JP2004113368A - Indirect continuous blood pressure monitoring device - Google Patents

Indirect continuous blood pressure monitoring device Download PDF

Info

Publication number
JP2004113368A
JP2004113368A JP2002279490A JP2002279490A JP2004113368A JP 2004113368 A JP2004113368 A JP 2004113368A JP 2002279490 A JP2002279490 A JP 2002279490A JP 2002279490 A JP2002279490 A JP 2002279490A JP 2004113368 A JP2004113368 A JP 2004113368A
Authority
JP
Japan
Prior art keywords
pulse wave
blood pressure
pressure
cuff
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002279490A
Other languages
Japanese (ja)
Other versions
JP3688256B2 (en
Inventor
Hidekatsu Inukai
犬飼 英克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Colin Co Ltd
Original Assignee
Nippon Colin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Colin Co Ltd filed Critical Nippon Colin Co Ltd
Priority to JP2002279490A priority Critical patent/JP3688256B2/en
Publication of JP2004113368A publication Critical patent/JP2004113368A/en
Application granted granted Critical
Publication of JP3688256B2 publication Critical patent/JP3688256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an indirect continuous blood pressure monitoring device capable of reducing burdens on a patient while maintaining high blood pressure monitoring precision. <P>SOLUTION: In this device, a pressure pulsation to blood pressure correspondence relation is decided on the basis of the value of pressure pulsation detected from a pressure pulsation sensor 46 pressurized to the wrist by prescribed pressurizing force and a blood pressure value decided by a blood pressure deciding means 72 by a correspondence relation deciding means 78, and a monitoring blood pressure value is continuously decided on the basis of the pressure pulsation to blood pressure correspondence relation and the pressure pulsation continuously detected from the pressure pulsation sensor 46. Cuff pulsation is detected in the state of turning a cuff pressure to a prescribed pulse wave detection pressure in every prescribed cycle by a cuff pulsation detection means 84, and the propriety of the mounting state of the pressure pulsation sensor 46 is determined on the basis of the comparison of the cuff pulsation and the pressure pulsation in a blood pressure monitoring accuracy determining means 90. It is unnecessary to frequently execute the blood pressure value deciding means 72 to update the pressure pulsation to blood pressure correspondence relation, thereby reducing the burdens on the patient. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非観血的且つ連続的に血圧値を監視する血圧監視装置に関し、さらに詳しくは、非観血連続血圧監視装置において、血圧監視精度を維持しつつ患者の負担を軽減する技術に関する。
【0002】
【従来の技術】
非観血連続血圧監視装置として、生体の所定の動脈から発生する圧脈波を検出して、その圧脈波から連続的に血圧値を監視する装置、すなわち、所謂トノメトリ法による血圧測定を用いた装置が知られている。この方式の非観血連続血圧監視装置は、上腕など生体の一部にカフを装着して、そのカフの圧迫圧力を徐速変化させる過程で血圧値を決定し、その血圧値と、生体の所定の動脈に向かって押圧させられる圧脈波センサを用いて検出した圧脈波とから、そ圧脈波の大きさと血圧値との間の圧脈波血圧対応関係を決定し、その圧脈波血圧対応関係を用い、逐次検出される圧脈波から連続的に血圧値を決定している(たとえば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−237151号公報
【0004】
【発明が解決しようとする課題】
上記非観血連続血圧監視装置は、圧脈波センサの装着状態がずれる等の理由により、実際の圧脈波血圧対応関係が、血圧を測定して決定した圧脈波血圧対応関係からずれてしまうと、監視血圧値の精度が低下する。そこで、監視血圧値の精度低下を防ぐために、圧脈波血圧対応関係を比較的短い周期で更新する場合がある。短い周期で圧脈波血圧対応関係を更新すれば、実際の圧脈波血圧対応関係が徐々にずれていったとしても監視血圧値の精度低下を少なくすることができる。しかしながら、短い周期で圧脈波血圧対応関係を更新する場合には、それほど圧脈波血圧対応関係が変化しておらず更新の必要がない場合にまでその関係を更新することになる。圧脈波血圧対応関係を更新するためには、その度にカフを用いた血圧測定を実行しなければならず、カフを用いた血圧測定はカフの圧迫圧力を最高血圧値よりも高い圧力まで昇圧することから患者にとっては負担となる。従って、カフを用いた血圧測定の周期はできるだけ長い周期に設定されることが望まれる。
【0005】
上記の通り、監視血圧値の精度を判定することができない場合には、監視血圧値の精度低下を防ぐために、圧脈波血圧対応関係を比較的頻繁に更新しなければならない。そこで、上記特許文献1では、圧脈波血圧対応関係が保たれている場合には、圧脈波センサからの押圧により血管壁の一部が略平坦とされ、その略平坦とされている血管壁の上部に位置する複数の圧力検出素子により検出される圧脈波は、略同じ形状となることを利用して、監視血圧値の精度を逐次判定している。すなわち、上記特許文献1では、圧脈波センサの押圧面に配置されている多数の圧力検出素子から最大脈波振幅を出力する最大圧力検出素子を決定し、その最大圧力検出素子から圧脈波を検出するとともに、最大圧力検出素子からの距離が第1距離および第2距離にある第1圧力検出素子および第2圧力検出素子からもそれぞれ圧脈波を検出して、最大圧力検出素子により検出された圧脈波と第1圧力検出素子から検出された圧脈波との間の第1相関係数、および最大圧力検出素子により検出された圧脈波と第2圧力検出素子により検出された圧脈波との間の第2相関係数を逐次算出し、その第1相関係数と第2相関係数とに基づいて監視血圧値の精度を逐次判定している。
【0006】
前述のように、カフを用いた血圧測定の周期はできるだけ長い周期に設定されることが要求されるが、上記特許文献1の血圧監視装置のように、複数の圧力検出素子によりそれぞれ検出される圧脈波間の相関係数を用いて監視血圧値の精度を逐次判定する技術は、その要求に応えるほどには判定精度が十分ではなく、圧脈波血圧対応関係を更新するための血圧測定周期をある程度長くすることができるにとどまる。そのため、上記特許文献1に記載された監視血圧値の精度を判定する技術と組み合わせても用いることができ、また、その技術とは別に単独でも用いることができる、監視血圧値の精度を判定する技術の開発が望まれていた。
【0007】
本発明は以上の事情を背景として為されたもので、その目的とするところは、高い血圧監視精度を維持しつつ、患者の負担を軽減することができる非観血連続血圧監視装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記目的を達成するために種々検討を重ねた結果、以下の知見を見いだした。すなわち、カフの圧迫圧力を平均血圧値以下とした状態で生体からそのカフに伝達される圧力振動であるカフ脈波の形状は、トノメトリ法により検出される圧脈波の形状とよく似ていることを見いだした。また、カフは装着中にずれることが少ないことから、カフ脈波とトノメトリ法により検出される圧脈波とを比較すれば、圧脈波センサの装着状態が変化したかどうかを判定できるので、監視血圧値の精度の低下が判定できることを見いだした。本発明はかかる知見に基づいて成されたものである。
【0009】
すなわち、上記目的を達成するための本発明は、(a)生体の一部に装着されるカフと、(b)そのカフの圧迫圧力を制御するカフ圧制御手段と、(c)そのカフ圧制御手段により前記カフの圧迫圧力が徐速変化させられる過程において得られる信号に基づいて、その生体の血圧値を決定する血圧値決定手段と、(d)その生体の所定の動脈に向かって押圧させられる圧脈波センサを用いてその動脈から発生する圧脈波を逐次検出する圧脈波検出装置と、(e)前記血圧値決定手段により決定された血圧値と前記圧脈波検出装置により検出された圧脈波の大きさとの間の圧脈波血圧対応関係を決定する対応関係決定手段と、(f)その圧脈波血圧対応関係を用い、前記圧脈波検出装置により逐次検出される圧脈波の大きさから監視血圧値を連続的に決定する血圧値連続決定手段とを備えた非観血連続血圧監視装置であって、(g)前記カフ圧制御手段により前記カフの圧迫圧力が平均血圧値よりも低い圧力とされた状態で、そのカフ内の圧力振動であるカフ脈波を検出するカフ脈波検出手段と、(h)そのカフ脈波検出手段により検出されたカフ脈波と、そのカフ脈波の検出と同時期に前記圧脈波検出装置により検出された圧脈波との比較に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定する血圧監視精度判定手段とを含むことを特徴とする。
【0010】
【発明の効果】
この発明によれば、血圧監視精度判定手段により、圧脈波検出装置によって検出される圧脈波と、カフの圧迫圧力が平均血圧値より低い圧力で検出されるカフ脈波とが比較されて、血圧値連続決定手段により連続的に決定される監視血圧値の精度が判定されることから、監視血圧値の精度を維持するために、カフを用いた血圧測定を短い周期で行って圧脈波血圧対応関係を頻繁に更新する必要がなくなるので、患者の負担が軽減する。
【0011】
【発明の他の態様】
ここで、前記血圧監視精度判定手段における圧脈波とカフ脈波との比較の仕方には種々考えられるが、たとえば、圧脈波とカフ脈波の特徴点の位置を比較することが考えられる。そのようにして監視血圧値の精度を判定する非観血連続血圧監視装置は、前記血圧値決定手段により血圧値が決定されたときに前記カフ脈波検出手段および前記圧脈波検出装置によりそれぞれ検出されたカフ脈波および圧脈波の大きさを同じにするために、そのカフ脈波および圧脈波の少なくとも一方を補正する補正係数を決定する補正係数決定手段と、該補正係数決定手段により決定された補正係数を用いて、逐次、前記カフ脈波検出手段により検出されたカフ脈波および前記圧脈波検出装置により検出された圧脈波の少なくとも一方を補正して、比較用の一組のカフ脈波および圧脈波を決定する比較脈波決定手段とを備え、前記血圧監視精度判定手段は、前記比較脈波決定手段により決定されたカフ脈波および圧脈波の互いの最小点を一致させた状態で、それらカフ脈波および圧脈波の所定の特徴点の位置を比較することによって、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする。
【0012】
また、前記血圧監視精度判定手段において圧脈波の形状とカフ脈波の形状とを比較してもよい。そのようにして監視血圧値の精度を判定する非観血連続血圧監視装置は、前記血圧値決定手段により血圧値が決定されたときに前記カフ脈波検出手段および前記圧脈波検出装置によりそれぞれ検出されたカフ脈波および圧脈波の大きさを同じにするために、そのカフ脈波および圧脈波の少なくとも一方を補正する補正係数を決定する補正係数決定手段と、該補正係数決定手段により決定された補正係数を用いて、逐次、前記カフ脈波検出手段により検出されたカフ脈波および前記圧脈波検出装置により検出された圧脈波の少なくとも一方を補正して、比較用の一組のカフ脈波および圧脈波を決定する比較脈波決定手段とを備え、前記血圧監視精度判定手段は、前記比較脈波決定手段により決定されたカフ脈波および圧脈波の形状の比較に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする。
【0013】
また、圧脈波の形状とカフ脈波の形状とを比較して監視血圧値の精度を判定する装置では、前記血圧監視精度判定手段は、たとえば、前記血圧監視精度判定手段は、前記比較脈波決定手段により決定されたカフ脈波および圧脈波を、互いの最小点を一致させた状態で時間軸に垂直に複数の脈波区分に分割して、該複数の脈波区分毎に面積差を算出し、該複数の面積差のそれぞれの時間変化が所定の基準値を超えた脈波区分の数に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定する。または、前記比較脈波決定手段により決定されたカフ脈波および圧脈波を、互いの最小点を一致させた状態で時間軸に垂直に複数の脈波区分に分割して、該複数の脈波区分毎に面積差を算出し、該複数の面積差の時間変化傾向が一致するか否かに基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであってもよい。
【0014】
また、前記血圧監視精度判定手段において圧脈波の面積とカフ脈波の面積とを比較してもよい。そのようにして監視血圧値の精度を判定する非観血連続血圧監視装置は、前記血圧監視精度判定手段が、前記カフ脈波検出手段により検出されたカフ脈波の面積の時間変化と、該カフ脈波の検出と同時期に前記圧脈波検出装置により検出された圧脈波の面積の時間変化との比較に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする。
【0015】
また、次のようにしてカフ脈波と圧脈波とを比較して監視血圧値の精度を判定してもよい。すなわち、前記血圧監視精度判定手段は、カフ脈波の大きさを表す軸と圧脈波の大きさを表す軸とからなる二次元グラフに、前記カフ脈波検出手段により検出されたカフ脈波と、前記圧脈波検出装置により検出された圧脈波のうち該カフ脈波に対応する圧脈波とにより描かれる波形相関図形に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであってもよい。
【0016】
【発明の好適な実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明が適用された非観血連続血圧監視装置8の構成を説明するブロック図である。
【0017】
図において、10はゴム製袋を布製帯状袋内に有するカフであって、たとえば患者の右腕の上腕部12に巻回される。カフ10には、圧力センサ14および排気制御弁16が配管18を介して接続され、さらに排気制御弁16は、配管19により空気ポンプ20に接続されている。排気制御弁16は、空気ポンプ20において発生させられた圧力の高い空気をカフ10内へ供給することを許容する供給許容状態、カフ10内の圧力を維持する圧力維持状態、カフ10内を徐々に排圧する徐速排圧状態、およびカフ10内を急速に排圧する急速排圧状態の4つの状態に切り替えられるように構成されている。
【0018】
圧力センサ14は、カフ10内の圧力Pを検出してその圧力Pを表す圧力信号SPを静圧弁別回路22および脈波弁別回路24にそれぞれ供給する。静圧弁別回路22はローパスフィルタを備えており、圧力信号SPに含まれる定常的な圧力すなわちカフ10の圧迫圧力(以下、この圧をカフ圧PCという)を表すカフ圧信号SCを弁別してそのカフ圧信号SCをA/D変換器26を介して電子制御装置28へ供給する。脈波弁別回路24はバンドパスフィルタを備えており、圧力信号SPの振動成分であるカフ脈波信号SM1を弁別してそのカフ脈波信号SM1をA/D変換器30を介して電子制御装置28へ供給する。このカフ脈波信号SM1は、カフ10により圧迫される図示しない上腕動脈からカフ10に伝達される圧力振動であることからカフ脈波CWを表す。
【0019】
上記電子制御装置28は、CPU31,ROM32,RAM33,および図示しないI/Oポート等を備えた所謂マイクロコンピュータにて構成されており、CPU31は、ROM32に予め記憶されたプログラムに従ってRAM33の記憶機能を利用しつつ信号処理を実行することにより、I/Oポートから駆動信号を出力して図示しない駆動回路を介して排気制御弁16および空気ポンプ20を制御して、カフ10内の圧力を制御するとともに、カフ脈波信号SM1が表すカフ脈波CWの変化に基づいてオシロメトリック法により最高血圧値BPSYSおよび最低血圧値BPDIAなどの血圧値BPを決定し、その決定した血圧値BPを表示器34に表示させる。
【0020】
圧脈波検出装置として機能する圧脈波検出プローブ36は、図2に詳しく示すように、容器状を成すセンサハウジング37と、そのハウジング37を収容するケース38と、センサハウジング37を橈骨動脈56の幅方向に移動させるためにそのセンサハウジング37に螺合され且つケース38の駆動部39内に設けられた図示しないモータによって回転駆動されるねじ軸40とを備えている。また、上記ケース38には装着バンド41が取り付けられている。
【0021】
このように構成された圧脈波検出プローブ36は、センサハウジング37の開口端が体表面42に対向する状態で装着バンド41により手首43に着脱可能に取り付けられるようになっている。なお、圧脈波検出プローブ36が取り付けられる手首43は、カフ10が装着されている側の手首であっても、それとは反対側の手首であってもよいが、手術中には一方の腕に点滴を実施する場合も多く、点滴をする場合には点滴用の管が挿入されている側の腕には、カフ10も圧脈波検出プローブ36も装着することができないことから、その場合には圧脈波検出プローブ36はカフ10と同じ側の腕に装着される。
【0022】
上記センサハウジング37の内部には、圧脈波センサ46が、ダイヤフラム44を介してセンサハウジング37に対して相対移動可能かつセンサハウジング37の開口端から突出し可能に設けられており、これらセンサハウジング37およびダイヤフラム44等によって圧力室48が形成されている。この圧力室48内には、図1に示すように、空気ポンプ50から調圧弁52を経て圧力の高い空気が供給されるようになっており、これにより、圧脈波センサ46は圧力室48内の圧力に応じた押圧力HDP(Hold Down Pressure)で体表面42に押圧させられる。
【0023】
上記センサハウジング37およびダイヤフラム44は、圧脈波センサ46を橈骨動脈56に向かって押圧する押圧装置58を構成しており、ねじ軸40および図示しないモータは、圧脈波センサ46が体表面42に向かって押圧させられる押圧位置を、橈骨動脈56の幅方向に移動させる幅方向移動装置60を構成している。
【0024】
上記圧脈波センサ46の押圧面62には、図3に示すように、多数の半導体感圧素子(以下、単に感圧素子という)Eが、橈骨動脈56の幅方向すなわちねじ軸40と平行な圧脈波センサ46の移動方向において、橈骨動脈56の直径よりも長くなるように、且つ一定の間隔(たとえば0.2mm間隔)で配列されている。
【0025】
このように構成された圧脈波検出プローブ36が、手首43の体表面42上から橈骨動脈56に向けて押圧されると、圧脈波センサ46により、橈骨動脈56から発生して体表面42に伝達される圧脈波PW(橈骨動脈波)が検出され、図1に示すように、圧脈波PWを表す圧脈波信号SM2がA/D変換器64を介して電子制御装置28へ供給される。
【0026】
電子制御装置28のCPU31は、前述したカフ10内の圧力の制御、血圧値BPの決定に加え、さらに、空気ポンプ50および調圧弁52へ図示しない駆動回路を介して駆動信号を出力して圧力室48内の圧力の調節も行う。さらに、電子制御装置28は、圧力室48内の徐速圧力変化過程で逐次得られる圧脈波PWに基づいて、橈骨動脈56の血管壁の一部を略平坦とするための圧脈波センサ46の最適押圧力HDPOを決定し、その最適押圧力HDPOを維持するように調圧弁52を制御する。
【0027】
図4は、CPU31の制御機能の要部を示す機能ブロック図である。カフ圧制御手段70は、排気制御弁16および空気ポンプ20を制御することにより、以下に述べる血圧測定制御および脈波検出圧制御を実行する。血圧測定制御は、カフ圧PCを、上腕部12における最高血圧値BPSYSよりも高い値に予め設定された昇圧目標圧力値PM1(たとえば180mmHg )まで急速に昇圧し、続いて、後述する血圧値決定手段72による血圧値BPの決定が終了するまで、カフ圧PCを2〜3mmHg/secに設定された徐速降圧速度で徐速降圧させる。そして、血圧値BPの決定が終了した後にカフ圧PCを大気圧まで排圧する。
【0028】
また、脈波検出圧制御は、少なくとも一拍分以上の間、カフ圧PCを脈波検出圧PM2に制御するものである。上記脈波検出圧PM2は、平均血圧値BPMEANよりも低く、好ましくは最低血圧値BPDIAよりも低い圧力であって、カフ脈波信号SM1の大きさが十分な大きさとなる程度に高い圧力、たとえば50mmHg乃至60mmHgに設定される。この脈波検出圧PM2は、予め設定されていてもよいし、後述する血圧値決定手段72により決定された血圧値BPに基づいて決定されてもよい。脈波検出圧PM2がこのような圧力に設定されるのは、カフ圧PCが最低血圧値BPDIAよりも高いと、血管が圧縮されることに起因して脈波弁別回路24によって弁別されるカフ脈波CWに歪みが生じ、特に、平均血圧値BPMEANよりも高くなると血管が圧縮される程度が大きくなることに起因してカフ脈波CWの歪みが大きくなる一方で、カフ圧PCが低すぎると十分な大きさの信号が得られないからである。
【0029】
血圧値決定手段72は、10分乃至30分程度に予め設定されたキャリブレーション周期Tcが経過したとき、または、後述する血圧異常判定手段82により監視血圧値MBPの異常が判定されたとき、または、後述する押圧力制御手段76により圧脈波センサ46の押圧力HDPが変更させられたときに実行されるものであり、カフ圧制御手段70に指令信号を出力して、そのカフ圧制御手段70に前記血圧測定制御を実行させ、カフ圧制御手段70によりカフ圧PCが徐速降圧させられる過程において、順次採取されるカフ脈波信号SM1が表す上腕脈波の振幅の変化および順次採取されるカフ圧信号SCに基づき、良く知られたオシロメトリック法を用いて最高血圧値BPSYS、最低血圧値BPDIA、および平均血圧値BPMEANを決定し、その決定した最高血圧値BPSYS等を表示器34に表示する。
【0030】
最適押圧位置制御手段74は、圧脈波センサ46に備えられた複数の感圧素子Eのうち最大圧力を検出する素子(以下、この素子を最大圧力検出素子EMという)の配列位置が、配列の端を基準として、それから所定数または所定距離内側までに位置するものであることを条件とする押圧位置更新条件が成立するか否かを判断する。そして、その押圧位置更新条件が成立した場合には、以下の押圧位置更新作動を実行する。すなわち、押圧位置更新作動は、圧脈波センサ46を体表面42から一旦離隔させるとともに、幅方向移動装置60により押圧装置58および圧脈波センサ46を所定距離移動させた後、押圧装置58により圧脈波センサ46を比較的小さい予め設定された第1押圧力HDP1で押圧させ、その状態で再び上記押圧位置更新条件が成立するか否かを判断し、押圧位置更新条件が成立しなくなるまで、より好ましくは、前記最大圧力検出素子EMが配列位置の略中央に位置するまで上記の作動および判断を実行する。なお、上記押圧位置更新条件における配列の端からの所定数または所定距離は、圧脈波センサ46により押圧される動脈(本実施例では橈骨動脈56)の直径に基づいて決定され、たとえば、その直径の1/4に設定される。
【0031】
押圧力制御手段76は、圧脈波センサ46が最適押圧位置制御手段74により最適押圧位置に位置させられた後、押圧装置58による圧脈波センサ46の押圧力HDPを、所定の押圧力範囲内で拍動に対応して逐次変化させ、あるいは所定の押圧力範囲内を比較的緩やかな一定速度で連続的に変化させる。そして、その押圧力HDPの変化過程で得られる圧脈波PWに基づいて最適押圧力HDPOを決定し、押圧装置58による圧脈波センサ46の押圧力HDPをその最適押圧力HDPOに維持する。ここで、最適押圧力HDPOとは、圧脈波センサ46の押圧力HDPよって、橈骨動脈56の血管壁の圧脈波センサ46により押圧されている側が略平坦となる押圧力であり、たとえば図5に示すように、押圧力HDPを最適押圧力HDPOを十分に含むような範囲で連続的に増加させる過程で、圧脈波センサ46の最大圧力検出素子EMから得られた圧脈波PWの大きさと圧脈波センサ46の押圧力HDPとを示す二次元グラフにおいて、圧脈波PWの下ピーク値(立ち上がり点)PWminを結ぶ曲線(図5の破線)により形成される平坦部の中央を中心とする所定範囲内の押圧値である。
【0032】
対応関係決定手段78は、血圧値決定手段72により測定された血圧値BPと、その血圧値決定手段72による血圧測定時に圧脈波センサ46の最大圧力検出素子EMにより検出された圧脈波PWの大きさとの間の圧脈波血圧対応関係を、たとえば図6に示すように決定する。図6において、PWminは圧脈波PWの最小値(すなわち立ち上がり点における圧脈波PWの大きさ)、PWmaxは圧脈波PWの最大値(すなわちピークにおける圧脈波PWの大きさ)である。なお、血圧値決定手段72による血圧測定時とは、血圧値BPを測定するためにカフ圧制御手段70により血圧測定制御が実行されているときだけでなく、その血圧測定制御の前後の血圧値BPがそれほど変動していないと見なすことができる期間も含むものとする。
【0033】
血圧値連続決定手段80は、上記対応関係決定手段78で決定された圧脈波血圧対応関係を用いて、圧脈波センサ46の最大圧力検出素子EMにより逐次検出される圧脈波PWの大きさから監視血圧値MBPを連続的に決定する。すなわち、上記圧脈波血圧対応関係を用いて圧脈波PWの最小値PWminから監視最低血圧値MBPDIAを連続的に決定し、上記圧脈波血圧対応関係を用いて圧脈波PWの最大値PWmaxから監視最高血圧値MBPSYSを連続的に決定する。そして、その決定した監視最低血圧値MBPDIAおよび監視最高血圧値MBPSYSを表示器34に表示する。
【0034】
血圧異常判定手段82は、血圧値連続決定手段80により連続的に決定される監視最高血圧値MBPSYSが予め設定された最高血圧異常判定値THSYSを超えた場合、または監視最低血圧値MBPDIAが予め設定された最低血圧異常判定値THDIAを以下である場合に血圧異常と判定し、血圧異常であることを示す文字あるいは記号を表示器34に表示するとともに、カフ12による信頼性のある血圧値BPを迅速に得るために、血圧値決定手段72による血圧測定を実行させる。
【0035】
カフ脈波検出手段84は、血圧値決定手段72による血圧測定時であってカフ圧PCが平均血圧値BPMEAN以下とされている状態で、脈波弁別回路24から供給されるカフ脈波CW(以下、このカフ脈波CWを基準カフ脈波CWstという)を読み込むとともに、その血圧測定時から計測される経過時間が、キャリブレーション周期Tcよりも十分に短い時間(たとえば1分乃至3分程度)に予め設定された監視精度判定周期Twを経過する毎に、カフ圧制御手段70にカフ圧PCを前記脈波検出圧PM2に制御させるための指令信号を出力し、そのカフ圧制御手段70によりカフ圧PCが脈波検出圧PM2に制御されている状態で、脈波弁別回路24により検出されるカフ脈波CWを読み込む。前述のように、血圧測定時には、カフ圧制御手段70により血圧測定制御が実行されている時だけでなく、その血圧測定制御の前後の血圧値BPがそれほど変動していないと見なすことができる期間も含まれるので、基準カフ脈波CWstは、カフ圧制御手段70による血圧測定制御過程だけでなく、その血圧測定制御の前後の所定期間に読み込んだカフ脈波CWであってもよい。血圧測定制御の前後に基準カフ脈波CWstを読み込む場合には、監視精度判定周期Tw毎にカフ脈波CWを読み込む場合と同様に、カフ圧制御手段70にカフ圧PCを前記脈波検出圧PM2に制御させるための指令信号を出力して、カフ圧PCを脈波検出圧PM2とした状態でカフ脈波CWを読み込む。なお、本実施形態では、血圧測定制御の直後に基準カフ脈波CWstを読み込むものとする。
【0036】
補正係数決定手段86は、上記基準カフ脈波CWstが読み込まれた時と略同時期に圧脈波センサ46により検出された圧脈波PW(以下、この圧脈波PWを基準圧脈波PWstという)と、上記基準カフ脈波CWstとを、その大きさが同じとなるように補正するための補正係数を決定する。なお、補正係数は、カフ脈波CWを補正するためのものだけを決定してもよいし、圧脈波PWを補正するためのものだけを決定してもよいし、カフ脈波CWおよび圧脈波PWの両方を補正するために補正係数をそれぞれ決定してもよいが、本実施形態では、圧脈波PWを補正するための補正係数だけを決定するものとする。図7は、基準カフ脈波CWstと、補正係数決定手段86に決定された補正係数により補正された基準圧脈波PWstとを、立ち上がり点(最小点)を一致させた状態で示す図である。
【0037】
比較脈波決定手段88は、前記監視精度判定周期Tw毎に読み込まれるカフ脈波CWと略同時期に圧脈波センサ46により検出される圧脈波PWを、補正係数決定手段86により決定された補正係数により補正して比較用圧脈波PWcに決定するとともに、監視精度判定周期Tw毎に読み込まれるカフ脈波CWを比較用カフ脈波CWcに決定する。ここで、カフ脈波CWと略同時期に検出される圧脈波PWとは、カフ脈波CWに対応する圧脈波PW(すなわち同じ拍動に基づく脈波)だけでなく、カフ脈波CWの検出のためにカフ圧PCが脈波検出圧PM2に制御されている期間の直前や直後に検出される圧脈波PWも含む意味である。
【0038】
血圧監視精度判定手段90は、比較脈波決定手段88により決定された比較用圧脈波PWcと比較用カフ脈波CWcとを、それらの最小点を一致させ、比較用圧脈波PWcと比較用カフ脈波CWcのそれぞれの特徴点の大きさの差、すなわち強度差dを算出し、その強度差dが予め設定された装着異常判定値THを超えた場合に、圧脈波センサ46の装着状態が不適切になったことによって血圧値連続決定手段80により決定されている監視血圧値MBPの精度が低下したと判定し、圧脈波センサ46の装着状態を修正するために最適押圧位置制御手段74を再度実行させる。ここで、上記特徴点には、たとえば、ピーク、ノッチ等がある。
【0039】
図8は、比較脈波決定手段88により決定した比較用圧脈波PWstおよび比較用カフ脈波CWstを最小点を一致させた状態で示す図の一例であり、特徴点としてピークを選択した場合の強度差dが例示してある。血圧値BPが変化した場合の比較用圧脈波PWcおよび比較用カフ脈波CWcのそれぞれの特徴点の大きさの変化傾向は同じであり、比較用圧脈波PWcおよび比較用カフ脈波CWcともに、血圧値BPが高くなるとピークは大きくなり、逆に、血圧値BPが低くなるとピークは小さくなる。また、比較用圧脈波PWcは、検出された圧脈波PWが、血圧値決定手段72による血圧測定時に基準圧脈波PWstの大きさを基準カフ脈波CWstと同じとするために決定された補正係数に基づいて補正されたものである。従って、血圧値決定手段72による血圧測定時から血圧値BPが変動していても、圧脈波センサ46の装着状態が適切に維持され、適切な圧脈波PWが検出されていれば、上記強度差dはそれほど大きくならないので、強度差dが大きくなっている場合には、圧脈波センサ46の装着状態が不適切になったと判定できる。なお、血圧値BPの変化に対する、比較圧脈波PWcの特徴点の大きさの変化傾向と比較カフ脈波CWcの特徴点の大きさの変化傾向は一致するものの、変化量までは完全には一致しないので、圧脈波センサ46の装着状態が適切に維持されていても、強度差dはゼロにはならない。そのため、上記装着異常判定値THは、両者の変化量の違いを考慮した比較的大きな値に設定される。
【0040】
図9乃至図11は、図4の機能ブロック図に示したCPU31の制御作動の要部を示すフローチャートであって、図9および図10は圧脈波血圧対応関係を決定する対応関係決定ルーチンを示し、図11は血圧監視ルーチンを示す。
【0041】
まず、図9および図10に示す対応関係決定ルーチンを説明する。図9において、ステップSA1(以下、ステップを省略する。)では、圧脈波センサ46の押圧面62に配列された感圧素子Eのうち最大圧力検出素子EMの配列位置が、配列の端から所定数または所定距離内側までに位置するものであるかを条件とする押圧位置更新条件(APS起動条件)が成立したか否かを判断する。この判断が否定された場合には、後述するSA3以降を実行する。
【0042】
一方、SA1の判断が肯定された場合、すなわち、圧脈波センサ46の橈骨動脈56に対する装着位置が不適切である場合には、最適押圧位置制御手段74に相当するSA2のAPS制御ルーチンを実行する。このAPS制御ル−チンでは、幅方向移動装置60を制御することにより、圧脈波センサ46の各圧力検出素子Eのうち最大振幅を検出する圧力検出素子Eが、圧力検出素子Eの配列の略中心位置になるように最適押圧位置を決定するとともに、その圧力検出素子Eを最大圧力検出素子EMに設定する。以下の説明における圧脈波信号SMは、このSA2で決定した最大圧力検出素子EMにより検出された圧脈波信号SMを意味する。
【0043】
前記SA1の判断が否定された場合または上記SA2を実行した場合には、続いて、押圧力制御手段76に相当するSA3のHDP制御ルーチンを実行する。すなわち、調圧弁52を制御することにより圧脈波センサ46の押圧力HDPを連続的に高め、その過程で前記最大圧力検出素子EMによって検出される圧脈波PWの振幅が最大となる押圧力を最適押圧力HDPOに決定し、且つ、圧脈波センサ46の押圧力HDPをその最適押圧力HDPOに保持する。
【0044】
続くSA4では、空気ポンプ20を起動させ、且つ、排気制御弁16を圧力供給状態に制御することにより、カフ圧PCの急速昇圧を開始する。続くSA5では、カフ圧PCが180mmHgに設定された昇圧目標圧力値PM1を越えたか否かを判断する。この判断が否定されるうちはSA5の判断を繰り返し実行し、カフ圧PCの急速昇圧を継続する。一方、SA5の判断が肯定された場合には、SA6において、空気ポンプ20を停止させ、且つ、排気制御弁16を徐速排圧状態に切り替えることにより、カフ圧PCの3mmHg/sec程度での徐速降圧を開始する。
【0045】
続いて血圧値決定手段72に相当するSA7乃至SA9を実行する。SA7では、カフ圧PCの徐速降圧過程で逐次得られるカフ脈波信号SM1が表すカフ脈波CWの振幅の変化およびその振幅発生時のカフ圧PCに基づいて、良く知られたオシロメトリック方式の血圧測定アルゴリズムに従って最高血圧値BPSYS、平均血圧値BPMEAN、および最低血圧値BPDIAを決定する。続くSA8では、上記SA7において血圧値BPの決定が完了したか否かを判断する。このSA8の判断が否定されるうちは、SA7以下を繰り返し実行し、血圧測定アルゴリズムを継続する。
【0046】
血圧値BPの決定が完了してSA8の判断が肯定されると、続くSA9では、SA7乃至SA8の繰り返しにより決定した最高血圧値BPSYS等を表示器34に表示する。続いて図10に示すSA10以降を実行する。
【0047】
SA10では、SA7で決定した最低血圧値BPDIAから、10mmHg程度に設定された所定値αを引くことにより脈波検出圧PM2を決定する。そして、続くSA11では、カフ圧PCを上記SA10で決定した脈波検出圧PM2に制御する。続くSA12では、その状態で、脈波弁別回路24から供給されるカフ脈波信号SM1(すなわちカフ脈波CW)および圧脈波センサ46から供給される圧脈波信号SM2(すなわち圧脈波PW)をそれぞれ一拍分ずつ読み込む。なお、このSA12で読み込んだカフ脈波CWおよび圧脈波PWが基準カフ脈波CWstおよび基準圧脈波PWstに相当する。そして、続くSA13では、排気制御弁16を急速排圧状態に切り替えることによりカフ圧PCを大気圧まで急速に排圧する。なお、図9乃至図10のフローチャートでは、SA4乃至SA6およびこのSA13がカフ圧制御手段70の血圧測定制御に相当する。
【0048】
続くSA14は対応関係決定手段78に相当し、SA7で決定した最高血圧値BPSYSと最低血圧値BPDIA、およびSA12で読み込んだ圧脈波PWの最大値PWmaxと最小値PWminから、図6に示す圧脈波血圧対応関係を決定する。
【0049】
そして、補正係数決定手段86に相当するSA15では、SA12で読み込んだ基準圧脈波PWstの大きさを、同じくSA12で読み込んだ基準カフ脈波CWstの大きさと等しくするための補正係数を決定する。
【0050】
続いて図11に示す血圧監視ルーチンを説明する。まず、SB1では、圧脈波センサ46から供給される圧脈波PWを一拍分読み込む。そして続くSB2では、SB1で読み込んだ圧脈波PWの最小値PWminおよび最大値PWmaxから、図10のSA14で決定した圧脈波血圧対応関係に基づいて、監視最低血圧値MBPDIAおよび監視最高血圧値MBPSYSを決定し、その決定した監視最低血圧値MBPDIAおよび監視最高血圧値MBPSYSを表示器34に表示する。
【0051】
続くSB3では、上記SB2で決定した監視最高血圧値MBPSYSが予め設定された最高血圧異常判定値THSYSを超えているか否か、または上記SB2で決定した監視最低血圧値MBPDIAが予め設定された最低血圧異常判定値THDIA以下であるか否かを判断する。この判断が肯定された場合には血圧が異常である可能性が高いので、カフ10による信頼性の高い血圧値BPを迅速に得るために、前述の対応関係決定ルーチンを再度実行する。
【0052】
一方、SB3の判断が否定された場合には、続くSB4において、対応関係決定ルーチンが実行されて圧脈波血圧対応関係が決定されてからの経過時間が、10分乃至30分程度に設定されたキャリブレーション周期Tcを経過したか否かをさらに判断する。この判断が肯定された場合にも前述の対応関係決定ルーチンを再度実行する。
【0053】
一方、SB4の判断が否定された場合には、続くSB5において、後述するSB6以下を実行してからの経過時間が、1分乃至3分程度に設定された監視精度判定周期Twを経過したか否かを判断する。この判断が否定された場合には、前記SB1以下を繰り返し実行して、一拍毎に監視血圧値MBPを決定する。
【0054】
SB5の判断が肯定された場合には、SB6以下を実行して監視血圧値MBPの精度を判定する。まず、SB6では、カフ圧PCをSA10で決定した脈波検出圧PM2に制御する。なお、このSB6がカフ圧制御手段70の脈波検出圧制御に相当する。
【0055】
そして、続くSB7では、カフ圧PCが脈波検出圧PM2に制御されている状態で、脈波弁別回路24から供給されるカフ脈波信号SM1すなわちカフ脈波CWを一拍分読み込むとともに、圧脈波センサ46から供給される圧脈波信号SM2すなわち圧脈波PWを一拍分読み込む。なお、図9乃至図11に示すフローチャートでは、SA11およびSB7がカフ脈波検出手段84に相当する。
【0056】
続くSB8乃至SB9は前記SB2乃至SB3と同様の処理であり、SB8では、上記SB7で読み込んだ圧脈波PWに基づいて、監視最低血圧値MBPDIAおよび監視最高血圧値MBPSYSを決定し、その決定した監視最低血圧値MBPDIAおよび監視最高血圧値MBPSYSを表示器34に表示し、SB9では、SB8で決定した監視最高血圧値MBPSYSが予め設定された最高血圧異常判定値THSYSを超えているか否か、またはSB8で決定した監視最低血圧値MBPDIAが予め設定された最低血圧異常判定値THDIA以下であるか否かを判断する。SB9の判断が肯定された場合には、前述の対応関係決定ルーチンを再度実行する。なお、図11では、SB2およびSB8が血圧値連続決定手段80に相当し、SB3およびSB9が血圧異常判定手段82に相当する。
【0057】
一方、SB9の判断が否定された場合には、比較脈波決定手段88に相当するSB10において、前記SB7で読み込んだカフ脈波CWをそのまま比較用カフ脈波CWcに決定するとともに、SB7で読み込んだ圧脈波PWをSA15で決定した補正係数を用いて補正して比較用圧脈波PWcを決定する。
【0058】
続いて血圧監視精度判定手段90に相当するSB11乃至SB12を実行する。まず、SB11では、SB10で決定した比較用カフ脈波CWcと比較用圧脈波PWcとを、それらの最小点を一致させ、その状態でピーク差すなわち強度差dを算出する。そして、続くSB12では、SB11で算出した強度差dが予め設定された装着異常判定値THを超えているか否かを判断する。この判断が否定された場合には、監視血圧値MBPの精度は維持されていると考えられるので、前記SB1以下を繰り返し実行することにより、監視血圧値MBPに基づく血圧監視を継続する。しかし、肯定された場合には、圧脈波センサ46の装着状態が不適切となっている可能性が高いので、圧脈波センサ46の装着状態を修正するために、前記対応関係決定ルーチンを再度実行する。
【0059】
上述の実施形態によれば、血圧監視精度判定手段90(SB11乃至SB12)により、圧脈波センサ46によって検出される圧脈波PWと、カフ圧PCが最低血圧値MBPDIAより低い圧力で検出されるカフ脈波CWとが比較されて、血圧値連続決定手段80(SB2、SB8)により連続的に決定される監視血圧値MBPの精度が判定されることから、監視血圧値MBPの精度を維持するために、カフ10を用いた血圧測定を短い周期で行って圧脈波血圧対応関係を頻繁に更新する必要がなくなるので、患者の負担が軽減する。
【0060】
次に、本発明の第2の実施形態を説明する。なお、以下の説明において、前述の実施形態と同一の構成を有する部分には同一の符号を付して説明を省略する。
【0061】
第2の実施形態が前述の第1の実施形態と異なる点は、血圧監視精度判定手段における監視血圧値MBPの精度の判定の仕方のみであり、第1実施形態では、比較用圧脈波PWcの特徴点と比較用カフ脈波CWcの特徴点の大きさを比較していたいが、第2実施形態の血圧監視精度判定手段(符号を92とする)では、比較用圧脈波PWcの形状と比較用カフ脈波CWcの形状とを比較することで、監視血圧値MBPの精度を判定する。以下、血圧監視精度判定手段92について詳しく説明する。
【0062】
血圧監視精度判定手段92は、補正係数決定手段86において補正係数の決定のために用いた基準圧脈波PWstと基準カフ脈波CWstとを、それらの最小点を一致させた状態で、図12に示すように時間軸に垂直に複数の脈波区分C(n)(n=1,2,…)に分割し(図12では10の区分)、それら複数の脈波区分C(n)毎に基準圧脈波PWstと基準カフ脈波CWstとの基準面積差ΔAst(n)(n=1,2,…)を算出する。そして、同様にして、監視精度判定周期Tw毎に比較脈波決定手段88により決定された比較用圧脈波PWcと比較用カフ脈波CWcについても、脈波区分C(n)毎に面積差ΔA(n)(n=1,2,…)を算出し、基準面積差ΔAst(n)に対する監視精度判定周期Tw毎に算出した面積差ΔA(n)の変化量(以下、面積差変化量Q(n)(n=1,2,…)という)を算出し、その面積差変化量Q(n)が予め実験に基づいて設定された基準値を超えている脈波区分C(n)の数を決定する。面積差変化量Q(n)が上記基準値を超えている脈波区分C(n)の数が多い場合には、カフ脈波CWの形状と圧脈波PWの形状との違いが血圧測定時よりも大きくなっていることを意味するので、圧脈波センサ46の装着状態が不適切になったことによって形状や大きさ(またはその両方)が不適切な圧脈波PWが検出されていると考えられる。従って、面積差変化量Q(n)が上記基準値を超えている脈波区分C(n)の数が予め設定された第1判定基準区分数Nc1を超えている場合には、血圧値連続決定手段80により決定されている監視血圧値MBPの精度が低下したと判定し、圧脈波センサ46の装着状態を修正するために最適押圧位置制御手段74を再度実行させる。
【0063】
また、血圧監視精度判定手段92は、面積差ΔA(n)の変化傾向に基づいても、監視血圧値MBPの精度を判定する。すなわち、監視精度判定周期Tw毎に算出した脈波区分C(n)毎の面積差ΔA(n)を、それぞれ基準面積差ΔAst(n)と比較して、面積差ΔA(n)の変化傾向が増加である脈波区分C(n)の数と、面積差ΔA(n)の変化傾向が減少である脈波区分C(n)の数とを決定し、面積差ΔA(n)の変化傾向が増加である脈波区分C(n)の数、または、面積差ΔA(n)の変化傾向が減少である脈波区分C(n)の数が、全脈波区分の大部分の割合(たとえば8割〜9割)に設定された第2判定基準区分数Nc2を超えているか否かを判断する。この判断は、脈波区分C(n)毎に算出した面積差ΔA(n)の変化傾向が略一致するかどうかを判断するものである。脈波区分C(n)毎の面積差ΔA(n)の変化傾向が略一致しない場合には、圧脈波センサ46の装着状態が不適切になったことによって圧脈波PWの形状に歪みが生じていることが考えられるので、上記判断が否定された場合にも、血圧値連続決定手段80により決定されている監視血圧値MBPの精度が低下したと判定し、圧脈波センサ46の装着状態を修正するために最適押圧位置制御手段74を再度実行させる。
【0064】
図13および図14は、第2の実施形態に係るCPU31の制御作動の要部を示すフローチャートであって、図13は対応関係決定ルーチンの一部を示し、図14は血圧監視ルーチンの一部を示す。
【0065】
まず、図13を説明する。第2の実施形態においても、対応関係決定ルーチンは、前述の図9乃至図10と同様に、SA1乃至SA15を実行する。さらに、第2実施形態では、SA15に続くSA16において、SA12で読み込んだ基準カフ脈波CWstと基準圧脈波PWstとを、互いの最小点を一致させた状態で、複数の脈波区分C(n)(たとえば図12に示すように10の区分)に分割し、その脈波区分C(n)毎に基準圧脈波PWstと基準カフ脈波CWstとの基準面積差ΔAst(n)を算出する。
【0066】
次に、図14を説明する。第2の実施形態においても、血圧監視ルーチンでは、前述の図11のSB1乃至SB10を実行する。そして、SB10に続くSC11では、SB10で決定した比較用カフ脈波CWcと比較用圧脈波PWcとを互いの最小点を一致させ、図13のSA16と同様にして脈波区分C(n)毎に面積差ΔA(n)を算出する。
【0067】
続くSC12では、脈波区分C(n)毎に、上記SC11で算出した面積差ΔA(n)から図13のSA16で算出した基準面積差ΔAst(n)を引くことにより、面積差変化量Q(n)を算出する。続くSC13では、SC12で算出した脈波区分C(n)毎に算出した面積差変化量Q(n)が予め設定された基準値を超えている脈波区分C(n)の数を決定する。
【0068】
そして、続くSC14では、上記SC13で決定した脈波区分C(n)の数が、予め設定された第1判定基準区分数Nc1を超えているか否かを判断する。この判断が肯定された場合には、圧脈波センサ46の装着状態が不適切となっている可能性が高いので、圧脈波46の装着状態を修正するために、対応関係決定ルーチンを実行する。
【0069】
SC14の判断が否定された場合には、続くSC15において、図13のSA16で決定した基準面積差ΔAst(n)に対する、SC11で決定した面積差ΔA(n)の変化傾向を脈波区分C(n)毎に決定する。
【0070】
そして、続くSC16では、SC15で決定した面積差ΔA(n)の変化傾向が、増加傾向である脈波区分C(n)の数および減少傾向である脈波区分C(n)の数を決定し、いずれか一方の数が予め設定された第2判定基準区分数Nc2を超えているか否かを判断することにより、脈波区分C(n)毎に決定した面積差ΔA(n)の変化傾向が略一致しているか否かを判断する。この判断が否定された場合にも、圧脈波センサ46の装着状態が不適切となっている可能性が高いので、圧脈波センサ46の装着状態を修正するために、対応関係決定ルーチンを実行する。一方、SC16の判断が肯定された場合には、監視血圧値MBPの精度は維持されていると考えられるので、SB1以下を繰り返し実行することにより、監視血圧値MBPに基づく血圧監視を継続する。なお、図13および図14に示したフローチャートでは、SA16およびSC11乃至SC16が血圧監視精度判定手段92に相当する。
【0071】
上述の第2の実施形態でも、血圧監視精度判定手段92(SA16、SC11乃至SC16)により、圧脈波センサ46によって検出される圧脈波PWと、カフ圧PCが最低血圧値MBPDIAより低い圧力で検出されるカフ脈波CWとが比較されて、血圧値連続決定手段80(SB2、SB8)により連続的に決定される監視血圧値MBPの精度が判定されることから、監視血圧値MBPの精度を維持するために、カフ10を用いた血圧測定を短い周期で行って圧脈波血圧対応関係を頻繁に更新する必要がなくなるので、患者の負担が軽減する。
【0072】
次に、本発明の第3の実施形態を説明する。第3の実施形態が第1の実施形態と異なるのは、CPU31の制御機能のみである。図15は、第3の実施形態に係るCPU31の制御機能の要部を示す機能ブロック図である。図15に示す機能ブロック図が、第1実施形態の機能ブロック図である図4と異なるのは、補正係数決定手段86、比較脈波決定手段88が設けられていないこと、および、血圧監視精度判定手段94における監視血圧値MBPの精度判定機能のみである。
【0073】
血圧監視精度判定手段94は、カフ脈波検出手段84により血圧測定時に検出された基準カフ脈波CWstの面積、すなわち基準カフ脈波面積C_area(st)、およびその基準カフ脈波CWstが検出された時と略同時期に圧脈波センサ46により検出された圧脈波PWである基準圧脈波PWstの面積、すなわち基準圧脈波面積T_area(st)とを算出し、その基準カフ脈波面積C_area(st)と基準圧脈波面積T_area(st)との面積比すなわち基準脈波面積比RA(st)を算出する。そして、同様にして、監視精度判定周期Tw毎に検出されるカフ脈波CWおよびそのカフ脈波CWに対応する圧脈波PWについても、カフ脈波面積C_areaおよび圧脈波面積T_areaを算出し、そのカフ脈波面積C_areaと圧脈波面積T_areaとの脈波面積比RAを算出する。さらに、基準脈波面積比RA(st)に対する脈波面積比RAの変化率(面積比変化率)δRAを算出する。なお、基準脈波面積比RA(st)および脈波面積比RAは、カフ脈波面積C_areaおよび圧脈波面積T_areaのいずれが分母であってもよいが、たとえば、カフ脈波面積C_areaを分母とすると、基準脈波面積比RA(st)は式1で表され、脈波面積比RAは式2で表され、面積比変化率δRAは式3で表される。
(式1) RA(st)=T_area(st)/C_area(st)
(式2) RA=T_area/C_area
(式3) δRA=(T_area/C_area)/(T_area(st)/C_area(st))
式3は、変形すると式4の形とすることもできる。
(式4) δRA=(T_area/T_area(st))/(C_area/C_area(st))
式4は、カフ脈波面積C_areaの変化率に対する圧脈波面積T_areaの変化率を表していることから、面積比変化率δRAが1から大きく外れる場合には、カフ脈波面積C_areaと圧脈波面積T_areaとの違いが血圧測定時とは大きく異なっていることを意味するので、圧脈波センサ46の装着状態が不適切になったことによって不適切な大きさの圧脈波PWが検出されていると考えられる。従って、面積比変化率δRAが1を含む範囲に予め設定された正常範囲内の値でない場合には、血圧値連続決定手段80により決定されている監視血圧値MBPの精度が低下したと判定し、圧脈波センサ46の装着状態を修正するために最適押圧位置制御手段74を再度実行する。
【0074】
また、血圧監視精度判定手段94は、カフ脈波面積C_areaおよび圧脈波面積T_areaの変化傾向に基づいても、監視血圧値MBPの精度を判定する。すなわち、監視精度判定周期Tw毎に算出したカフ脈波面積C_areaを前回の監視精度判定周期Tw経過時に算出したカフ脈波面積C_areaと比較してその変化傾向を決定するとともに、圧脈波面積T_areaについても前回の監視精度判定周期Tw時からの変化傾向を決定し、両者の変化傾向が一致するかどうかを判断する。圧脈波センサ46の装着状態が適切な状態に維持されていれば、両者の変化傾向が一致するはずであるので、両者の変化傾向が一致しない場合にも、血圧値連続決定手段80により決定されている監視血圧値MBPの精度が低下したと判定し、圧脈波センサ46の装着状態を修正するために最適押圧位置制御手段74を再度実行させる。
【0075】
図16および図17は、第3の実施形態に係るCPU31の制御作動の要部を示すフローチャートであって、図16は対応関係決定ルーチンの一部を示し、図17は血圧監視ルーチンの一部を示す。
【0076】
まず、図16を説明する。第3の実施形態においても、対応関係決定ルーチンでは、SA1乃至SA13を実行する。そして、SA13に続くSD14では、SA12で読み込んだ基準カフ脈波CWstから基準カフ脈波面積C_area(st)を算出し、SD15では、SA12で読み込んだ基準圧脈波PWstから基準圧脈波面積T_area(st)を算出する。そして、続くSD16では、SD15で算出した基準圧脈波面積T_area(st)をSD14で算出した基準カフ脈波面積C_area(st)で割ることにより、基準脈波面積比RA(st)を算出する。
【0077】
次に図17を説明する。第3の実施形態においても、血圧監視ルーチンでは、前述の図11のSB1乃至SB9を実行する。そして、SB9に続くSE10では、SB7で読み込んだカフ脈波CWの面積すなわちカフ脈波面積C_areaを算出し、続くSE11では、SB7で読み込んだ圧脈波PWの面積すなわち圧脈波面積T_areaを算出する。
【0078】
続くSE12では、SE11で算出した圧脈波面積T_areaをSE10で算出したカフ脈波面積C_areaで割ることにより、脈波面積比RAを算出する。続くSE13では、SE12で算出した面積比RAを、図16のSD16で算出した基準面積比RA(st)で割ることにより面積比変化率δRAを算出する。
【0079】
続くSE14では、SE13で算出した面積比変化率δRAが、1を含む範囲に予め設定された正常範囲内の値であるか否かを判断する。この判断が否定された場合には、圧脈波センサ46の装着状態が不適切となっている可能性が高いので、圧脈波センサ46の装着状態を修正するために、前述の対応関係決定ルーチンを再度実行する。
【0080】
一方、SE14の判断が肯定された場合には、SE15において、前記SE10で算出したカフ脈波面積C_areaの前回算出したカフ脈波面積C_areaに対する変化傾向と、前記SE11で算出した圧脈波面積T_areaの前回算出した圧脈波面積T_areaに対する変化傾向とを比較して、両者の変化傾向が異なるか否かを判断する。この判断が肯定された場合、すなわち、両者の変化傾向が異なっている場合にも、圧脈波センサ46の装着状態が不適切となっている可能性が高いので、前述の対応関係決定ルーチンを再度実行する。
【0081】
一方、SE15の判断が否定された場合には、監視血圧値MBPの精度は維持されていると考えられるので、SB1以下を繰り返し実行することにより、監視血圧値MBPに基づく血圧監視を継続する。なお、図16および図17に示したフローチャートでは、SD14乃至SD16およびSE10乃至SE15が血圧監視精度判定手段94に相当する。
【0082】
上述の第3の実施形態でも、血圧監視精度判定手段94(SD14乃至SD16、SE10乃至SE15)により、圧脈波センサ46によって検出される圧脈波PWと、カフ圧PCが最低血圧値MBPDIAより低い圧力で検出されるカフ脈波CWとが比較されて、血圧値連続決定手段80(SB2、SB8)により連続的に決定される監視血圧値MBPの精度が判定されることから、監視血圧値MBPの精度を維持するために、カフ10を用いた血圧測定を短い周期で行って圧脈波血圧対応関係を頻繁に更新する必要がなくなるので、患者の負担が軽減する。
【0083】
次に、本発明の第4の実施形態を説明する。第4の実施形態が前述の第3の実施形態と異なる点は、血圧監視精度判定手段における監視血圧値MBPの精度の判定の仕方のみであり、第3実施形態では、カフ脈波面積T_areaと圧脈波面積T_areaとの比較に基づいて監視血圧値MBPの精度を判定していたが、第4実施形態の血圧監視精度判定手段(符号を96とする)では、カフ脈波CWと圧脈波PWとにより描かれる波形相関図形に基づいて監視血圧値MBPの精度を判定する。以下、血圧監視精度判定手段96について詳しく説明する。
【0084】
血圧監視精度判定手段96は、まず、カフ脈波検出手段84により血圧測定時に検出された基準カフ脈波CWstの大きさと、その基準カフ脈波CWstが検出された時と略同時期に圧脈波センサ46により検出された圧脈波PWである基準圧脈波PWstの大きさとから、図18に例示するような基準波形相関図形を作成して、その基準波形相関図形の膨らみ長さ(以下、基準膨らみ長さという)Lstを決定する。そして、同様にして、監視精度判定周期Tw毎に検出されるカフ脈波CWおよびそのカフ脈波CWに対応する圧脈波PWについても、波形相関図形を作成して、その波形相関図形の膨らみ長さLを決定する。上記波形相関図形(または基準波形相関図形)は、以下のようにして作成される。すなわち、圧脈波PWおよびカフ脈波CWは、所定のサンプリング周期毎に採取される圧脈波信号SM2またはカフ脈波信号SM1の集合であることから、圧脈波PWとカフ脈波CWとを互いの最小点を一致させ、圧脈波PWの大きさを表す軸98とカフ脈波CWの大きさを表す軸100とからなる二次元グラフ102に、同じ時点における圧脈波信号SM2とカフ脈波信号SM1とにより定まる位置に点を順次プロットしていくことにより作成される。また、膨らみ長さLは、波形相関図形の最小点aと最大点bとを結ぶ直線S1に垂直で、且つ、その直線S1の中点を通る直線S2が、波形相関図形と交わる2点d,e間の長さである。
【0085】
さらに、血圧監視精度判定手段96は、監視精度判定周期Tw毎に決定する膨らみ長さLと基準膨らみ長さLstとの差dを算出する。圧脈波PWの形状とカフ脈波CWの形状とが似ているほど、波形相関図形の膨らみ長さLは小さくなり、圧脈波PWの形状とカフ脈波CWの形状とが完全に一致する場合には、波形相関図形は直線S1となって膨らみ長さLはゼロとなることから、膨らみ長さの差dが大きい場合には、圧脈波PWとカフ脈波CWとの形状の違いが血圧測定時とは大きく異なっていることを意味するので、圧脈波センサ46の装着状態が不適切になったことによって正確な形状の圧脈波PWが検出されなくなっていると考えられる。従って、血圧監視精度判定手段96は、膨らみ長さの差dが所定の判定基準値THdLを超えた場合に、血圧値連続決定手段80により決定されている監視血圧値MBPの精度が低下したと判定し、圧脈波センサ46の装着状態を修正するために最適押圧位置制御手段74を再度実行する。
【0086】
図19および図20は、第4の実施形態に係るCPU31の制御作動の要部を示すフローチャートであって、図19は対応関係決定ルーチンの一部を示し、図20は血圧監視ルーチンの一部を示す。
【0087】
まず、図19を説明する。第4の実施形態においても、対応関係決定ルーチンでは、SA1乃至SA13を実行する。そして、SA13に続くSF14では、SA12で読み込んだ基準カフ脈波CWstおよび基準圧脈波PWstに基づいて、基準波形相関図形を決定し、続くSF15では、SF14で決定した基準波形相関図形の膨らみ長さすなわち基準膨らみ長さLstを決定する。
【0088】
次に図20を説明する。第4の実施形態においても、血圧監視ルーチンでは、前述の図11のSB1乃至SB9を実行する。そして、SB9に続くSG10では、SB7で読み込んだカフ脈波CWおよび圧脈波PWに基づいて波形相関図形を決定し、続くSG11では、SG10で決定した波形相関図形の膨らみ長さLを決定する。
【0089】
続くSG12では、SG11で算出した膨らみ長さLから、図19のSF15で決定した基準膨らみ長さLstを引くことにより、膨らみ長さの差dを算出する。そして、SG13では、その膨らみ長さの差dが予め設定された判定基準値THdLを超えているか否かを判断する。この判断が肯定された場合には、圧脈波センサ46の装着状態が不適切となっている可能性が高いので、圧脈波センサ46の装着状態を修正するために、前述の対応関係決定ルーチンを再度実行する。
【0090】
一方、SG13の判断が否定された場合には、監視血圧値MBPの精度は維持されていると考えられるので、SB1以下を繰り返し実行することにより、監視血圧値MBPに基づく血圧監視を継続する。なお、図19および図20に示したフローチャートでは、SF14乃至SF15およびSG10乃至SG13が血圧監視精度判定手段96に相当する。
【0091】
上述の第4の実施形態でも、血圧監視精度判定手段96(SF14乃至SF15、SG10乃至SG13)により、圧脈波センサ46によって検出される圧脈波PWと、カフ圧PCが最低血圧値MBPDIAより低い圧力で検出されるカフ脈波CWとが比較されて、血圧値連続決定手段80(SB2、SB8)により連続的に決定される監視血圧値MBPの精度が判定されることから、監視血圧値MBPの精度を維持するために、カフ10を用いた血圧測定を短い周期で行って圧脈波血圧対応関係を頻繁に更新する必要がなくなるので、患者の負担が軽減する。
【0092】
以上、本発明の実施形態を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0093】
たとえば、前述の実施形態において、さらに、圧脈波センサ46により連続的に検出される圧脈波PWを表示器34に表示するようになっていてもよい。なお、圧脈波検出プローブ36がカフ10の下流部位に装着されている場合には、カフ10による血圧測定が実行されると圧脈波PWは一時的に検出できなくなるので、圧脈波PWの連続表示も一時的に途切れることになるが、前述の実施形態では、カフ10を用いた血圧測定がそれほど頻繁に行われないことから、圧脈波PWが連続的に表示される期間も長くなる。
【0094】
また、前述の第1、第2の実施形態では、補正係数は、基準カフ脈波CWstの大きさと基準圧脈波PWstの大きさとを同じにするためのものであったが、その補正係数に加えて、基準カフ脈波CWstの周期と基準圧脈波PWstの周期とを同じにするための補正係数が決定されてもよい。
【0095】
また、前述の第1の実施形態では、比較用カフ脈波の特徴点と比較用圧脈波の特徴点との位置の比較は、大きさ成分のみであったが、それに加えて、あるいは、それに代えて、周期成分(時間成分)を比較してもよい。
【0096】
また、前述の第2の実施形態では、面積差変化量Q(n)が基準値を超えている脈波区分C(n)の数に基づいて監視血圧値MBPの精度を判定するとともに、面積差ΔA(n)の変化傾向に基づいても監視血圧値MBPの精度を判定していたが、いずれか一方のみでもよい。
【0097】
また、前述の第3の実施形態では、カフ脈波面積C_areaと圧脈波面積T_areaとの面積比(脈波面積比)RAの変化率すなわち面積比変化率δRAに基づいて監視血圧値MBPの精度を判定するとともに、カフ脈波面積C_areaの変化傾向と圧脈波面積T_areaの変化傾向に基づいても監視血圧値MBPの精度を判定していたが、いずれか一方のみでもよい。
【0098】
また、前述の第2の実施形態では、カフ脈波CWおよび圧脈波PWを複数の脈波区分C(n)に分割して、その脈波区分C(n)毎に面積差ΔA(n)を算出することにより、カフ脈波CWの形状と圧脈波PWの形状とを比較していたが、カフ脈波CWと圧脈波PWの相互相関係数を算出することによって、カフ脈波CWの形状と圧脈波PWの形状とを比較してもよい。
【0099】
また、前述の第4の実施形態では、波形相関図形の膨らみ長さLに基づいて監視血圧値MBPの精度を判定していたが、波形相関図形の面積に基づいて監視血圧値MBPの精度を判定してもよい。
【0100】
また、第1実施形態および第2実施形態では、検出された圧脈波PWを補正して一組の比較用脈波を決定し、その一組の比較用脈波に基づいて監視血圧値MBPの精度を判定する一方で、第3実施形態および第4実施形態では、検出されたカフ脈波CWおよび圧脈波PWをともに補正しないでそのまま用いて監視血圧値MBPの精度を判定していたが、第1実施形態および第2実施形態において、検出されたカフ脈波CWおよび圧脈波PWをともに補正しないでそのまま用いてもよいし、第3実施形態および第4実施形態において一組の比較用脈波を決定して、その一組の比較用脈波に基づいて監視血圧値MBPの精度を判定してもよい。
【0101】
なお、本発明はその主旨を逸脱しない範囲においてその他種々の変更が加えられ得るものである。
【図面の簡単な説明】
【図1】本発明が適用された非観血連続血圧監視装置の構成を説明するブロック図である。
【図2】圧脈波検出プローブの構成を詳しく説明する図である。
【図3】図2の圧脈波検出プローブに備えられた圧脈波センサの押圧面を示す図である。
【図4】図1の非観血連続血圧監視装置におけるCPUの制御機能の要部を示す機能ブロック図である。
【図5】図4の押圧力制御手段において決定される最適押圧力HDPOを説明する図である。
【図6】図4の対応関係決定手段で決定される圧脈波血圧対応関係の一例を示す図である。
【図7】基準カフ脈波CWstと、補正係数により補正された基準圧脈波PWstとを、立ち上がり点(最小点)を一致させた状態で示す図である。
【図8】図4の比較脈波決定手段により決定した比較用圧脈波PWstおよび比較用カフ脈波CWstを最小点を一致させた状態で示す図である。
【図9】図4の機能ブロック図に示したCPUの制御作動の要部を示すフローチャートであって、対応関係決定ルーチンを示す図である。
【図10】図4の機能ブロック図に示したCPUの制御作動の要部を示すフローチャートであって、対応関係決定ルーチンを示す図である。
【図11】図4の機能ブロック図に示したCPUの制御作動の要部を示すフローチャートであって、血圧監視ルーチンを示す図である。
【図12】基準圧脈波PWstと基準カフ脈波CWstとを、それらの最小点を一致させた状態で、時間軸に垂直に複数の脈波区分C(n)に分割した状態を示す図である。
【図13】第2の実施形態に係るCPUの制御作動の要部を示すフローチャートであって、対応関係決定ルーチンの一部を示す図である。
【図14】第2の実施形態に係るCPUの制御作動の要部を示すフローチャートであって、血圧監視ルーチンの一部を示す図である。
【図15】第3の実施形態に係るCPUの制御機能の要部を示す機能ブロック図である。
【図16】第3の実施形態に係るCPUの制御作動の要部を示すフローチャートであって、対応関係決定ルーチンの一部を示す図である。
【図17】第3の実施形態に係るCPUの制御作動の要部を示すフローチャートであって、血圧監視ルーチンの一部を示す図である。
【図18】第4の実施形態において作成される基準波形相関図形の一例を示す図である。
【図19】第4の実施形態に係るCPUの制御作動の要部を示すフローチャートであって、対応関係決定ルーチンの一部を示す図である。
【図20】第4の実施形態に係るCPUの制御作動の要部を示すフローチャートであって、血圧監視ルーチンの一部を示す図である。
【符号の説明】
8:非観血連続血圧監視装置
10:カフ
70:カフ圧制御手段
72:血圧値決定手段
78:対応関係決定手段
80:血圧値連続決定手段
84:カフ脈波検出手段
86:補正係数決定手段
88:比較脈波決定手段
90:血圧監視精度判定手段
92:血圧監視精度判定手段
94:血圧監視精度判定手段
96:血圧監視精度判定手段
102:二次元グラフ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a blood pressure monitoring device that non-invasively and continuously monitors a blood pressure value, and more particularly to a technique for reducing the burden on a patient while maintaining blood pressure monitoring accuracy in a non-invasive continuous blood pressure monitoring device. .
[0002]
[Prior art]
As a non-invasive continuous blood pressure monitoring device, a device that detects a pressure pulse wave generated from a predetermined artery of a living body and continuously monitors a blood pressure value from the pressure pulse wave, that is, a blood pressure measurement by a so-called tonometry method is used. Known devices are known. The non-invasive continuous blood pressure monitoring device of this method attaches a cuff to a part of a living body such as an upper arm, determines a blood pressure value in a process of slowly changing the compression pressure of the cuff, and determines the blood pressure value and the living body's blood pressure. From a pressure pulse wave detected using a pressure pulse wave sensor pressed toward a predetermined artery, a pressure pulse wave blood pressure correspondence between the magnitude of the pressure pulse wave and the blood pressure value is determined, and the pressure pulse The blood pressure value is continuously determined from the sequentially detected pressure pulse waves using the wave blood pressure correspondence (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-237151 A
[0004]
[Problems to be solved by the invention]
In the non-invasive continuous blood pressure monitoring device, the actual pressure pulse wave blood pressure correspondence relationship deviates from the pressure pulse wave blood pressure correspondence relationship determined by measuring the blood pressure, for example, because the mounting state of the pressure pulse wave sensor is shifted. If so, the accuracy of the monitored blood pressure value decreases. Therefore, in order to prevent the accuracy of the monitored blood pressure value from deteriorating, the pressure pulse wave blood pressure correspondence may be updated in a relatively short cycle. By updating the pressure pulse wave blood pressure correspondence relationship in a short cycle, even if the actual pressure pulse wave blood pressure correspondence relationship gradually shifts, it is possible to reduce a decrease in accuracy of the monitored blood pressure value. However, when the pressure-pulse-blood-pressure correspondence relationship is updated in a short cycle, the pressure-pulse-wave pressure correspondence relationship is updated until the pressure-pulse-wave blood-pressure correspondence relationship has not changed so much and there is no need to update. In order to update the pressure pulse wave blood pressure correspondence, blood pressure measurement using a cuff must be performed each time, and blood pressure measurement using a cuff increases the compression pressure of the cuff to a pressure higher than the systolic blood pressure value. Since the pressure is increased, the burden is placed on the patient. Therefore, it is desired that the cycle of the blood pressure measurement using the cuff be set as long as possible.
[0005]
As described above, when the accuracy of the monitored blood pressure value cannot be determined, the pressure pulse wave blood pressure correspondence must be updated relatively frequently in order to prevent the accuracy of the monitored blood pressure value from decreasing. Therefore, in Patent Document 1, when the pressure pulse wave blood pressure correspondence relationship is maintained, a part of the blood vessel wall is made substantially flat by the pressure from the pressure pulse wave sensor, and the substantially flat blood vessel is formed. The accuracy of the monitored blood pressure value is sequentially determined by utilizing the fact that the pressure pulse waves detected by the plurality of pressure detection elements located above the wall have substantially the same shape. That is, in Patent Document 1, the maximum pressure detecting element that outputs the maximum pulse wave amplitude is determined from a number of pressure detecting elements arranged on the pressing surface of the pressure pulse wave sensor, and the pressure pulse wave is determined from the maximum pressure detecting element. And the pressure pulse wave is also detected from the first pressure detection element and the second pressure detection element whose distance from the maximum pressure detection element is the first distance and the second distance, respectively, and is detected by the maximum pressure detection element. The first correlation coefficient between the detected pressure pulse wave and the pressure pulse wave detected from the first pressure detection element, and the pressure pulse wave detected by the maximum pressure detection element and detected by the second pressure detection element A second correlation coefficient with the pressure pulse wave is sequentially calculated, and the accuracy of the monitored blood pressure value is sequentially determined based on the first correlation coefficient and the second correlation coefficient.
[0006]
As described above, the cycle of blood pressure measurement using the cuff is required to be set as long as possible, but is detected by a plurality of pressure detecting elements as in the blood pressure monitoring device of Patent Document 1 described above. The technique of sequentially determining the accuracy of the monitored blood pressure value using the correlation coefficient between the pressure pulse waves is not sufficiently accurate to meet the demand, and the blood pressure measurement cycle for updating the pressure pulse wave blood pressure correspondence relationship is not sufficient. Can only be extended to some extent. Therefore, it can be used in combination with the technique of determining the accuracy of the monitoring blood pressure value described in Patent Document 1, and can be used independently of the technique to determine the accuracy of the monitoring blood pressure value. Technology development was desired.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-invasive continuous blood pressure monitoring device capable of reducing a burden on a patient while maintaining high blood pressure monitoring accuracy. It is in.
[0008]
[Means for Solving the Problems]
The present inventors have conducted various studies in order to achieve the above object, and as a result, have found the following knowledge. That is, the shape of the cuff pulse wave, which is the pressure oscillation transmitted from the living body to the cuff with the compression pressure of the cuff being equal to or less than the average blood pressure value, is very similar to the shape of the pressure pulse wave detected by the tonometry method. I found something. Also, since the cuff is less likely to shift during mounting, by comparing the cuff pulse wave and the pressure pulse wave detected by the tonometry method, it is possible to determine whether the mounting state of the pressure pulse wave sensor has changed, It has been found that a decrease in the accuracy of the monitored blood pressure value can be determined. The present invention has been made based on such findings.
[0009]
That is, the present invention for achieving the above object includes (a) a cuff attached to a part of a living body, (b) a cuff pressure control means for controlling a compression pressure of the cuff, and (c) a cuff pressure. Blood pressure value determining means for determining a blood pressure value of the living body based on a signal obtained in a process in which the compression pressure of the cuff is slowly changed by the control means; and (d) pressing the blood pressure toward a predetermined artery of the living body. A pressure pulse wave detecting device for sequentially detecting a pressure pulse wave generated from the artery using a pressure pulse wave sensor to be operated; and (e) a blood pressure value determined by the blood pressure value determining means and the pressure pulse wave detecting device. (F) using the pressure pulse wave blood pressure correspondence relationship to determine the pressure pulse wave blood pressure correspondence relationship between the detected pressure pulse wave size and the pressure pulse wave blood pressure correspondence device; Monitoring blood pressure values based on the magnitude of the pressure pulse wave (G) a state in which the cuff pressure control unit sets the compression pressure of the cuff to be lower than an average blood pressure value. And (h) a cuff pulse wave detected by the cuff pulse wave detecting means and a cuff pulse wave detected by the cuff pulse wave detecting means, Blood pressure monitoring accuracy determining means for sequentially determining the accuracy of the monitored blood pressure value determined by the blood pressure value continuous determining means based on a comparison with the pressure pulse wave detected by the pressure pulse wave detecting device. It is characterized by.
[0010]
【The invention's effect】
According to this invention, the blood pressure monitoring accuracy determining means compares the pressure pulse wave detected by the pressure pulse wave detection device with the cuff pulse wave detected at a pressure at which the cuff pressure is lower than the average blood pressure value. Since the accuracy of the monitored blood pressure value continuously determined by the blood pressure value continuous determining means is determined, in order to maintain the accuracy of the monitored blood pressure value, the blood pressure measurement using the cuff is performed in a short cycle to measure the pressure pulse. Since it is not necessary to frequently update the wave blood pressure correspondence, the burden on the patient is reduced.
[0011]
Other aspects of the invention
There are various ways of comparing the pressure pulse wave and the cuff pulse wave in the blood pressure monitoring accuracy determination means. For example, it is possible to compare the positions of characteristic points of the pressure pulse wave and the cuff pulse wave. . The non-invasive continuous blood pressure monitoring device that determines the accuracy of the monitored blood pressure value in such a manner, when the blood pressure value is determined by the blood pressure value determining device, the cuff pulse wave detecting device and the pressure pulse wave detecting device respectively Correction coefficient determining means for determining a correction coefficient for correcting at least one of the cuff pulse wave and the pressure pulse wave in order to make the magnitudes of the detected cuff pulse wave and pressure pulse wave the same, and the correction coefficient determining means Using the correction coefficient determined by the above, sequentially correct at least one of the cuff pulse wave detected by the cuff pulse wave detecting means and the pressure pulse wave detected by the pressure pulse wave detection device, for comparison Comparison pulse wave determination means for determining a set of cuff pulse waves and pressure pulse waves, wherein the blood pressure monitoring accuracy determination means includes a cuff pulse wave and a pressure pulse wave determined by the comparison pulse wave determination means. One minimum point In this state, by comparing the positions of the predetermined characteristic points of the cuff pulse wave and the pressure pulse wave, the accuracy of the monitoring blood pressure value determined by the blood pressure value continuation determining means is sequentially determined. It is characterized by.
[0012]
The blood pressure monitoring accuracy determination means may compare the shape of the pressure pulse wave with the shape of the cuff pulse wave. The non-invasive continuous blood pressure monitoring device that determines the accuracy of the monitored blood pressure value in such a manner, when the blood pressure value is determined by the blood pressure value determining device, the cuff pulse wave detecting device and the pressure pulse wave detecting device respectively Correction coefficient determining means for determining a correction coefficient for correcting at least one of the cuff pulse wave and the pressure pulse wave in order to make the magnitudes of the detected cuff pulse wave and pressure pulse wave the same, and the correction coefficient determining means Using the correction coefficient determined by the above, sequentially correct at least one of the cuff pulse wave detected by the cuff pulse wave detecting means and the pressure pulse wave detected by the pressure pulse wave detection device, for comparison Comparison pulse wave determining means for determining a set of cuff pulse waves and pressure pulse waves, wherein the blood pressure monitoring accuracy determining means determines the shape of the cuff pulse waves and pressure pulse waves determined by the comparative pulse wave determining means. Based on comparison Te, sequentially, and characterized in that to determine the accuracy of monitoring the blood pressure value determined by the blood pressure values continuously determining means.
[0013]
Further, in the apparatus for comparing the shape of the pressure pulse wave and the shape of the cuff pulse wave to determine the accuracy of the monitored blood pressure value, the blood pressure monitoring accuracy determining means may include, for example, the blood pressure monitoring accuracy determining means The cuff pulse wave and the pressure pulse wave determined by the wave determining means are divided into a plurality of pulse wave segments perpendicular to the time axis in a state where the minimum points are coincident with each other, and an area is defined for each of the plurality of pulse wave segments. The difference is calculated, and based on the number of pulse wave segments in which the time change of each of the plurality of area differences exceeds a predetermined reference value, the accuracy of the monitored blood pressure value sequentially determined by the blood pressure value continuation determining means is determined. judge. Alternatively, the cuff pulse wave and the pressure pulse wave determined by the comparison pulse wave determination means are divided into a plurality of pulse wave segments perpendicular to the time axis in a state where the minimum points coincide with each other, and the plurality of pulse waves are divided. Calculating the area difference for each wave segment and sequentially determining the accuracy of the monitored blood pressure value determined by the blood pressure value continuation determining means based on whether or not the time change trends of the plurality of area differences coincide with each other. It may be.
[0014]
The blood pressure monitoring accuracy determining means may compare the area of the pressure pulse wave with the area of the cuff pulse wave. The non-invasive continuous blood pressure monitoring device that determines the accuracy of the monitored blood pressure value in such a manner is characterized in that the blood pressure monitoring accuracy determining means determines a time change of the area of the cuff pulse wave detected by the cuff pulse wave detecting means. Based on the comparison of the detection of the cuff pulse wave and the time change of the area of the pressure pulse wave detected by the pressure pulse wave detection device at the same time, the monitoring blood pressure value sequentially determined by the blood pressure value continuous determination means is sequentially determined. The accuracy is determined.
[0015]
Further, the accuracy of the monitored blood pressure value may be determined by comparing the cuff pulse wave and the pressure pulse wave as follows. That is, the blood pressure monitoring accuracy determination means converts the cuff pulse wave detected by the cuff pulse wave detection means into a two-dimensional graph including an axis representing the magnitude of the cuff pulse wave and an axis representing the magnitude of the pressure pulse wave. And the blood pressure value continuation determining unit sequentially determines the blood pressure value based on the waveform correlation graphic drawn by the pressure pulse wave corresponding to the cuff pulse wave among the pressure pulse waves detected by the pressure pulse wave detection device. The accuracy of the monitored blood pressure value may be determined.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a non-invasive continuous blood pressure monitoring device 8 to which the present invention is applied.
[0017]
In the figure, reference numeral 10 denotes a cuff having a rubber bag in a cloth band-shaped bag, which is wound around the upper arm 12 of the patient's right arm, for example. A pressure sensor 14 and an exhaust control valve 16 are connected to the cuff 10 via a pipe 18, and the exhaust control valve 16 is connected to an air pump 20 via a pipe 19. The exhaust control valve 16 is in a supply permitting state in which the high-pressure air generated in the air pump 20 is supplied into the cuff 10, a pressure maintaining state in which the pressure in the cuff 10 is maintained, and the inside of the cuff 10 is gradually increased. It is configured to be able to switch between four states: a slow exhaust state in which the pressure is exhausted, and a rapid exhaust state in which the cuff 10 is rapidly exhausted.
[0018]
The pressure sensor 14 detects the pressure P in the cuff 10. K And the pressure P K Is supplied to the static pressure discrimination circuit 22 and the pulse wave discrimination circuit 24, respectively. The static pressure discriminating circuit 22 includes a low-pass filter, and discriminates a cuff pressure signal SC representing a steady pressure included in the pressure signal SP, that is, a compression pressure of the cuff 10 (hereinafter, this pressure is referred to as a cuff pressure PC). The cuff pressure signal SC is supplied to the electronic control device 28 via the A / D converter 26. The pulse wave discrimination circuit 24 includes a band-pass filter, discriminates the cuff pulse wave signal SM1 which is a vibration component of the pressure signal SP, and converts the cuff pulse wave signal SM1 via the A / D converter 30 into the electronic control unit 28. Supply to This cuff pulse wave signal SM1 represents a cuff pulse wave CW because it is pressure vibration transmitted from the brachial artery (not shown) compressed by the cuff 10 to the cuff 10.
[0019]
The electronic control unit 28 includes a so-called microcomputer including a CPU 31, a ROM 32, a RAM 33, and an I / O port (not shown). The CPU 31 performs a storage function of the RAM 33 in accordance with a program stored in the ROM 32 in advance. By executing the signal processing while utilizing, the drive signal is output from the I / O port and the exhaust control valve 16 and the air pump 20 are controlled via a drive circuit (not shown) to control the pressure in the cuff 10. At the same time, based on the change in the cuff pulse wave CW represented by the cuff pulse signal SM1, the systolic blood pressure value BP is determined by the oscillometric method. SYS And diastolic blood pressure BP DIA Is determined, and the determined blood pressure value BP is displayed on the display 34.
[0020]
As shown in detail in FIG. 2, the pressure pulse wave detection probe 36 functioning as a pressure pulse wave detection device includes a container-shaped sensor housing 37, a case 38 accommodating the housing 37, and a sensor housing 37 connected to the radial artery 56. And a screw shaft 40 which is screwed to the sensor housing 37 and is rotationally driven by a motor (not shown) provided in a driving portion 39 of the case 38 to move the sensor shaft 37 in the width direction. A mounting band 41 is attached to the case 38.
[0021]
The pressure pulse wave detection probe 36 thus configured is detachably attached to the wrist 43 by the wearing band 41 with the open end of the sensor housing 37 facing the body surface 42. The wrist 43 to which the pressure pulse wave detection probe 36 is attached may be the wrist on which the cuff 10 is mounted or the wrist on the opposite side. In many cases, the cuff 10 and the pressure pulse wave detection probe 36 cannot be attached to the arm on which the infusion tube is inserted. The pressure pulse wave detection probe 36 is attached to the arm on the same side as the cuff 10.
[0022]
Inside the sensor housing 37, a pressure pulse wave sensor 46 is provided so as to be relatively movable with respect to the sensor housing 37 via the diaphragm 44 and to be able to protrude from the open end of the sensor housing 37. A pressure chamber 48 is formed by the diaphragm 44 and the like. As shown in FIG. 1, high pressure air is supplied from the air pump 50 through the pressure regulating valve 52 into the pressure chamber 48, whereby the pressure pulse wave sensor 46 is connected to the pressure chamber 48. The body surface 42 is pressed by a pressing force HDP (Hold Down Pressure) corresponding to the internal pressure.
[0023]
The sensor housing 37 and the diaphragm 44 constitute a pressing device 58 that presses the pressure pulse wave sensor 46 toward the radial artery 56. The screw shaft 40 and a motor (not shown) A width direction moving device 60 that moves a pressing position pressed toward the width direction of the radial artery 56 is configured.
[0024]
As shown in FIG. 3, a large number of semiconductor pressure-sensitive elements (hereinafter simply referred to as pressure-sensitive elements) E are arranged on the pressing surface 62 of the pressure pulse wave sensor 46 in the width direction of the radial artery 56, that is, in parallel with the screw axis 40. In the movement direction of the pressure pulse wave sensor 46, the pressure pulse wave sensors 46 are arranged so as to be longer than the diameter of the radial artery 56 and at regular intervals (for example, at intervals of 0.2 mm).
[0025]
When the thus configured pressure pulse wave detection probe 36 is pressed from above the body surface 42 of the wrist 43 toward the radial artery 56, the pressure pulse wave sensor 46 generates the pressure pulse wave from the radial artery 56 and generates the body surface 42. Is detected, and a pressure pulse wave signal SM2 representing the pressure pulse wave PW is transmitted to the electronic control unit 28 via the A / D converter 64 as shown in FIG. Supplied.
[0026]
The CPU 31 of the electronic control device 28 controls the pressure in the cuff 10 and determines the blood pressure value BP. In addition, the CPU 31 outputs a drive signal to the air pump 50 and the pressure regulating valve 52 via a drive circuit (not shown) to control the pressure. The pressure in the chamber 48 is also adjusted. Further, the electronic control device 28 is based on the pressure pulse wave PW sequentially obtained in the slow pressure change process in the pressure chamber 48, and based on the pressure pulse wave PW, a pressure pulse wave sensor for making a part of the blood vessel wall of the radial artery 56 substantially flat. The optimum pressing force HDPO of 46 is determined, and the pressure regulating valve 52 is controlled so as to maintain the optimum pressing force HDPO.
[0027]
FIG. 4 is a functional block diagram showing a main part of the control function of the CPU 31. The cuff pressure control means 70 executes the following blood pressure measurement control and pulse wave detection pressure control by controlling the exhaust control valve 16 and the air pump 20. In the blood pressure measurement control, the cuff pressure PC is changed to the systolic blood pressure value BP in the upper arm 12. SYS The pressure is rapidly increased to a preset target pressure value PM1 (for example, 180 mmHg) higher than the predetermined value, and the cuff pressure PC is maintained at 2 until the determination of the blood pressure value BP by the blood pressure value determining means 72 described later is completed. The pressure is reduced slowly at a slow pressure reduction speed set to 33 mmHg / sec. After the determination of the blood pressure value BP is completed, the cuff pressure PC is exhausted to the atmospheric pressure.
[0028]
In the pulse wave detection pressure control, the cuff pressure PC is controlled to the pulse wave detection pressure PM2 for at least one beat or more. The pulse wave detection pressure PM2 is equal to the average blood pressure value BP Mean Lower than, preferably diastolic blood pressure BP DIA The pressure is set to be lower than the pressure and high enough to make the magnitude of the cuff pulse wave signal SM1 sufficiently large, for example, 50 mmHg to 60 mmHg. The pulse wave detection pressure PM2 may be set in advance, or may be determined based on the blood pressure value BP determined by the blood pressure value determining means 72 described later. The reason why the pulse wave detection pressure PM2 is set to such a pressure is that the cuff pressure PC is equal to the diastolic blood pressure value BP. DIA If the pressure is higher than the above, the cuff pulse wave CW discriminated by the pulse wave discrimination circuit 24 due to the compression of the blood vessel is distorted, and particularly, the average blood pressure value BP Mean If the cuff pressure PC is too low, a sufficiently large signal cannot be obtained while the distortion of the cuff pulse wave CW increases due to an increase in the degree to which the blood vessels are compressed. .
[0029]
The blood pressure value determining means 72 determines whether the monitoring blood pressure value MBP is abnormal when the preset calibration cycle Tc of about 10 to 30 minutes has elapsed, or when the blood pressure abnormality determining means 82 described later determines that the monitoring blood pressure value MBP is abnormal. This is executed when the pressing force HDP of the pressure pulse wave sensor 46 is changed by the pressing force control means 76, which will be described later, and outputs a command signal to the cuff pressure control means 70 to output the cuff pressure control means. In the process of causing the cuff pressure control means 70 to execute the blood pressure measurement control and gradually reduce the cuff pressure PC by the cuff pressure control means 70, the amplitude of the brachial pulse wave represented by the cuff pulse wave signal SM1 sequentially sampled and the sequentially collected cuff pulse wave are sequentially sampled. Systolic blood pressure value BP based on the cuff pressure signal SC using a well-known oscillometric method. SYS , Diastolic blood pressure BP DIA , And mean blood pressure BP Mean Is determined, and the determined systolic blood pressure value BP is determined. SYS Are displayed on the display 34.
[0030]
The optimal pressing position control means 74 determines that the arrangement position of the element for detecting the maximum pressure among the plurality of pressure-sensitive elements E provided in the pressure pulse wave sensor 46 (hereinafter, this element is referred to as the maximum pressure detection element EM) is arranged. It is determined whether or not a pressing position update condition that satisfies the condition that the pressing position is located within a predetermined number or a predetermined distance from the end of the reference position is satisfied. Then, when the pressing position update condition is satisfied, the following pressing position update operation is executed. That is, the pressing position updating operation is performed by temporarily separating the pressure pulse wave sensor 46 from the body surface 42, moving the pressing device 58 and the pressure pulse wave sensor 46 by the width direction moving device 60 by a predetermined distance, and then pressing the pressing device 58. The pressure pulse wave sensor 46 is pressed with a relatively small first pressing force HDP1, and it is determined whether or not the pressing position update condition is satisfied again in that state, and until the pressing position update condition is no longer satisfied. More preferably, the above operation and determination are performed until the maximum pressure detecting element EM is located substantially at the center of the arrangement position. The predetermined number or the predetermined distance from the end of the array in the pressed position update condition is determined based on the diameter of the artery (the radial artery 56 in the present embodiment) pressed by the pressure pulse wave sensor 46. It is set to 1/4 of the diameter.
[0031]
After the pressure pulse wave sensor 46 is positioned at the optimum pressing position by the optimum pressing position control means 74, the pressing force control means 76 sets the pressing force HDP of the pressure pulse wave sensor 46 by the pressing device 58 to a predetermined pressing force range. Within a predetermined range of pressing force, or continuously at a relatively slow constant speed. Then, the optimum pressing force HDPO is determined based on the pressure pulse wave PW obtained in the process of changing the pressing force HDP, and the pressing force HDP of the pressure pulse wave sensor 46 by the pressing device 58 is maintained at the optimum pressing force HDPO. Here, the optimal pressing force HDPO is a pressing force of the pressure pulse wave sensor 46 that makes the side of the blood vessel wall of the radial artery 56 pressed by the pressure pulse wave sensor 46 substantially flat by the pressing force HDP of the pressure pulse wave sensor 46. As shown in FIG. 5, in the process of continuously increasing the pressing force HDP in a range that sufficiently includes the optimum pressing force HDPO, the pressure pulse wave PW obtained from the maximum pressure detecting element EM of the pressure pulse wave sensor 46 is changed. In the two-dimensional graph showing the magnitude and the pressing force HDP of the pressure pulse wave sensor 46, the center of the flat portion formed by the curve (broken line in FIG. 5) connecting the lower peak value (rising point) PWmin of the pressure pulse wave PW is shown. This is a pressing value within a predetermined range with the center as the center.
[0032]
Correspondence determining means 78 determines the blood pressure value BP measured by blood pressure value determining means 72 and the pressure pulse wave PW detected by maximum pressure detecting element EM of pressure pulse wave sensor 46 when measuring the blood pressure by blood pressure value determining means 72. Is determined as shown in FIG. 6, for example. In FIG. 6, PW min Is the minimum value of the pressure pulse wave PW (that is, the magnitude of the pressure pulse wave PW at the rising point), PW max Is the maximum value of the pressure pulse wave PW (that is, the magnitude of the pressure pulse wave PW at the peak). The time of blood pressure measurement by the blood pressure value determining means 72 means not only the time when the blood pressure measurement control is executed by the cuff pressure control means 70 for measuring the blood pressure value BP, but also the blood pressure value before and after the blood pressure measurement control. It also includes a period during which the BP can be considered as not changing much.
[0033]
The blood pressure value continuation determining means 80 uses the pressure pulse wave blood pressure correspondence determined by the correspondence determination means 78 to determine the magnitude of the pressure pulse wave PW sequentially detected by the maximum pressure detecting element EM of the pressure pulse wave sensor 46. Thus, the monitoring blood pressure value MBP is continuously determined. That is, the minimum value PW of the pressure pulse wave PW is calculated using the pressure pulse wave blood pressure correspondence. min To monitor diastolic blood pressure MBP DIA Is continuously determined, and the maximum value PW of the pressure pulse wave PW is determined using the pressure pulse wave blood pressure correspondence relationship. max To monitor systolic blood pressure MBP SYS Is determined continuously. Then, the determined monitored diastolic blood pressure value MBP DIA And monitored systolic blood pressure MBP SYS Is displayed on the display 34.
[0034]
The blood pressure abnormality judging means 82 determines the monitored systolic blood pressure value MBP continuously determined by the blood pressure value continuous determining means 80. SYS Is a preset systolic blood pressure abnormality determination value TH SYS Is exceeded or the monitored diastolic blood pressure value MBP DIA Is a preset diastolic blood pressure abnormality determination value TH DIA Is determined to be abnormal in the following cases, a character or symbol indicating that the blood pressure is abnormal is displayed on the display 34, and the blood pressure value is determined in order to quickly obtain a reliable blood pressure value BP by the cuff 12. The blood pressure measurement by the determining means 72 is executed.
[0035]
The cuff pulse wave detecting means 84 determines that the cuff pressure PC is equal to the average blood pressure value BP when the blood pressure value determining means 72 measures the blood pressure. Mean Under the following conditions, the cuff pulse wave CW supplied from the pulse wave discrimination circuit 24 (hereinafter, this cuff pulse wave CW is referred to as a reference cuff pulse wave CWst) is read, and the time measured from the blood pressure measurement is measured. Each time the time passes a monitoring accuracy determination period Tw that is set to be sufficiently shorter than the calibration period Tc (for example, about 1 minute to 3 minutes), the cuff pressure control means 70 applies the cuff pressure PC to the pulse. A cuff pulse detected by the pulse wave discrimination circuit 24 in a state where the cuff pressure PC is controlled to the pulse wave detection pressure PM2 by outputting a command signal for controlling the pulse wave detection pressure PM2. Read the wave CW. As described above, at the time of blood pressure measurement, not only when the blood pressure measurement control is being performed by the cuff pressure control means 70, but also during the time when the blood pressure value BP before and after the blood pressure measurement control can be regarded as not changing so much Therefore, the reference cuff pulse wave CWst may be not only the blood pressure measurement control process by the cuff pressure control means 70 but also the cuff pulse wave CW read during a predetermined period before and after the blood pressure measurement control. When reading the reference cuff pulse wave CWst before and after the blood pressure measurement control, similarly to reading the cuff pulse wave CW at each monitoring accuracy determination cycle Tw, the cuff pressure control means 70 transmits the cuff pressure PC to the pulse wave detection pressure. A command signal for controlling the PM2 is output, and the cuff pulse wave CW is read with the cuff pressure PC set to the pulse wave detection pressure PM2. In the present embodiment, it is assumed that the reference cuff pulse wave CWst is read immediately after the blood pressure measurement control.
[0036]
The correction coefficient determining means 86 applies the pressure pulse wave PW detected by the pressure pulse wave sensor 46 substantially simultaneously with the reading of the reference cuff pulse wave CWst (hereinafter referred to as the reference pressure pulse wave PWst). And a correction coefficient for correcting the reference cuff pulse wave CWst to have the same magnitude. The correction coefficient may be determined only for correcting the cuff pulse wave CW, may be determined only for correcting the pressure pulse wave PW, or may be determined for the cuff pulse wave CW and the pressure. A correction coefficient may be determined for correcting both of the pulse waves PW, but in the present embodiment, only a correction coefficient for correcting the pressure pulse wave PW is determined. FIG. 7 is a diagram illustrating the reference cuff pulse wave CWst and the reference pressure pulse wave PWst corrected by the correction coefficient determined by the correction coefficient determination unit 86 in a state where the rising points (minimum points) are matched. .
[0037]
The comparison pulse wave determination means 88 determines the pressure pulse wave PW detected by the pressure pulse wave sensor 46 at substantially the same time as the cuff pulse wave CW read at each of the monitoring accuracy determination periods Tw by the correction coefficient determination means 86. The cuff pulse wave CW read at each monitoring accuracy determination period Tw is determined as the cuff pulse wave CWc for comparison, while being corrected by the correction coefficient thus determined to determine the pressure pulse wave for comparison PWc. Here, the pressure pulse wave PW detected at substantially the same time as the cuff pulse wave CW includes not only the pressure pulse wave PW corresponding to the cuff pulse wave CW (that is, a pulse wave based on the same pulsation), but also the cuff pulse wave. This includes the pressure pulse wave PW detected immediately before or immediately after the period in which the cuff pressure PC is controlled to the pulse wave detection pressure PM2 for detecting the CW.
[0038]
The blood pressure monitoring accuracy determination means 90 compares the comparison pressure pulse wave PWc and the comparison cuff pulse wave CWc determined by the comparison pulse wave determination means 88 with their minimum points and compares them with the comparison pressure pulse wave PWc. A difference between the magnitudes of the characteristic points of the cuff pulse wave CWc for use, that is, an intensity difference d is calculated, and the intensity difference d is set to a preset wearing abnormality determination value TH. d Is exceeded, it is determined that the accuracy of the monitored blood pressure value MBP determined by the blood pressure value continuous determination means 80 has decreased due to the improper mounting state of the pressure pulse wave sensor 46, and the pressure pulse wave sensor The optimal pressing position control means 74 is executed again in order to correct the mounting state of 46. Here, the characteristic points include, for example, peaks and notches.
[0039]
FIG. 8 is an example of a diagram showing the comparison pressure pulse wave PWst and the comparison cuff pulse wave CWst determined by the comparison pulse wave determination means 88 in a state where the minimum points are matched, and in the case where a peak is selected as a feature point. Is illustrated as an example. When the blood pressure value BP changes, the comparison pressure pulse wave PWc and the comparison cuff pulse wave CWc have the same tendency of change in the magnitude of each characteristic point, and the comparison pressure pulse wave PWc and the comparison cuff pulse wave CWc. In both cases, the peak increases when the blood pressure value BP increases, and conversely, the peak decreases when the blood pressure value BP decreases. Further, the comparison pressure pulse wave PWc is determined so that the detected pressure pulse wave PW has the same size as the reference cuff pulse wave CWst when the blood pressure value determination means 72 measures the blood pressure. Is corrected based on the correction coefficient. Therefore, even if the blood pressure value BP fluctuates from the time of blood pressure measurement by the blood pressure value determining means 72, if the mounting state of the pressure pulse wave sensor 46 is appropriately maintained and an appropriate pressure pulse wave PW is detected, Since the intensity difference d is not so large, when the intensity difference d is large, it can be determined that the mounting state of the pressure pulse wave sensor 46 has become inappropriate. Although the change tendency of the feature point of the comparison pressure pulse wave PWc and the change tendency of the feature point of the comparison cuff pulse wave CWc with respect to the change of the blood pressure value BP coincide, the change amount is not completely obtained. Since they do not match, the intensity difference d does not become zero even if the mounted state of the pressure pulse wave sensor 46 is properly maintained. Therefore, the above-described mounting abnormality determination value TH d Is set to a relatively large value in consideration of the difference between the two.
[0040]
FIGS. 9 to 11 are flowcharts showing the main part of the control operation of the CPU 31 shown in the functional block diagram of FIG. 4. FIGS. 9 and 10 show a correspondence determination routine for determining a pressure pulse wave blood pressure correspondence. FIG. 11 shows a blood pressure monitoring routine.
[0041]
First, the correspondence determination routine shown in FIGS. 9 and 10 will be described. In FIG. 9, in step SA1 (hereinafter, steps are omitted), the arrangement position of the maximum pressure detection element EM among the pressure-sensitive elements E arranged on the pressing surface 62 of the pressure pulse wave sensor 46 is from the end of the arrangement. It is determined whether or not a pressing position update condition (APS activation condition) that satisfies the condition of being located within a predetermined number or a predetermined distance inward is satisfied. If this determination is denied, SA3 and later described later are executed.
[0042]
On the other hand, if the determination of SA1 is affirmative, that is, if the mounting position of the pressure pulse wave sensor 46 with respect to the radial artery 56 is inappropriate, the SA2 APS control routine corresponding to the optimal pressing position control means 74 is executed. I do. In the APS control routine, by controlling the width direction moving device 60, the pressure detecting element E for detecting the maximum amplitude among the pressure detecting elements E of the pressure pulse wave sensor 46 is arranged in the array of the pressure detecting elements E. The optimum pressing position is determined so as to be substantially at the center position, and the pressure detecting element E is set as the maximum pressure detecting element EM. Pressure pulse wave signal SM in the following description 2 Is a pressure pulse wave signal SM detected by the maximum pressure detecting element EM determined in SA2. 2 Means
[0043]
When the determination of SA1 is denied or when the above SA2 is executed, subsequently, the HDP control routine of SA3 corresponding to the pressing force control means 76 is executed. That is, by controlling the pressure regulating valve 52, the pressing force HDP of the pressure pulse wave sensor 46 is continuously increased, and in the process, the pressing force at which the amplitude of the pressure pulse wave PW detected by the maximum pressure detecting element EM becomes maximum. Is determined as the optimum pressing force HDPO, and the pressing force HDP of the pressure pulse wave sensor 46 is held at the optimum pressing force HDPO.
[0044]
In subsequent SA4, the air pump 20 is started and the exhaust control valve 16 is controlled to a pressure supply state, thereby starting a rapid increase in the cuff pressure PC. In the subsequent SA5, it is determined whether or not the cuff pressure PC has exceeded the target boost pressure value PM1 set to 180 mmHg. While this determination is denied, the determination of SA5 is repeatedly performed, and the rapid increase of the cuff pressure PC is continued. On the other hand, if the determination in SA5 is affirmative, in SA6, the air pump 20 is stopped and the exhaust control valve 16 is switched to the slow exhaust pressure state, so that the cuff pressure PC at about 3 mmHg / sec. Start slow pressure reduction.
[0045]
Subsequently, SA7 to SA9 corresponding to the blood pressure value determining means 72 are executed. In SA7, a well-known oscillometric method is used on the basis of the change in the amplitude of the cuff pulse wave CW represented by the cuff pulse wave signal SM1 sequentially obtained in the step-down process of the cuff pressure PC and the cuff pressure PC when the amplitude is generated. Blood pressure value BP according to the blood pressure measurement algorithm of SYS , Mean blood pressure BP Mean , And diastolic blood pressure BP DIA To determine. In subsequent SA8, it is determined whether the determination of the blood pressure value BP in SA7 is completed. While the determination in SA8 is denied, SA7 and subsequent steps are repeatedly executed to continue the blood pressure measurement algorithm.
[0046]
When the determination of the blood pressure value BP is completed and the determination of SA8 is affirmed, in the subsequent SA9, the systolic blood pressure value BP determined by repeating SA7 to SA8. SYS Are displayed on the display 34. Subsequently, SA10 and subsequent steps shown in FIG. 10 are executed.
[0047]
In SA10, the diastolic blood pressure value BP determined in SA7 DIA Then, the pulse wave detection pressure PM2 is determined by subtracting a predetermined value α set to about 10 mmHg. Then, in SA11, the cuff pressure PC is controlled to the pulse wave detection pressure PM2 determined in SA10. In the subsequent SA12, in this state, the cuff pulse wave signal SM1 (ie, the cuff pulse wave CW) supplied from the pulse wave discrimination circuit 24 and the pressure pulse wave signal SM2 (ie, the pressure pulse wave PW) supplied from the pressure pulse wave sensor 46 in this state. ) For each beat. The cuff pulse wave CW and the pressure pulse wave PW read in SA12 correspond to the reference cuff pulse wave CWst and the reference pressure pulse wave PWst. Then, in SA13, the cuff pressure PC is rapidly exhausted to the atmospheric pressure by switching the exhaust control valve 16 to the rapid exhaust pressure state. In the flowcharts of FIGS. 9 and 10, SA4 to SA6 and SA13 correspond to the blood pressure measurement control of the cuff pressure control means 70.
[0048]
The subsequent SA14 corresponds to the correspondence determining means 78, and the systolic blood pressure value BP determined at SA7. SYS And diastolic blood pressure BP DIA , And the maximum value PW of the pressure pulse wave PW read in SA12 max And minimum value PW min Then, the pressure pulse wave blood pressure correspondence shown in FIG. 6 is determined.
[0049]
In SA15 corresponding to the correction coefficient determining means 86, a correction coefficient for determining the magnitude of the reference pressure pulse wave PWst read in SA12 to be equal to the magnitude of the reference cuff pulse wave CWst also read in SA12 is determined.
[0050]
Subsequently, the blood pressure monitoring routine shown in FIG. 11 will be described. First, at SB1, the pressure pulse wave PW supplied from the pressure pulse wave sensor 46 is read for one beat. Then, at SB2, the minimum value PW of the pressure pulse wave PW read at SB1 is set. min And maximum value PW max From the monitored diastolic blood pressure value MBP based on the pressure pulse wave blood pressure correspondence relationship determined in SA14 of FIG. DIA And monitored systolic blood pressure MBP SYS Is determined, and the determined monitored diastolic blood pressure value MBP is determined. DIA And monitored systolic blood pressure MBP SYS Is displayed on the display 34.
[0051]
In the following SB3, the monitored systolic blood pressure value MBP determined in SB2 is set. SYS Is a preset systolic blood pressure abnormality determination value TH SYS Or not, or the monitored diastolic blood pressure value MBP determined in the above SB2 DIA Is a preset diastolic blood pressure abnormality determination value TH DIA It is determined whether or not: If this determination is affirmed, there is a high possibility that the blood pressure is abnormal, so the above-described correspondence determination routine is executed again in order to quickly obtain a highly reliable blood pressure value BP by the cuff 10.
[0052]
On the other hand, if the determination in SB3 is negative, in SB4, the elapsed time from the execution of the correspondence determination routine to determine the pressure pulse wave blood pressure correspondence is set to about 10 minutes to 30 minutes. It is further determined whether the calibration period Tc has elapsed. Even when this determination is affirmed, the above-described correspondence determination routine is executed again.
[0053]
On the other hand, if the determination at SB4 is negative, then at SB5, whether the elapsed time since execution of SB6 and below, which will be described later, has passed the monitoring accuracy determination cycle Tw set to about 1 to 3 minutes. Determine whether or not. If this determination is denied, the above SB1 and subsequent steps are repeatedly executed to determine the monitor blood pressure value MBP for each beat.
[0054]
If the determination in SB5 is affirmative, SB6 and subsequent steps are executed to determine the accuracy of the monitored blood pressure value MBP. First, at SB6, the cuff pressure PC is controlled to the pulse wave detection pressure PM2 determined at SA10. This SB6 corresponds to the pulse wave detection pressure control of the cuff pressure control means 70.
[0055]
Then, in SB7, while the cuff pressure PC is controlled to the pulse wave detection pressure PM2, the cuff pulse signal SM1 supplied from the pulse wave discrimination circuit 24, that is, the cuff pulse wave CW is read for one beat, and the pressure is read. The pressure pulse wave signal SM2 supplied from the pulse wave sensor 46, that is, the pressure pulse wave PW is read for one beat. In the flowcharts shown in FIGS. 9 to 11, SA11 and SB7 correspond to the cuff pulse wave detecting means 84.
[0056]
Subsequent SB8 to SB9 are the same processing as the above SB2 to SB3. In SB8, based on the pressure pulse wave PW read in SB7, the monitored diastolic blood pressure value MBP DIA And monitored systolic blood pressure MBP SYS Is determined, and the determined monitored diastolic blood pressure value MBP is determined. DIA And monitored systolic blood pressure MBP SYS Is displayed on the display 34, and in SB9, the monitored systolic blood pressure value MBP determined in SB8 is displayed. SYS Is a preset systolic blood pressure abnormality determination value TH SYS Or not, or the monitored diastolic blood pressure value MBP determined in SB8 DIA Is a preset diastolic blood pressure abnormality determination value TH DIA It is determined whether or not: When the determination in SB9 is affirmative, the above-described correspondence determination routine is executed again. In FIG. 11, SB2 and SB8 correspond to the continuous blood pressure value determining means 80, and SB3 and SB9 correspond to the blood pressure abnormality determining means 82.
[0057]
On the other hand, if the determination in SB9 is negative, in SB10 corresponding to the comparison pulse wave determination means 88, the cuff pulse wave CW read in SB7 is determined as it is as the comparison cuff pulse wave CWc, and read in SB7. The pressure pulse wave PWc is corrected by using the correction coefficient determined in SA15 to correct the pressure pulse wave PWc.
[0058]
Subsequently, SB11 to SB12 corresponding to the blood pressure monitoring accuracy determination means 90 are executed. First, at SB11, the minimum point of the comparison cuff pulse wave CWc and the comparison pressure pulse wave PWc determined at SB10 are matched, and a peak difference, that is, an intensity difference d is calculated in that state. Then, in subsequent SB12, the intensity difference d calculated in SB11 is set to a preset mounting abnormality determination value TH. d It is determined whether or not exceeds. If this determination is denied, it is considered that the accuracy of the monitored blood pressure value MBP is maintained, and the blood pressure monitoring based on the monitored blood pressure value MBP is continued by repeatedly executing the above SB1 and below. However, if affirmed, it is highly likely that the mounting state of the pressure pulse wave sensor 46 is inappropriate. Try again.
[0059]
According to the above-described embodiment, the pressure pulse wave PW detected by the pressure pulse wave sensor 46 and the cuff pressure PC are converted to the minimum blood pressure value MBP by the blood pressure monitoring accuracy determination means 90 (SB11 to SB12). DIA The cuff pulse wave CW detected at a lower pressure is compared with the cuff pulse wave CW to determine the accuracy of the monitor blood pressure value MBP continuously determined by the blood pressure value continuous determination means 80 (SB2, SB8). In order to maintain the accuracy of the value MBP, it is not necessary to perform the blood pressure measurement using the cuff 10 in a short cycle and frequently update the pressure pulse wave blood pressure correspondence, so that the burden on the patient is reduced.
[0060]
Next, a second embodiment of the present invention will be described. In the following description, portions having the same configuration as the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0061]
The only difference between the second embodiment and the first embodiment is the method of determining the accuracy of the monitored blood pressure value MBP by the blood pressure monitoring accuracy determining means. In the first embodiment, the comparison pressure pulse wave PWc is used. It is desired to compare the size of the feature point of the comparison cuff pulse wave CWc with the size of the feature point of the comparison cuff pulse wave CWc. By comparing the shape of the comparison cuff pulse wave CWc with the shape, the accuracy of the monitored blood pressure value MBP is determined. Hereinafter, the blood pressure monitoring accuracy determination means 92 will be described in detail.
[0062]
The blood pressure monitoring accuracy determination means 92 compares the reference pressure pulse wave PWst and the reference cuff pulse wave CWst used for the determination of the correction coefficient by the correction coefficient determination means 86 with their minimum points coincident with each other. As shown in FIG. 12, the pulse wave segments are divided into a plurality of pulse wave segments C (n) (n = 1, 2,...) Perpendicularly to the time axis (ten segments in FIG. 12), and for each of the plurality of pulse wave segments C (n). Then, a reference area difference ΔAst (n) (n = 1, 2,...) Between the reference pressure pulse wave PWst and the reference cuff pulse wave CWst is calculated. Similarly, the comparison pressure pulse wave PWc and the comparison cuff pulse wave CWc determined by the comparison pulse wave determination means 88 for each monitoring accuracy determination cycle Tw also have an area difference for each pulse wave segment C (n). .., And the amount of change in the area difference ΔA (n) calculated for each monitoring accuracy determination cycle Tw with respect to the reference area difference ΔAst (n) (hereinafter, the area difference change amount) Q (n) (n = 1, 2,...)), And the pulse wave segment C (n) whose area difference change amount Q (n) exceeds a reference value set based on an experiment in advance. Determine the number of When the number of pulse wave segments C (n) in which the area difference change amount Q (n) exceeds the reference value is large, the difference between the shape of the cuff pulse wave CW and the shape of the pressure pulse wave PW is the blood pressure measurement. This means that the pressure pulse wave PW whose shape and / or size (or both) are inappropriate due to improper mounting of the pressure pulse wave sensor 46 is detected. It is thought that there is. Therefore, when the number of pulse wave segments C (n) in which the area difference change amount Q (n) exceeds the reference value exceeds the preset first determination reference segment number Nc1, the blood pressure value continuation is continued. It is determined that the accuracy of the monitoring blood pressure value MBP determined by the determining means 80 has decreased, and the optimal pressing position control means 74 is executed again to correct the mounting state of the pressure pulse wave sensor 46.
[0063]
Further, the blood pressure monitoring accuracy determination means 92 determines the accuracy of the monitored blood pressure value MBP based on the change tendency of the area difference ΔA (n). That is, the area difference ΔA (n) for each pulse wave segment C (n) calculated for each monitoring accuracy determination cycle Tw is compared with the reference area difference ΔAst (n), and the change tendency of the area difference ΔA (n) is calculated. And the number of pulse wave segments C (n) in which the change tendency of the area difference ΔA (n) is decreasing is determined, and the change in the area difference ΔA (n) is determined. The number of pulse wave segments C (n) in which the tendency is increasing or the number of pulse wave segments C (n) in which the changing tendency of the area difference ΔA (n) is decreasing is the ratio of the majority of all pulse wave segments. (For example, 80% to 90%), it is determined whether or not the number Nc2 exceeds the second determination reference section number Nc2. This judgment is for judging whether or not the changing tendency of the area difference ΔA (n) calculated for each pulse wave segment C (n) substantially coincides. If the change tendency of the area difference ΔA (n) for each pulse wave section C (n) does not substantially match, the mounting state of the pressure pulse wave sensor 46 becomes inappropriate, and the shape of the pressure pulse wave PW is distorted. Therefore, even when the above determination is denied, it is determined that the accuracy of the monitored blood pressure value MBP determined by the continuous blood pressure value determining means 80 has decreased, and the pressure pulse wave sensor 46 The optimum pressing position control means 74 is executed again to correct the mounting state.
[0064]
13 and 14 are flowcharts showing a main part of the control operation of the CPU 31 according to the second embodiment. FIG. 13 shows a part of a correspondence determination routine, and FIG. 14 shows a part of a blood pressure monitoring routine. Is shown.
[0065]
First, FIG. 13 will be described. Also in the second embodiment, the correspondence determination routine executes SA1 to SA15 in the same manner as in FIGS. 9 and 10 described above. Further, in the second embodiment, in SA16 subsequent to SA15, the reference cuff pulse wave CWst and the reference pressure pulse wave PWst read in SA12 are set to a plurality of pulse wave segments C ( n) (for example, 10 sections as shown in FIG. 12), and a reference area difference ΔAst (n) between the reference pressure pulse wave PWst and the reference cuff pulse wave CWst is calculated for each pulse wave section C (n). I do.
[0066]
Next, FIG. 14 will be described. Also in the second embodiment, in the blood pressure monitoring routine, the above-described SB1 to SB10 of FIG. 11 are executed. Then, in SC11 following SB10, the comparison cuff pulse wave CWc and the comparison pressure pulse wave PWc determined in SB10 coincide with each other at their minimum points, and the pulse wave segment C (n) is made in the same manner as SA16 in FIG. The area difference ΔA (n) is calculated every time.
[0067]
In subsequent SC12, for each pulse wave segment C (n), the area difference change amount Q is obtained by subtracting the reference area difference ΔAst (n) calculated in SA16 of FIG. 13 from the area difference ΔA (n) calculated in SC11. (N) is calculated. In subsequent SC13, the number of pulse wave sections C (n) in which the area difference change amount Q (n) calculated for each pulse wave section C (n) calculated in SC12 exceeds a preset reference value is determined. .
[0068]
Then, in SC14, it is determined whether or not the number of pulse wave segments C (n) determined in SC13 exceeds a preset first determination reference segment number Nc1. If this determination is affirmed, there is a high possibility that the state of attachment of the pressure pulse wave sensor 46 is inappropriate, and therefore, the correspondence determination routine is executed to correct the state of attachment of the pressure pulse wave 46. I do.
[0069]
If the determination in SC14 is denied, in SC15, the change tendency of the area difference ΔA (n) determined in SC11 with respect to the reference area difference ΔAst (n) determined in SA16 in FIG. n).
[0070]
Then, in SC16, the change tendency of the area difference ΔA (n) determined in SC15 determines the number of pulse wave segments C (n) that are increasing and the number of pulse wave segments C (n) that are decreasing. Then, by determining whether or not one of the numbers exceeds a preset second determination reference section number Nc2, the change in the area difference ΔA (n) determined for each pulse wave section C (n) is determined. It is determined whether or not the trends substantially match. Even if this determination is denied, there is a high possibility that the mounting state of the pressure pulse wave sensor 46 is inappropriate, so the correspondence determination routine is performed to correct the mounting state of the pressure pulse wave sensor 46. Execute. On the other hand, when the determination of SC16 is affirmative, it is considered that the accuracy of the monitored blood pressure value MBP is maintained, and thus the blood pressure monitoring based on the monitored blood pressure value MBP is continued by repeatedly executing the processing from SB1 onward. In the flowcharts shown in FIGS. 13 and 14, SA16 and SC11 to SC16 correspond to the blood pressure monitoring accuracy determination means 92.
[0071]
Also in the second embodiment described above, the pressure pulse wave PW detected by the pressure pulse wave sensor 46 and the cuff pressure PC are detected by the blood pressure monitoring accuracy determination means 92 (SA16, SC11 to SC16). DIA The cuff pulse wave CW detected at a lower pressure is compared with the cuff pulse wave CW to determine the accuracy of the monitor blood pressure value MBP continuously determined by the blood pressure value continuous determination means 80 (SB2, SB8). In order to maintain the accuracy of the value MBP, it is not necessary to perform the blood pressure measurement using the cuff 10 in a short cycle and frequently update the pressure pulse wave blood pressure correspondence, so that the burden on the patient is reduced.
[0072]
Next, a third embodiment of the present invention will be described. The third embodiment differs from the first embodiment only in the control function of the CPU 31. FIG. 15 is a functional block diagram illustrating a main part of a control function of the CPU 31 according to the third embodiment. The functional block diagram shown in FIG. 15 differs from the functional block diagram of FIG. 4 of the first embodiment in that the correction coefficient determining means 86 and the comparison pulse wave determining means 88 are not provided, and the blood pressure monitoring accuracy The determination means 94 only has a function of determining the accuracy of the monitored blood pressure value MBP.
[0073]
The blood pressure monitoring accuracy determination means 94 detects the area of the reference cuff pulse wave CWst detected at the time of blood pressure measurement by the cuff pulse wave detection means 84, that is, the reference cuff pulse wave area C_area (st), and the reference cuff pulse wave CWst. The area of the reference pressure pulse wave PWst, which is the pressure pulse wave PW detected by the pressure pulse wave sensor 46 substantially at the same time as the pressure pulse wave, that is, the reference pressure pulse wave area T_area (st) is calculated. An area ratio between the area C_area (st) and the reference pressure pulse wave area T_area (st), that is, a reference pulse wave area ratio RA (st) is calculated. Similarly, the cuff pulse wave area C_area and the pressure pulse wave area T_area are calculated for the cuff pulse wave CW detected at each monitoring accuracy determination cycle Tw and the pressure pulse wave PW corresponding to the cuff pulse wave CW. Then, a pulse wave area ratio RA between the cuff pulse wave area C_area and the pressure pulse wave area T_area is calculated. Further, the change rate (area ratio change rate) of the pulse wave area ratio RA with respect to the reference pulse wave area ratio RA (st) δ RA Is calculated. Note that the reference pulse wave area ratio RA (st) and the pulse wave area ratio RA may be any of the cuff pulse wave area C_area and the pressure pulse wave area T_area. For example, the cuff pulse wave area C_area may be denominator. Then, the reference pulse wave area ratio RA (st) is expressed by Expression 1, the pulse wave area ratio RA is expressed by Expression 2, and the area ratio change rate δ RA Is represented by Equation 3.
(Equation 1) RA (st) = T_area (st) / C_area (st)
(Equation 2) RA = T_area / C_area
(Equation 3) δ RA = (T_area / C_area) / (T_area (st) / C_area (st))
Equation 3 can be transformed into Equation 4 when transformed.
(Equation 4) δ RA = (T_area / T_area (st)) / (C_area / C_area (st))
Since Equation 4 represents the rate of change of the pressure pulse wave area T_area with respect to the rate of change of the cuff pulse wave area C_area, the area ratio change rate δ RA Greatly deviates from 1, it means that the difference between the cuff pulse wave area C_area and the pressure pulse wave area T_area is significantly different from that at the time of blood pressure measurement, and the mounting state of the pressure pulse wave sensor 46 is inappropriate. It is considered that the pressure pulse wave PW of an inappropriate size is detected due to the above. Therefore, the area ratio change rate δ RA Is not within the normal range set in advance to a range including 1, it is determined that the accuracy of the monitored blood pressure value MBP determined by the blood pressure value continuous determining means 80 has decreased, and the pressure pulse wave sensor 46 The optimal pressing position control means 74 is executed again to correct the mounting state.
[0074]
The blood pressure monitoring accuracy determining means 94 also determines the accuracy of the monitored blood pressure value MBP based on the changing tendency of the cuff pulse area C_area and the pressure pulse area T_area. That is, the cuff pulse wave area C_area calculated for each monitoring accuracy determination cycle Tw is compared with the cuff pulse wave area C_area calculated when the previous monitoring accuracy determination cycle Tw has elapsed, and the pressure pulse wave area T_area is determined. Is determined, the change tendency from the previous monitoring accuracy determination cycle Tw is determined, and it is determined whether or not the two change tendencies match. If the mounting state of the pressure pulse wave sensor 46 is maintained in an appropriate state, the change trends of the two should match. Therefore, even when the change trends do not match, the blood pressure value continuation determining means 80 determines It is determined that the accuracy of the monitored blood pressure value MBP has decreased, and the optimal pressing position control unit 74 is executed again to correct the mounting state of the pressure pulse wave sensor 46.
[0075]
16 and 17 are flowcharts showing a main part of the control operation of the CPU 31 according to the third embodiment. FIG. 16 shows a part of a correspondence determination routine, and FIG. 17 shows a part of a blood pressure monitoring routine. Is shown.
[0076]
First, FIG. 16 will be described. Also in the third embodiment, SA1 to SA13 are executed in the correspondence determination routine. Then, in SD14 following SA13, the reference cuff pulse wave area C_area (st) is calculated from the reference cuff pulse wave CWst read in SA12, and in SD15, the reference pressure pulse wave area T_area is calculated from the reference pressure pulse wave PWst read in SA12. (St) is calculated. Then, in SD16, the reference pulse wave area ratio RA (st) is calculated by dividing the reference pressure pulse wave area T_area (st) calculated in SD15 by the reference cuff pulse wave area C_area (st) calculated in SD14. .
[0077]
Next, FIG. 17 will be described. Also in the third embodiment, in the blood pressure monitoring routine, the above-described SB1 to SB9 of FIG. 11 are executed. Then, in SE10 following SB9, the area of the cuff pulse wave CW read in SB7, that is, the cuff pulse wave area C_area, is calculated, and in SE11, the area of the pressure pulse wave PW read in SB7, that is, the pressure pulse wave area T_area is calculated. I do.
[0078]
In subsequent SE12, the pulse wave area ratio RA is calculated by dividing the pressure pulse wave area T_area calculated in SE11 by the cuff pulse wave area C_area calculated in SE10. In subsequent SE13, the area ratio RA calculated in SE12 is divided by the reference area ratio RA (st) calculated in SD16 in FIG. RA Is calculated.
[0079]
In subsequent SE14, the area ratio change rate δ calculated in SE13 RA Is determined to be a value within a normal range preset in a range including 1. If this determination is denied, there is a high possibility that the mounting state of the pressure pulse wave sensor 46 is inappropriate. Therefore, in order to correct the mounting state of the pressure pulse wave sensor 46, Execute the routine again.
[0080]
On the other hand, if the determination in SE14 is affirmative, in SE15, the change tendency of the cuff pulse wave area C_area calculated in SE10 with respect to the previously calculated cuff pulse wave area C_area, and the pressure pulse wave area T_area calculated in SE11 are determined. Is compared with the previously calculated change tendency with respect to the pressure pulse wave area T_area to determine whether or not the change trends are different. If this determination is affirmative, that is, even if the two change trends are different, there is a high possibility that the mounting state of the pressure pulse wave sensor 46 is inappropriate, so the above-described correspondence determination routine is performed. Try again.
[0081]
On the other hand, if the determination in SE15 is negative, it is considered that the accuracy of the monitored blood pressure value MBP is maintained, so that the blood pressure monitoring based on the monitored blood pressure value MBP is continued by repeatedly executing the processing from SB1 onward. In the flowcharts shown in FIGS. 16 and 17, SD14 to SD16 and SE10 to SE15 correspond to the blood pressure monitoring accuracy determination means 94.
[0082]
Also in the third embodiment described above, the pressure pulse wave PW detected by the pressure pulse wave sensor 46 and the cuff pressure PC are determined by the blood pressure monitoring accuracy determination means 94 (SD14 to SD16, SE10 to SE15). DIA The cuff pulse wave CW detected at a lower pressure is compared with the cuff pulse wave CW to determine the accuracy of the monitor blood pressure value MBP continuously determined by the blood pressure value continuous determination means 80 (SB2, SB8). In order to maintain the accuracy of the value MBP, it is not necessary to perform the blood pressure measurement using the cuff 10 in a short cycle and frequently update the pressure pulse wave blood pressure correspondence, so that the burden on the patient is reduced.
[0083]
Next, a fourth embodiment of the present invention will be described. The fourth embodiment is different from the third embodiment only in the method of determining the accuracy of the monitored blood pressure value MBP by the blood pressure monitoring accuracy determining means. In the third embodiment, the cuff pulse wave area T_area and Although the accuracy of the monitored blood pressure value MBP is determined based on the comparison with the pressure pulse wave area T_area, the blood pressure monitoring accuracy determining means (reference numeral 96) of the fourth embodiment determines the cuff pulse wave CW and the pressure pulse. The accuracy of the monitored blood pressure value MBP is determined based on the waveform correlation graphic drawn by the wave PW. Hereinafter, the blood pressure monitoring accuracy determination means 96 will be described in detail.
[0084]
First, the blood pressure monitoring accuracy determining means 96 determines the magnitude of the reference cuff pulse wave CWst detected by the cuff pulse wave detecting means 84 at the time of blood pressure measurement and the pressure pulse at substantially the same time as when the reference cuff pulse wave CWst is detected. From the magnitude of the reference pressure pulse wave PWst, which is the pressure pulse wave PW detected by the wave sensor 46, a reference waveform correlation graphic as illustrated in FIG. 18 is created, and the bulging length of the reference waveform correlation graphic (hereinafter referred to as the bulge length) , Lst). Similarly, a waveform correlation pattern is created for the cuff pulse wave CW detected in each monitoring accuracy determination cycle Tw and the pressure pulse wave PW corresponding to the cuff pulse wave CW, and the swelling of the waveform correlation pattern is performed. Determine the length L. The waveform correlation graphic (or reference waveform correlation graphic) is created as follows. That is, since the pressure pulse wave PW and the cuff pulse wave CW are a set of the pressure pulse wave signal SM2 or the cuff pulse wave signal SM1 collected at each predetermined sampling period, the pressure pulse wave PW and the cuff pulse wave CW And a two-dimensional graph 102 composed of an axis 98 representing the magnitude of the pressure pulse wave PW and an axis 100 representing the magnitude of the cuff pulse wave CW. It is created by sequentially plotting points at positions determined by the cuff pulse wave signal SM1. The bulge length L is two points d perpendicular to the straight line S1 connecting the minimum point a and the maximum point b of the waveform correlation graphic and passing through the middle point of the straight line S1 at the intersection d with the waveform correlation graphic. , E.
[0085]
Further, the blood pressure monitoring accuracy determining means 96 determines the difference d between the bulging length L and the reference bulging length Lst determined for each monitoring accuracy determining cycle Tw. L Is calculated. The more similar the shape of the pressure pulse wave PW and the shape of the cuff pulse wave CW, the smaller the bulging length L of the waveform correlation graphic, and the shape of the pressure pulse wave PW and the shape of the cuff pulse wave CW completely match. In this case, since the waveform correlation graphic becomes a straight line S1 and the bulge length L becomes zero, the bulge length difference d L Is large, it means that the difference between the shape of the pressure pulse wave PW and the shape of the cuff pulse wave CW is significantly different from that at the time of measuring the blood pressure, and the mounting state of the pressure pulse wave sensor 46 has become inappropriate. Therefore, it is considered that the pressure pulse wave PW having an accurate shape is not detected. Therefore, the blood pressure monitoring accuracy determining means 96 determines the difference d in the bulging length. L Is a predetermined judgment reference value TH dL Is exceeded, it is determined that the accuracy of the monitored blood pressure value MBP determined by the blood pressure value continuation determining means 80 has decreased, and the optimal pressing position control means 74 is used to correct the mounting state of the pressure pulse wave sensor 46. Try again.
[0086]
19 and 20 are flowcharts showing a main part of the control operation of the CPU 31 according to the fourth embodiment. FIG. 19 shows a part of a correspondence determination routine, and FIG. 20 shows a part of a blood pressure monitoring routine. Is shown.
[0087]
First, FIG. 19 will be described. Also in the fourth embodiment, SA1 to SA13 are executed in the correspondence determination routine. Then, in SF14 following SA13, the reference waveform correlation graphic is determined based on the reference cuff pulse wave CWst and the reference pressure pulse wave PWst read in SA12, and in subsequent SF15, the bulging length of the reference waveform correlation graphic determined in SF14. That is, the reference bulge length Lst is determined.
[0088]
Next, FIG. 20 will be described. Also in the fourth embodiment, in the blood pressure monitoring routine, the above-described SB1 to SB9 of FIG. 11 are executed. Then, in SG10 following SB9, a waveform correlation graphic is determined based on the cuff pulse wave CW and pressure pulse wave PW read in SB7, and in SG11, the bulging length L of the waveform correlation graphic determined in SG10 is determined. .
[0089]
In the following SG12, the difference d of the bulge length is obtained by subtracting the reference bulge length Lst determined in SF15 in FIG. 19 from the bulge length L calculated in SG11. L Is calculated. And in SG13, the difference d of the bulging length L Is a predetermined reference value TH dL It is determined whether or not exceeds. If this determination is affirmed, there is a high possibility that the mounting state of the pressure pulse wave sensor 46 is inappropriate. Execute the routine again.
[0090]
On the other hand, if the determination in SG13 is negative, it is considered that the accuracy of the monitored blood pressure value MBP is maintained, so that the blood pressure monitoring based on the monitored blood pressure value MBP is continued by repeatedly executing the processing of SB1 and lower. In the flowcharts shown in FIGS. 19 and 20, SF14 to SF15 and SG10 to SG13 correspond to the blood pressure monitoring accuracy determination means 96.
[0091]
Also in the fourth embodiment, the pressure pulse wave PW detected by the pressure pulse wave sensor 46 and the cuff pressure PC are determined by the blood pressure monitoring accuracy determination means 96 (SF14 to SF15, SG10 to SG13) to the minimum blood pressure value MBP. DIA The cuff pulse wave CW detected at a lower pressure is compared with the cuff pulse wave CW to determine the accuracy of the monitor blood pressure value MBP continuously determined by the blood pressure value continuous determination means 80 (SB2, SB8). In order to maintain the accuracy of the value MBP, it is not necessary to perform the blood pressure measurement using the cuff 10 in a short cycle and frequently update the pressure pulse wave blood pressure correspondence, so that the burden on the patient is reduced.
[0092]
Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention is applicable to other aspects.
[0093]
For example, in the above-described embodiment, the pressure pulse wave PW continuously detected by the pressure pulse wave sensor 46 may be displayed on the display 34. When the pressure pulse wave detection probe 36 is attached to the downstream portion of the cuff 10, the pressure pulse wave PW cannot be detected temporarily when the blood pressure measurement is performed by the cuff 10, so that the pressure pulse wave PW Is also interrupted temporarily, but in the above-described embodiment, since the blood pressure measurement using the cuff 10 is not performed so frequently, the period during which the pressure pulse wave PW is continuously displayed is also long. Become.
[0094]
In the first and second embodiments described above, the correction coefficient is for making the size of the reference cuff pulse wave CWst and the size of the reference pressure pulse wave PWst the same. In addition, a correction coefficient for making the cycle of the reference cuff pulse wave CWst equal to the cycle of the reference pressure pulse wave PWst may be determined.
[0095]
In the first embodiment described above, the comparison of the positions of the characteristic points of the cuff pulse wave for comparison and the characteristic points of the pressure pulse wave for comparison is only the magnitude component, but in addition to that, or Instead, a periodic component (time component) may be compared.
[0096]
In the second embodiment, the accuracy of the monitored blood pressure value MBP is determined based on the number of pulse wave segments C (n) in which the area difference change amount Q (n) exceeds the reference value. Although the accuracy of the monitored blood pressure value MBP is determined based on the change tendency of the difference ΔA (n), only one of them may be determined.
[0097]
In the third embodiment, the rate of change of the area ratio (pulse wave area ratio) RA between the cuff pulse wave area C_area and the pressure pulse wave area T_area, that is, the area ratio change rate δ RA And the accuracy of the monitored blood pressure value MBP is also determined based on the changing tendency of the cuff pulse area C_area and the changing tendency of the pressure pulse wave area T_area. Only one of them may be used.
[0098]
In the above-described second embodiment, the cuff pulse wave CW and the pressure pulse wave PW are divided into a plurality of pulse wave segments C (n), and the area difference ΔA (n) for each of the pulse wave segments C (n). ), The shape of the cuff pulse wave CW is compared with the shape of the pressure pulse wave PW. However, by calculating the cross-correlation coefficient between the cuff pulse wave CW and the pressure pulse wave PW, the cuff pulse wave is calculated. The shape of the wave CW and the shape of the pressure pulse wave PW may be compared.
[0099]
In the above-described fourth embodiment, the accuracy of the monitoring blood pressure value MBP is determined based on the bulging length L of the waveform correlation graphic. However, the accuracy of the monitoring blood pressure value MBP is determined based on the area of the waveform correlation graphic. It may be determined.
[0100]
In the first and second embodiments, a set of comparison pulse waves is determined by correcting the detected pressure pulse wave PW, and the monitored blood pressure value MBP is determined based on the set of comparison pulse waves. In the third and fourth embodiments, the accuracy of the monitored blood pressure value MBP is determined by using the detected cuff pulse wave CW and the pressure pulse wave PW without correcting both of them. However, in the first embodiment and the second embodiment, the detected cuff pulse wave CW and the detected pressure pulse wave PW may be used without correction together, or may be used as a set in the third embodiment and the fourth embodiment. The comparison pulse wave may be determined, and the accuracy of the monitored blood pressure value MBP may be determined based on the set of comparison pulse waves.
[0101]
In the present invention, various other changes can be made without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a non-invasive continuous blood pressure monitoring device to which the present invention has been applied.
FIG. 2 is a diagram illustrating the configuration of a pressure pulse wave detection probe in detail.
FIG. 3 is a diagram showing a pressing surface of a pressure pulse wave sensor provided in the pressure pulse wave detection probe of FIG. 2;
FIG. 4 is a functional block diagram showing a main part of a control function of a CPU in the non-invasive continuous blood pressure monitoring device of FIG. 1;
FIG. 5 is a diagram for explaining an optimum pressing force HDPO determined by the pressing force control means of FIG. 4;
6 is a diagram showing an example of a pressure pulse wave blood pressure correspondence determined by the correspondence determination means of FIG. 4;
FIG. 7 is a diagram illustrating a reference cuff pulse wave CWst and a reference pressure pulse wave PWst corrected by a correction coefficient in a state where rising points (minimum points) are matched.
8 is a diagram showing the comparison pressure pulse wave PWst and the comparison cuff pulse wave CWst determined by the comparison pulse wave determination means in FIG. 4 in a state where the minimum points are matched.
9 is a flowchart showing a main part of the control operation of the CPU shown in the functional block diagram of FIG. 4, and is a diagram showing a correspondence determination routine.
10 is a flowchart showing a main part of the control operation of the CPU shown in the functional block diagram of FIG. 4, and is a diagram showing a correspondence determination routine.
11 is a flowchart showing a main part of the control operation of the CPU shown in the functional block diagram of FIG. 4, and is a diagram showing a blood pressure monitoring routine.
FIG. 12 is a diagram showing a state in which a reference pressure pulse wave PWst and a reference cuff pulse wave CWst are divided into a plurality of pulse wave segments C (n) perpendicular to the time axis, with their minimum points being matched. It is.
FIG. 13 is a flowchart showing a main part of the control operation of the CPU according to the second embodiment, and is a diagram showing a part of a correspondence determination routine;
FIG. 14 is a flowchart illustrating a main part of a control operation of the CPU according to the second embodiment, and is a diagram illustrating a part of a blood pressure monitoring routine.
FIG. 15 is a functional block diagram illustrating a main part of a control function of a CPU according to a third embodiment.
FIG. 16 is a flowchart showing a main part of a control operation of the CPU according to the third embodiment, which is a diagram showing a part of a correspondence determination routine;
FIG. 17 is a flowchart showing a main part of a control operation of the CPU according to the third embodiment, and is a diagram showing a part of a blood pressure monitoring routine.
FIG. 18 is a diagram illustrating an example of a reference waveform correlation graphic created in the fourth embodiment.
FIG. 19 is a flowchart showing a main part of the control operation of the CPU according to the fourth embodiment, which is a diagram showing a part of a correspondence determination routine.
FIG. 20 is a flowchart showing a main part of a control operation of the CPU according to the fourth embodiment, and is a diagram showing a part of a blood pressure monitoring routine.
[Explanation of symbols]
8: Non-invasive continuous blood pressure monitoring device
10: Cuff
70: Cuff pressure control means
72: blood pressure value determining means
78: Correspondence determination means
80: blood pressure value continuous determination means
84: Cuff pulse wave detecting means
86: correction coefficient determining means
88: Comparative pulse wave determination means
90: blood pressure monitoring accuracy determination means
92: blood pressure monitoring accuracy determination means
94: blood pressure monitoring accuracy determination means
96: blood pressure monitoring accuracy determination means
102: Two-dimensional graph

Claims (7)

生体の一部に装着されるカフと、
該カフの圧迫圧力を制御するカフ圧制御手段と、
該カフ圧制御手段により前記カフの圧迫圧力が徐速変化させられる過程において得られる信号に基づいて、該生体の血圧値を決定する血圧値決定手段と、
該生体の所定の動脈に向かって押圧させられる圧脈波センサを用いて該動脈から発生する圧脈波を逐次検出する圧脈波検出装置と、
前記血圧値決定手段により決定された血圧値と前記圧脈波検出装置により検出された圧脈波の大きさとの間の圧脈波血圧対応関係を決定する対応関係決定手段と、
該圧脈波血圧対応関係を用い、前記圧脈波検出装置により逐次検出される圧脈波の大きさから監視血圧値を連続的に決定する血圧値連続決定手段とを備えた非観血連続血圧監視装置であって、
前記カフ圧制御手段により前記カフの圧迫圧力が平均血圧値よりも低い圧力とされた状態で、該カフ内の圧力振動であるカフ脈波を検出するカフ脈波検出手段と、
該カフ脈波検出手段により検出されたカフ脈波と、該カフ脈波の検出と同時期に前記圧脈波検出装置により検出された圧脈波との比較に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定する血圧監視精度判定手段と
を含むことを特徴とする非観血連続血圧監視装置。
A cuff attached to a part of a living body,
Cuff pressure control means for controlling the compression pressure of the cuff,
Blood pressure value determining means for determining a blood pressure value of the living body based on a signal obtained in a process in which the cuff pressure is gradually changed by the cuff pressure control means,
A pressure pulse wave detection device that sequentially detects pressure pulse waves generated from the artery using a pressure pulse wave sensor pressed toward a predetermined artery of the living body,
Correspondence determination means for determining a pressure pulse wave blood pressure correspondence between the blood pressure value determined by the blood pressure value determination means and the magnitude of the pressure pulse wave detected by the pressure pulse wave detection device,
A blood pressure value continuation determining means for continuously determining a monitoring blood pressure value from the magnitude of the pressure pulse wave sequentially detected by the pressure pulse wave detecting device using the pressure pulse wave blood pressure correspondence relationship; A blood pressure monitoring device,
Cuff pulse wave detecting means for detecting a cuff pulse wave, which is a pressure oscillation in the cuff, in a state where the cuff compression pressure is set to a pressure lower than an average blood pressure value by the cuff pressure control means,
Based on a comparison between the cuff pulse wave detected by the cuff pulse wave detecting means and the pressure pulse wave detected by the pressure pulse wave detection device at the same time as the detection of the cuff pulse wave, the blood pressure value is sequentially determined. A non-invasive continuous blood pressure monitoring device, comprising: a blood pressure monitoring accuracy determination unit that determines the accuracy of the monitored blood pressure value determined by the continuous determination unit.
請求項1に記載の非観血連続血圧監視装置であって、
前記血圧値決定手段により血圧値が決定されたときに前記カフ脈波検出手段および前記圧脈波検出装置によりそれぞれ検出されたカフ脈波および圧脈波の大きさを同じにするために、そのカフ脈波および圧脈波の少なくとも一方を補正する補正係数を決定する補正係数決定手段と、
該補正係数決定手段により決定された補正係数を用いて、逐次、前記カフ脈波検出手段により検出されたカフ脈波および前記圧脈波検出装置により検出された圧脈波の少なくとも一方を補正して、比較用の一組のカフ脈波および圧脈波を決定する比較脈波決定手段とを備え、
前記血圧監視精度判定手段は、該比較脈波決定手段により決定されたカフ脈波および圧脈波の互いの最小点を一致させた状態で、それらカフ脈波および圧脈波の所定の特徴点の位置を比較することによって、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする非観血連続血圧監視装置。
It is a non-invasive continuous blood pressure monitoring device according to claim 1,
When the blood pressure value is determined by the blood pressure value determining means, the cuff pulse wave detecting means and the pressure pulse wave detected by the pressure pulse wave detecting device to make the same size of the cuff pulse wave and the pressure pulse wave, respectively, Correction coefficient determining means for determining a correction coefficient for correcting at least one of the cuff pulse wave and the pressure pulse wave,
Using the correction coefficient determined by the correction coefficient determination means, sequentially correcting at least one of the cuff pulse wave detected by the cuff pulse wave detection means and the pressure pulse wave detected by the pressure pulse wave detection device. A comparison pulse wave determining means for determining a set of cuff pulse waves and pressure pulse waves for comparison,
The blood pressure monitoring accuracy determining means determines a predetermined characteristic point of the cuff pulse wave and the pressure pulse wave in a state where the minimum points of the cuff pulse wave and the pressure pulse wave determined by the comparison pulse wave determining means match each other. A non-invasive continuous blood pressure monitoring device for sequentially determining the accuracy of the monitored blood pressure value determined by the blood pressure value continuous determining means by comparing the positions of the monitored blood pressure values.
請求項1に記載の非観血連続血圧監視装置であって、
前記血圧値決定手段により血圧値が決定されたときに前記カフ脈波検出手段および前記圧脈波検出装置によりそれぞれ検出されたカフ脈波および圧脈波の大きさを同じにするために、そのカフ脈波および圧脈波の少なくとも一方を補正する補正係数を決定する補正係数決定手段と、
該補正係数決定手段により決定された補正係数を用いて、逐次、前記カフ脈波検出手段により検出されたカフ脈波および前記圧脈波検出装置により検出された圧脈波の少なくとも一方を補正して、比較用の一組のカフ脈波および圧脈波を決定する比較脈波決定手段とを備え、
前記血圧監視精度判定手段は、該比較脈波決定手段により決定されたカフ脈波および圧脈波の形状の比較に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする非観血連続血圧監視装置。
It is a non-invasive continuous blood pressure monitoring device according to claim 1,
When the blood pressure value is determined by the blood pressure value determining means, the cuff pulse wave detecting means and the pressure pulse wave detected by the pressure pulse wave detecting device to make the same size of the cuff pulse wave and the pressure pulse wave, respectively, Correction coefficient determining means for determining a correction coefficient for correcting at least one of the cuff pulse wave and the pressure pulse wave,
Using the correction coefficient determined by the correction coefficient determination means, sequentially correcting at least one of the cuff pulse wave detected by the cuff pulse wave detection means and the pressure pulse wave detected by the pressure pulse wave detection device. A comparison pulse wave determining means for determining a set of cuff pulse waves and pressure pulse waves for comparison,
The blood pressure monitoring accuracy determining means determines the accuracy of the monitored blood pressure value sequentially determined by the blood pressure value continuous determining means based on the comparison of the shapes of the cuff pulse wave and the pressure pulse wave determined by the comparative pulse wave determining means. A non-invasive continuous blood pressure monitoring device characterized in that:
請求項3に記載の非観血連続血圧監視装置であって、
前記血圧監視精度判定手段は、前記比較脈波決定手段により決定されたカフ脈波および圧脈波を、互いの最小点を一致させた状態で時間軸に垂直に複数の脈波区分に分割して、該複数の脈波区分毎に面積差を算出し、該複数の面積差のそれぞれの時間変化が所定の基準値を超えた脈波区分の数に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする非観血連続血圧監視装置。
It is a non-invasive continuous blood pressure monitoring device according to claim 3,
The blood pressure monitoring accuracy determination means divides the cuff pulse wave and the pressure pulse wave determined by the comparison pulse wave determination means into a plurality of pulse wave segments perpendicular to the time axis in a state where the minimum points coincide with each other. Calculating an area difference for each of the plurality of pulse wave segments, and sequentially determining the blood pressure value based on the number of pulse wave segments in which the time change of each of the plurality of area differences exceeds a predetermined reference value. A non-invasive continuous blood pressure monitoring device for determining the accuracy of the monitored blood pressure value determined by the means.
請求項3に記載の非観血連続血圧監視装置であって、
前記血圧監視精度判定手段は、前記比較脈波決定手段により決定されたカフ脈波および圧脈波を、互いの最小点を一致させた状態で時間軸に垂直に複数の脈波区分に分割して、該複数の脈波区分毎に面積差を算出し、該複数の面積差の時間変化傾向が一致するか否かに基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする非観血連続血圧監視装置。
It is a non-invasive continuous blood pressure monitoring device according to claim 3,
The blood pressure monitoring accuracy determination means divides the cuff pulse wave and the pressure pulse wave determined by the comparison pulse wave determination means into a plurality of pulse wave segments perpendicular to the time axis in a state where the minimum points coincide with each other. Calculating the area difference for each of the plurality of pulse wave segments, and based on whether or not the time-varying trends of the plurality of area differences match, the monitoring blood pressure value sequentially determined by the blood pressure value continuation determining means. Non-invasive continuous blood pressure monitoring device for determining the accuracy of blood pressure.
請求項1に記載の非観血連続血圧監視装置であって、
前記血圧監視精度判定手段は、前記カフ脈波検出手段により検出されたカフ脈波の面積の時間変化と、該カフ脈波の検出と同時期に前記圧脈波検出装置により検出された圧脈波の面積の時間変化との比較に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする非観血連続血圧監視装置。
It is a non-invasive continuous blood pressure monitoring device according to claim 1,
The blood pressure monitoring accuracy determination means includes a time change in the area of the cuff pulse wave detected by the cuff pulse wave detection means, and a pressure pulse detected by the pressure pulse wave detection device at the same time as the detection of the cuff pulse wave. A non-invasive continuous blood pressure monitoring device for sequentially determining the accuracy of a monitored blood pressure value determined by the blood pressure value continuous determining means based on a comparison with a time change of a wave area.
請求項1に記載の非観血連続血圧監視装置であって、
前記血圧監視精度判定手段は、カフ脈波の大きさを表す軸と圧脈波の大きさを表す軸とからなる二次元グラフに、前記カフ脈波検出手段により検出されたカフ脈波と、前記圧脈波検出装置により検出された圧脈波のうち該カフ脈波に対応する圧脈波とにより描かれる波形相関図形に基づいて、逐次、前記血圧値連続決定手段により決定された監視血圧値の精度を判定するものであることを特徴とする非観血連続血圧監視装置。
It is a non-invasive continuous blood pressure monitoring device according to claim 1,
The blood pressure monitoring accuracy determination means, a two-dimensional graph consisting of an axis representing the magnitude of the cuff pulse wave and an axis representing the magnitude of the pressure pulse wave, cuff pulse wave detected by the cuff pulse wave detection means, Based on the waveform correlation graphic drawn by the pressure pulse wave corresponding to the cuff pulse wave among the pressure pulse waves detected by the pressure pulse wave detection device, the monitor blood pressure sequentially determined by the blood pressure value continuous determination means A non-invasive continuous blood pressure monitoring device for determining the accuracy of a value.
JP2002279490A 2002-09-25 2002-09-25 Noninvasive continuous blood pressure monitoring device Expired - Fee Related JP3688256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279490A JP3688256B2 (en) 2002-09-25 2002-09-25 Noninvasive continuous blood pressure monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279490A JP3688256B2 (en) 2002-09-25 2002-09-25 Noninvasive continuous blood pressure monitoring device

Publications (2)

Publication Number Publication Date
JP2004113368A true JP2004113368A (en) 2004-04-15
JP3688256B2 JP3688256B2 (en) 2005-08-24

Family

ID=32274477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279490A Expired - Fee Related JP3688256B2 (en) 2002-09-25 2002-09-25 Noninvasive continuous blood pressure monitoring device

Country Status (1)

Country Link
JP (1) JP3688256B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023127A (en) * 2006-07-21 2008-02-07 Sharp Corp Biological information estimating apparatus and electronic appliance equipped with the same
WO2017119187A1 (en) 2016-01-04 2017-07-13 オムロンヘルスケア株式会社 Blood pressure correction information generating device, blood pressure measurement device, blood pressure correction information generating method, and blood pressure correction information generating program
DE112016003806T5 (en) 2015-08-21 2018-05-09 Omron Healthcare Co., Ltd. DIAGNOSTIC SUPPORT DEVICE, DIAGNOSTIC ASSISTANCE PROCEDURE, DIAGNOSTIC SUPPORT PROGRAM, BODY INFORMATION METER
WO2018168794A1 (en) * 2017-03-15 2018-09-20 オムロン株式会社 Biological information measurement device and method, and program
DE112018001387T5 (en) 2017-03-15 2019-12-05 Omron Corporation Apparatus, method and program for measuring biological information
JP2019536504A (en) * 2016-10-31 2019-12-19 ライブメトリック (メディカル) エス.エー.Livemetric (Medical) S.A. Acquisition of blood pressure signal using pressure sensor array
US10765366B2 (en) 2016-01-04 2020-09-08 Omron Healthcare Co., Ltd. Appliance
US10772515B2 (en) 2014-10-31 2020-09-15 Omron Healthcare Co., Ltd. Blood pressure measurement device
CN111839487A (en) * 2020-06-18 2020-10-30 郑昕 Blood pressure measuring method and system
US11147461B2 (en) 2015-09-18 2021-10-19 Omron Healthcare Co., Ltd. Blood pressure analyzing apparatus, blood pressure measuring apparatus, and blood pressure analyzing method
US11266317B2 (en) 2014-10-31 2022-03-08 Omron Healthcare Co., Ltd. Blood pressure measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284479A (en) * 1994-04-20 1995-10-31 Nippon Colin Co Ltd Continuous blood pressure monitoring apparatus
JPH08191803A (en) * 1995-01-17 1996-07-30 Nippon Colin Co Ltd Blood pressure monitor apparatus
JPH08256998A (en) * 1995-03-27 1996-10-08 Nippon Colin Co Ltd Living body information monitoring device
JP2002272690A (en) * 2001-03-21 2002-09-24 Nippon Colin Co Ltd Continuous blood pressure monitoring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284479A (en) * 1994-04-20 1995-10-31 Nippon Colin Co Ltd Continuous blood pressure monitoring apparatus
JPH08191803A (en) * 1995-01-17 1996-07-30 Nippon Colin Co Ltd Blood pressure monitor apparatus
JPH08256998A (en) * 1995-03-27 1996-10-08 Nippon Colin Co Ltd Living body information monitoring device
JP2002272690A (en) * 2001-03-21 2002-09-24 Nippon Colin Co Ltd Continuous blood pressure monitoring device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023127A (en) * 2006-07-21 2008-02-07 Sharp Corp Biological information estimating apparatus and electronic appliance equipped with the same
US11266317B2 (en) 2014-10-31 2022-03-08 Omron Healthcare Co., Ltd. Blood pressure measurement device
US10772515B2 (en) 2014-10-31 2020-09-15 Omron Healthcare Co., Ltd. Blood pressure measurement device
US11694808B2 (en) 2015-08-21 2023-07-04 Omron Healthcare Co., Ltd. Diagnosis assistance apparatus, diagnosis assistance method, diagnosis assistance program, bodily information measurement apparatus
DE112016003806T5 (en) 2015-08-21 2018-05-09 Omron Healthcare Co., Ltd. DIAGNOSTIC SUPPORT DEVICE, DIAGNOSTIC ASSISTANCE PROCEDURE, DIAGNOSTIC SUPPORT PROGRAM, BODY INFORMATION METER
US11147461B2 (en) 2015-09-18 2021-10-19 Omron Healthcare Co., Ltd. Blood pressure analyzing apparatus, blood pressure measuring apparatus, and blood pressure analyzing method
US10765366B2 (en) 2016-01-04 2020-09-08 Omron Healthcare Co., Ltd. Appliance
US10905381B2 (en) 2016-01-04 2021-02-02 Omron Healthcare Co., Ltd. Blood pressure correction information generating device, blood pressure measurement device and blood pressure correction information generating method
WO2017119187A1 (en) 2016-01-04 2017-07-13 オムロンヘルスケア株式会社 Blood pressure correction information generating device, blood pressure measurement device, blood pressure correction information generating method, and blood pressure correction information generating program
JP2019536504A (en) * 2016-10-31 2019-12-19 ライブメトリック (メディカル) エス.エー.Livemetric (Medical) S.A. Acquisition of blood pressure signal using pressure sensor array
JP7175509B2 (en) 2016-10-31 2022-11-21 ライブメトリック (メディカル) エス.エー. Method and apparatus for obtaining output blood pressure signal
DE112018001387T5 (en) 2017-03-15 2019-12-05 Omron Corporation Apparatus, method and program for measuring biological information
CN110381820A (en) * 2017-03-15 2019-10-25 欧姆龙株式会社 Vital information measurement device, methods and procedures
JP2018153256A (en) * 2017-03-15 2018-10-04 オムロン株式会社 Biological information measuring device, method, and program
WO2018168794A1 (en) * 2017-03-15 2018-09-20 オムロン株式会社 Biological information measurement device and method, and program
US11564570B2 (en) 2017-03-15 2023-01-31 Omron Corporation Biological information measuring apparatus, method and program
CN111839487A (en) * 2020-06-18 2020-10-30 郑昕 Blood pressure measuring method and system
CN111839487B (en) * 2020-06-18 2022-12-23 郑昕 Blood pressure measuring system without air bag

Also Published As

Publication number Publication date
JP3688256B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP3578727B2 (en) Blood pressure waveform monitor
JP3587793B2 (en) Continuous blood pressure monitor
JP3602880B2 (en) Peripheral circulation monitoring device
JP3587798B2 (en) Continuous blood pressure monitor
US5762610A (en) Pressure pulse wave detecting apparatus
US5830149A (en) Physical information monitor system having means for indicating amount of deviation of monitored information from normal information
US5836887A (en) Physical information monitor system having means for determining reference range for abnormality determination, based on moving average of previously obtained values
US5791348A (en) Automatic blood pressure measuring system
EP0838194B1 (en) Physical information monitor system having means for indicating amount of deviation of monitored information from normal information
JP3688256B2 (en) Noninvasive continuous blood pressure monitoring device
JP2002360526A (en) Sphygmomanometry system with cardiac function evaluating function
US5752913A (en) Physical information monitor system having means for determining reference range for abnormality determination of the monitored information
US6394959B1 (en) Continuous blood-pressure monitor apparatus
JP3480593B2 (en) Continuous blood pressure monitor
JP3795663B2 (en) Continuous blood pressure monitoring device
JP3599820B2 (en) Biological information monitoring device
JPH1119054A (en) Pressing-correcting type continuous blood pressure monitoring device
JP3571393B2 (en) Continuous blood pressure monitor
JPH0246824A (en) Device for judging abnormality of pulse wave detecting device
JP2003126053A (en) Arteriosclerotic assessment system
JP3978924B2 (en) Continuous blood pressure monitoring device
JPH10201724A (en) Automatic sphygmometer
JP3002595B2 (en) Blood pressure monitoring device
JP2000000218A (en) Blood pressure monitoring system
JPH1094528A (en) Pulse output estimating apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Ref document number: 3688256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees