIG. 3 shows the relationship between the amount of terminal portion erosion and the terminal portion peeling probability.

Claims (6)

Agを主成分とする端子部を具備する電子部品であって、端子部はAg−Zn化合物層を介してSnとZnを主成分とするはんだが接合されていることを特徴とする電子部品。An electronic component having a terminal portion containing Ag as a main component, wherein the terminal portion is joined to a solder containing Sn and Zn as main components via an Ag-Zn compound layer. SnとZnを主成分とするはんだは質量%でZnを5〜12%含み、残部実質的にSnからなることを特徴とする請求項1に記載の電子部品。2. The electronic component according to claim 1, wherein the solder containing Sn and Zn as main components contains 5 to 12% of Zn by mass%, and the balance substantially consists of Sn. 3. SnとZnを主成分とするはんだは質量%でZnを5〜12%含み、且つBiを1〜10%またはInを1〜5%含み、残部実質的にSnからなることを特徴とする請求項1に記載の電子部品。The solder containing Sn and Zn as main components contains 5 to 12% of Zn by mass%, 1 to 10% of Bi or 1 to 5% of In, and the balance substantially consists of Sn. Item 2. The electronic component according to Item 1. SnとZnを主成分とするはんだによりAgを主成分とする端子部をはんだ付けし、はんだと端子部との接合界面にAg−Zn化合物層を形成することを特徴とする電子部品の製造方法。A method of manufacturing an electronic component, comprising: soldering a terminal portion mainly composed of Ag with a solder mainly composed of Sn and Zn; and forming an Ag-Zn compound layer at a joint interface between the solder and the terminal portion. . SnとZnを主成分とするはんだは質量%でZnを5〜12%含み、残部実質的にSnからなることを特徴とする請求項4に記載の電子部品の製造方法。The method according to claim 4, wherein the solder containing Sn and Zn as main components contains 5 to 12% by mass of Zn and the balance substantially consists of Sn. SnとZnを主成分とするはんだは質量%でZnを5〜12%含み、且つBiを1〜10%またはInを1〜5%含み、残部実質的にSnからなることを特徴とする請求項4に記載の電子部品の製造方法。The solder containing Sn and Zn as main components contains 5 to 12% of Zn by mass%, 1 to 10% of Bi or 1 to 5% of In, and the balance substantially consists of Sn. Item 5. A method for manufacturing an electronic component according to Item 4.
JP2002283318A 2002-09-27 2002-09-27 Electronic part and its manufacturing method Pending JP2004114124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283318A JP2004114124A (en) 2002-09-27 2002-09-27 Electronic part and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283318A JP2004114124A (en) 2002-09-27 2002-09-27 Electronic part and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004114124A true JP2004114124A (en) 2004-04-15

Family

ID=32277213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283318A Pending JP2004114124A (en) 2002-09-27 2002-09-27 Electronic part and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004114124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007014529A1 (en) * 2005-08-02 2007-02-08 Jusheng Ma A low melting point lead-free solder alloy
CN105189003A (en) * 2013-03-13 2015-12-23 日本斯倍利亚社股份有限公司 Solder alloy and joint thereof
JP2016107294A (en) * 2014-12-04 2016-06-20 千住金属工業株式会社 Solder alloy for rail bond
JP2017060990A (en) * 2015-09-23 2017-03-30 住華科技股▲フン▼有限公司Sumika Technology Co.,Ltd Solder, sputtering target material and method of manufacturing sputtering target material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007014529A1 (en) * 2005-08-02 2007-02-08 Jusheng Ma A low melting point lead-free solder alloy
CN105189003A (en) * 2013-03-13 2015-12-23 日本斯倍利亚社股份有限公司 Solder alloy and joint thereof
JP2016107294A (en) * 2014-12-04 2016-06-20 千住金属工業株式会社 Solder alloy for rail bond
JP2017060990A (en) * 2015-09-23 2017-03-30 住華科技股▲フン▼有限公司Sumika Technology Co.,Ltd Solder, sputtering target material and method of manufacturing sputtering target material

Similar Documents

Publication Publication Date Title
JP4152596B2 (en) Electronic member having solder alloy, solder ball and solder bump
KR101233926B1 (en) Solder paste
WO2012086745A1 (en) Bonding method, bonding structure, electronic device, manufacturing method for electronic device, and electronic component
EP1333957B1 (en) Lead-free solders
EP1344597A1 (en) Lead-free solder alloy and solder reflow process
TWI308510B (en) Solder paste
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
JPH0788680A (en) Composition of high-temperature lead-free tin based solder
JP6713106B2 (en) Lead-free solder alloy, solder material and joint structure
JP5943065B2 (en) Bonding method, electronic device manufacturing method, and electronic component
JPH0788681A (en) Lead-free high-temperature tin based multicomponent solder
JPH08164495A (en) Leadless solder for connecting organic substrate, and mounted substrate using it
JP3796181B2 (en) Electronic member having lead-free solder alloy, solder ball and solder bump
JP3827322B2 (en) Lead-free solder alloy
JP3832151B2 (en) Lead-free solder connection structure
US20030178476A1 (en) Solder paste, electronic -component assembly and soldering method
US6630251B1 (en) Leach-resistant solder alloys for silver-based thick-film conductors
JP3991788B2 (en) Solder and mounted product using it
WO2020241225A1 (en) Soldering alloy, soldering paste, preform solder, soldering ball, wire solder, resin flux cored solder, solder joint, electronic circuit board, and multilayer electronic circuit board
WO2006088690A2 (en) Method and arrangement for thermally relieved packages with different substrates
JP2004122223A (en) Electronic component and manufacturing method
JP2014018803A (en) Solder material and mounting structure using the same
JP2004114124A (en) Electronic part and its manufacturing method
JP2002185130A (en) Electronic circuit device and electronic part
JP2005167257A (en) Soldering method