JP2004113003A - Crawl apparatus and method for culturing in crawl - Google Patents

Crawl apparatus and method for culturing in crawl Download PDF

Info

Publication number
JP2004113003A
JP2004113003A JP2002276494A JP2002276494A JP2004113003A JP 2004113003 A JP2004113003 A JP 2004113003A JP 2002276494 A JP2002276494 A JP 2002276494A JP 2002276494 A JP2002276494 A JP 2002276494A JP 2004113003 A JP2004113003 A JP 2004113003A
Authority
JP
Japan
Prior art keywords
cage
water
buoyancy
crawl
rope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002276494A
Other languages
Japanese (ja)
Inventor
Katsuaki Baba
馬場 克昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BABA SHOTEN KK
Original Assignee
BABA SHOTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BABA SHOTEN KK filed Critical BABA SHOTEN KK
Priority to JP2002276494A priority Critical patent/JP2004113003A/en
Priority to CNB021514984A priority patent/CN1219431C/en
Publication of JP2004113003A publication Critical patent/JP2004113003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crawl apparatus preventing a crawl from being drifted or broken and stably carrying out culturing even under severe conditions such as installation in a water area at a high water current speed or rough seas or stormy weather by, as necessary, arranging the crawl on or in the water and to provide a method for culturing in the crawl. <P>SOLUTION: The apparatus is equipped with the crawl 12, a buoyancy means 16, as necessary, changing and setting the position of the crawl in an optional sinking position on and in the water while supporting the the crawl 12 on or in the water with buoyancy and mooring means 14 for suppressing planar movement of the crawl 12 and mooring and supporting the crawl. For example, the apparatus is designed to locate the crawl 12 in water with relatively calm waves and float the crawl 12 on the water during operation such as feeding. Thereby, the crawl 12 can be used without being broken even in the open sea, etc., with violent waves and culturing in the crawl can stably be carried out. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、魚介類の養殖等に用いられる生け簀装置及び生け簀養殖方法に関する。
【0002】
【従来の技術】
従来、魚介類の養殖は、生け簀を比較的流れの遅く波が穏やかな陸地近海や内湾等に配置させ、例えば、木材や竹等を組付けた生け簀枠にフロートを取付けて海上に浮かべ、生け簀枠から吊り下げた網を水中に張って囲いを作って魚介類を養殖するものであった。
【0003】
【発明が解決しようとする課題】
従来のように、生け簀を流れの遅い内湾等に配置させた場合には、生け簀内の魚に与えた餌の残りが海底に沈殿してしまいヘドロ化して海洋汚染を招く問題があった。また、内湾のような水の入れ替わりの少ない閉鎖状の水域では、魚の病気が伝染しやすい。特に、近年では家庭や工場等の排水に含まれる窒素、リン等が海に流れ込むことによって富栄養化が起こりやすく、海面で赤潮が発生して魚介類が悪影響を受けていた。さらに、湾内の限られたスペースで大量に養殖する場合には生け簀を密集して配置せざるを得ず、水中の溶存酸素が不足し魚が死んでしまう恐れがあった。さらに、台風等の強風時には、海面上に浮かぶ生け簀枠が強風等で生じる強い波のうねりや速い水の流れの影響を直接に受けるので、生け簀が流されたり、破損したり、さらには生け簀が破損することで魚介類が逃げ出し、大きな損害は発生していた。一方、海洋汚染や魚介類等の影響をなくするために、生け簀を外海に配置させた場合には、生け簀が常に強い波のうねりや速い水の流れの影響を直接に受けるので、台風時と同様に生け簀が流されたり、破損したりする危険性が高く、外海への生け簀の設置が困難であった。
【0004】
本発明は上記従来の課題に鑑みてなされたものであり、その目的は、浮き沈み自在とすることにより、水流の速い水域や波の強い外海等でも、必要に応じて水中に配置させて流されたり破損するのを防止して良好に養殖できる生け簀装置及び生け簀養殖方法を提供することにある。さらに、他の目的は、生け簀を支持するロープ等の張力を緩衝させて分散し安定した生け簀支持を行わせることのできる生け簀装置及び生け簀養殖方法を提供することにある。さらに、他の目的は、生け簀を浮上させた際の作業性を確保しつつ、生け簀網の変形を防止して魚介類を保護する生け簀装置及び生け簀養殖方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために本発明は、生け簀12と、生け簀12を水上または水中に浮力支持しつつ必要に応じて生け簀を水上と水中の任意の沈み位置とに位置変更設定させる浮力手段16と、生け簀12の平面的な移動を抑制して係留支持する係留手段14と、を備えたことを特徴とする生け簀装置10から構成される。
【0006】
また、生け簀12は自由状態で水中に沈降する構造体からなることとしてもよい。
【0007】
また、浮力手段16は、自身の浮力調整が可能な浮力調整用フロート26を含むこととしてもよい。
【0008】
また、浮力手段16は、常時生け簀12を水上に浮力支持する固定浮力フロート24を含むこととしてもよい。
【0009】
また、係留手段14に連係して生け簀をその周囲からの張力を緩衝しつつ支持する張力緩衝ロープ機構33を備えたことこととしてもよい。
【0010】
また、張力緩衝ロープ機構33は、生け簀12に連結されて該生け簀12の周囲を取り囲むように配置された側張りロープ32を含むこととしてもよい。
【0011】
また、係留手段14は、アンカー36と、アンカー36に連結され他端側が側張りロープ32にそれぞれ連結されたアンカーロープ38と、を有し、さらに、アンカーロープ38と側張りロープ32との結着点Pには係留フロート40が接続されて該結着点Pを浮力支持してなることとしてもよい。
【0012】
また、生け簀12は、浮上させた際に作業用足場となり得る上枠体18と、上枠体18に取りつけられて水中に張設される生け簀網20と、を有し、生け簀網20の下端側には下枠体22が取りつけられたこととしてもよい。
【0013】
さらに、自由状態で水中に沈降する枠体18に垂下されて水中に配置される網を有する生け簀12を、浮力手段16により水上または水中に浮力支持しつつ必要に応じて水上と水中の任意の沈み位置とに位置変更設定させながら養殖を行うことを特徴とする生け簀養殖方法から構成される。
【0014】
【発明の実施の形態】
以下、添付図面を参照しつつ本発明の生け簀装置及び生け簀養殖方法の実施の形態を説明する。本発明の生け簀装置は、生け簀を水上または水中に浮力支持しつつ必要に応じて任意の沈み位置に位置変更設定させ、それによって、枠体が水面上に浮上した状態と、枠体が水中に沈降配置された状態と、を必要に応じて変化させながら養殖を行う生け簀装置である。
【0015】
図1ないし図4は、本発明の生け簀装置の実施形態を示しており、実施形態において、生け簀装置10は、生け簀12と、浮力手段16と、生け簀を係留支持する係留手段14と、を備えている。
【0016】
図1において、生け簀12は上枠体18と、生け簀網20と、を有している。生け簀12は、枠体を例えば常時水上に配置させ、これに生け簀網を垂下させて内部に養殖対象の鯛、ぶり、はまち、その他の対象魚等を入れて養殖する養殖網付き枠手段であり、生け簀網は、対象魚が逃げないように有底四角形状に形成されて水中に垂下される。上枠体18は、図2に示すように、例えば、鋼管等の金属を平面視矩形状に組付けた枠体で形成され、中央に大きな矩形状の開口を形成しながらその周囲に人の足場となり得るようにある程度の幅を有するように内外二重枠状に組みつけられている。上枠体18は、人の重量等及びある程度の水流や波の衝撃にも耐え得る強度で構成される。なお、上枠体18は、鋼管に限らずある程度の強度及び耐蝕性を有するものであれば任意の素材で構成して良い。また、組付け構造は平面視矩形状に限らず、三角形、五角形その他の多角形或は、円形、楕円形、その他任意の形状に組付けても良い。上枠体18には、図3に示すように、内枠から立設された縦杆に支持されて内枠と同じ形状で、実施形態では平面視四角形状に手すり19が取りつけられている。上枠体18は、後述する複数のフロート24.26を有した浮力手段16により浮力支持されている。この実施形態において、上枠体18は鋼管から形成されているので、単独ですなわちフロート等の大きな浮力による浮力手段に支持されていない自由状態では、上枠体自身の質量が浮力を上回り水中に沈降する。上枠体18は、海面上に浮上させた際には、作業者の足場となり、例えば、魚介類の給餌や捕獲等の作業性が良好である。
【0017】
この実施形態において、生け簀網20は、図1、図3に示すように、上枠体18の中央開口部の真下位置に、例えば、立体矩形箱状を形成するように水中に張設されている。生け簀網20は、上下前後左右の六面を囲い、その内部に魚介類の収容空間を形成している。上面側の網は一部を開閉自在にして給餌用の蓋網としてもよい。なお、生け簀網の形状は任意であり、上枠体の形状に対応させて立体多角形状や円筒状、その他形状の囲いを形成される。生け簀網20は、例えば、金網から形成されている。金網は、ある程度剛性を有しているので水流が速い水域や波の強い水域で使用する場合にも変形しにくい。また、生け簀網20は、金網に限らず、ポリエチレン等の化学繊維や縄等で形成したロープ、その他の養殖網に適した素材のものでもよい。また、上枠体18が水上に浮力支持された際に、水と網との接触による波立ち音によって魚介類を警戒させないように,上面側の生け簀網20が水面よりも上に位置するように設けるとよい。
【0018】
図3に示すように、生け簀網20の下端側には、下枠体22が固定されている。下枠体22は、図1、図3に示すように、上枠体18と同様の鋼管から形成されており、生け簀網20の底面側の四角形辺に矩形枠状に接続固定されている。この下枠体22は、生け簀網20の水流による変形を防ぎ、不意に魚介類が網に接触して傷付くのを防止する。さらに、下枠体22は、生け簀網20の下端側に重量体を固定することで生け簀12の重心を下方に位置させ、生け簀の水中での安定性を維持する。
【0019】
生け簀12は、この実施形態において、鋼管や金網等からなる上枠体18、生け簀網20を組付けた重量構造体からなるので、自由状態すなわち、生け簀12(この実施形態では、上、下枠体18、22と生け簀網20)のみでフロート等の大きな浮力による浮力支持がない状態では水中に沈降する。生け簀12は、図3に示すように、浮力手段16によって浮力支持されている。
【0020】
本実施形態において、浮力手段16は、生け簀12を水上に浮力支持しつつ必要に応じて水中の任意の沈み位置に変更設定する生け簀12の浮力支持手段である。この実施形態において、浮力手段16は、図2、3に示すように、固定浮力フロート24と、浮力調整用フロート26と、を有している。固定浮力フロート24は、図2、3に示すように、例えば、略俵形状に設けられており、上枠体18の下面側に複数個配置固定されている。固定浮力フロート24は、内部に空気が充填されており、常時一定の浮力を生け簀12に作用させている。固定浮力フロート24は、生け簀12の水中での重量を減じ、生け簀沈降時の係留手段16の支持力を軽減し得る。固定浮力フロート24は、生け簀12に対する浮力が均等に働くようにバランス良く配置すると生け簀が安定し好適である。この実施形態では、上枠体18の対向する辺に対称に配置されており、4辺ともに同じ浮力がかかるように配置されている。固定浮力フロート24は、生け簀12と一体的に浮沈するので、水圧に対する耐圧性の高い素材から形成される。
【0021】
浮力調整用フロート26は、自身の浮力を自在に調整することにより、生け簀12全体の浮力を調整して生け簀を浮沈させる。この実施形態において、浮力調整用フロート26は、図2、3に示すように、例えば、硬質の合成樹脂により略俵形状に形成されており、内部に浮力を発生させる空気が貯留される中空部が形成されている。浮力調整用フロート26は、上枠体18の下面側で、上枠体18の4辺側それぞれの辺の中央にバランス良く配置固定されており、浮力が均等に生じるように設置されている。この実施形態において、浮力調整用フロート26は、中空内部に水又は空気を入出させることによりフロート自身の浮力を自在に調整する。浮力調整用フロート26は、その胴部の上側に中空内部と連通し空気の入出口となる空気弁28が設けられている。空気弁28にホースが接続され、その延長端側にコンプレッサ等の空気供給手段が接続される。さらに、浮力調整用フロート26胴部の下側には、中空内部と連通し水の入出口となる給排水口30が設けられている。なお、浮力調整用フロート、固定浮力用フロート、係留フロートを含む各フロートは,適宜発泡性の合成樹脂などをフロート体の内、外面に被着させて浮力あるいはフロートの保護効果を向上させるようにするとよい。
【0022】
図4に示すように、生け簀12を沈降させる際には、空気弁28を開弁して空気を排気しつつ給排水口から周囲の水をフロート中空内部に入れることにより浮力調整用フロートの浮力を減じさせ、生け簀重量を浮力より大きくして生け簀を沈降させる。一方、生け簀12を浮上させる際には、コンプレッサCにより空気弁28から空気を圧送して給排水口から内部の水を抜き、再び浮力を増して水上に浮上する。コンプレッサCの送圧力等の加減により、内部の浮力の変化割合が変わり、生け簀の浮上速度が変化する。複数の調整用フロート26全てが常に同一浮力になるように空気の入出を行う。生け簀12を浮上させた際には浮力調整用フロート26の空気弁28を閉弁して、不意に空気が抜けて水が入り込むのを防止し、浮力が減少するのを防止する。なお、この実施形態では浮力調整用フロートの浮力調節には空気を圧送するコンプレッサを用いたが、ポンプ等を用いて浮力調整用フロート内部に水を入出させて浮力を調整することとしても良い。空気弁及び給排水口の個数は任意であり、その設置位置も任意でよい。浮力調整用フロートは、生け簀を浮上させた際に上枠体が水面よりも上に配置されるように最大浮力を設定すると、上枠体に足をかけたときに波にさらわれることがなく、給餌等の作業性が良好にできる。
【0023】
係留手段14は、生け簀12が水流や波によって流されないように生け簀12を一定の設置位置に係留支持する係留手段であり、生け簀の平面的な移動を抑制する。図2,図3に示すように、係留手段14は、4個のアンカー36と、アンカー36にそれぞれ連結されたアンカーロープ38と、を有している。この実施形態において、アンカーロープ38の他端側には、生け簀12の周囲に配置されて生け簀12と接続された側張りロープ32が連結されている。すなわち、アンカー36に連結されたアンカーロープ38は、側張りロープ32を介して生け簀を係留支持している。この実施形態において、アンカー36は、平面視で上枠体の対角線延長上で生け簀を中心に囲むように等間隔に配置されている。なお、アンカー36の重さや個数、アンカーロープ38の長さ等は、生け簀の大きさや重量、設置海域の気候、水流の速さ、波の強さ、または水深等により任意に設定される。
【0024】
図2に示すように、側張りロープ32は、生け簀12を平面的に取り囲むように上枠体18よりも大きな平面視略矩形状の枠を形成するように張られ、図3に示すように、水中の任意深さ位置に配置されている。側張りロープ32は、生け簀12に連結されて該生け簀の周囲を取り囲むように配置させて生け簀12に対する周囲からの張力の緩衝を行う張力緩衝ロープ機構33を形成する。ここに、張力緩衝ロープ機構33は、係留手段14に連係して生け簀12の周囲からの張力を緩衝しつつ生け簀12を支持する張力緩衝手段である。実施形態において、側張りロープ32が形成している四角形状の4つの隅部と上枠体18の4つの隅部とがそれぞれ接続ロープ34によって連結接続されている。側張りロープ32の矩形枠の隅部それぞれには、アンカーロープ38の他端がそれぞれ連結されており、アンカーによって常時は、周囲4方向に均等に張っぱられて支持されている。
【0025】
生け簀12が水面に浮上している際には、アンカー36に一端を固定されたアンカーロープ38からの支持張力は一次的に側張りロープ32に及び、この側張りロープに接続された接続ロープ34を介して間接的に生け簀12が支持されている。したがって、この状態で例えば水域が時化の状態の際には、例えば隅角延長方向にアンカリングされた4個のアンカーロープ38による張力は側張りロープ34に加わり、さらに四角形状に連結された側張りロープの各辺に対応するロープどうしが引き合って緩衝しつつ張力を平均化し、さらにそれぞれの側張りロープの隅部位置に接続された接続ロープ34が、平均化された安定した張力で四隅位置から生け簀の上枠体18を引張支持するものである。なお、例えば、生け簀12に直接アンカーロープ38を接続した場合には、時化の際などに瞬間的に大きな引張力が不規則にかつ、波状的に生け簀に直接に加わることになり、破損あるいは損壊して装置自体あるいは養殖魚を逃がして大きな損害を生じさせるおそれがある。
【0026】
さらに、側張りロープ32とアンカーロープ38との結着点Pには、係留ロープ42を介して水上に浮かべられた係留フロート40が接続されている。側張りロープ32は、結着点Pが係留フロート40により浮力支持されているので、アンカーロープ38による海底側への張力による支持力と、係留ロープ42による海面側への浮力による支持力とのバランスにより水中の任意の深さ位置に一定に保持されている。なお、側張りロープ32が、生け簀12を水中に沈降させた際に、生け簀12の重さにより沈下しないように、固定浮力フロート24や係留フロート40の浮力が設定される。側張りロープ32は、生け簀12の状態に関わらず常に一定位置に支持される。
【0027】
図4に示すように、側張りロープ32が配置される深さ位置及び接続ロープ34の長さにより、生け簀12の最沈下位置H(生け簀の上下移動幅)が決まる。この実施形態では、側張りロープ32の水中配置位置を最沈下位置Hの半分になるように設けられており、生け簀12が浮上した際と沈下した際に接続ロープ34が略緊張状態となって生け簀12を安定的に係留支持する。そして、生け簀12が海底まで沈降するのを規制するから、生け簀網20が海底に接触することで生じる破損や変形を防止でき、水深の深い位置でも生け簀が深く沈んでしまわず魚介類に適した水深(水圧)位置での生け簀使用を実現させ得る。生け簀網を水底に着底させると、生け簀網の底が海底に接触して破損したり、水深が深い海の場合には水圧により魚介類に悪影響を及ぼしたり、空気供給用ホースを長くしたりフロートの耐圧性を高めることで材料コストがかかることになる。また、側張りロープを水中に配置させているので、例えば、生け簀12に船を近付ける際に邪魔にならず、船のスクリュー等によりロープが切断されるのも防止できる。生け簀12の最沈降位置Hを生け簀網20の底部側が海底に接触しないように設定すると、側張りロープ32は、水中の一定の位置に配置され保持される。また、生け簀12は側張りロープ32に囲まれた状態で浮沈するから、生け簀12の浮上時及び沈降時間の上下動時の移動の際に平面的な位置ずれをより効果的に防止する。この側張りロープ32は、さらに、水中においてアンカーロープにそれぞれ直接にかつ、環状、すなわち四角形状に連結されているから、水中での水流によるアンカーロープの大きな撓みを防止し、水中での生け簀の安定的な浮力支持を助ける機能も有する。
【0028】
図5には、側張りロープ32に複数個の生け簀12を連結した実施例を示している。図5に示すように、複数の生け簀12を連結し、それらの周囲を囲むように側張りロープを設置し、かつそれぞれの生け簀の隅部を側張りロープに連結させている。複数の生け簀装置についてまとめて係留及び浮沈可能な浮力支持を行いながら、さらに、水中での生け簀の保護等を行える。なお、側張りロープは矩形枠状に限らず、生け簀形状やアンカーの配置位置等に対応して、任意の形状に張設してよい。
【0029】
次に、実施形態にかかる生け簀装置の作用とともに本発明の生け簀養殖方法の実施形態について説明する。生け簀装置10は、例えば、生け簀網20内に魚介類を収容しており、常時は、図3に示すように、生け簀12を海上に浮上して配置され、係留手段14によって係留支持され、平面的な移動を抑制されている。この際、浮力手段16の浮力調整用フロート内部は空気を封入しており、固定浮力フロート24とともに生け簀12を水面に浮上し得る浮力を作用している。例えば、荒天時などの強風時には、それぞれの浮力調整用フロート26の空気弁28から内部の空気を排しながら給排水口30より海水を入れて浮力を減じさせて生け簀を水中に沈降させる。生け簀を海中に沈めることにより、海中では海面に比べて波が弱いので、生け簀の受ける波の影響が弱く生け簀が流されたり破壊されるのを防止できる。そして、強風がおさまったら、コンプレッサC等によって、浮力調整用フロートの空気弁28から浮力調整用フロートの内部に圧力空気を送り込みながら給排水口30から水を排水して浮力を増大させて再び生け簀を海面上に浮上させる。また、赤潮の発生した際などにも、赤潮は水面側に発生するので、同様に海中に沈めて魚介類への影響を回避できる。
【0030】
また、他の使用形態として、常時は水面側より波の影響が弱い水中に生け簀を沈降させた状態とし、給餌や捕獲作業等の必要時のみ生け簀を浮上させるようにしても使用できる。よって、生け簀装置を流れの速い水域や波の強い海域であっても、生け簀を水中に配置させておくことにより、生け簀の破損が防止できる。水の流れが速い場所で使用できるので、溶存酸素の欠乏や海洋汚染が起こりにくく、養殖能率を向上できる。また、水中は海面よりも温度変化が少ないので、魚介類にとって良好な環境を維持できる。
【0031】
本発明の生け簀装置は、上記した実施の形態に限定されるものでなく特許請求の範囲に記載した発明の本質を逸脱しない範囲において任意の改変をしても良い。例えば、生け簀装置、固定浮力フロート、浮力調整用フロート等の形状大きさ等は、任意に設定される。また、固定浮力フロート、浮力調整用フロート等の個数や、配置位置も任意であり、浮力が均等に作用するように取り付けるとよい。また、浮力調整用フロートあるいはその他のフロートを金属製のフロート構造としてもよい。
【0032】
【発明の効果】
上記したように本発明の生け簀装置によれば、生け簀と、生け簀を水上または水中に浮力支持しつつ必要に応じて生け簀を水上と水中の任意の沈み位置とに位置変更設定させる浮力手段と、生け簀の平面的な移動を抑制して係留支持する係留手段と、を備えた構成であるから、生け簀を自在に浮沈させることができ、水流や、気候条件に応じて湾内外等の生け簀の設置位置の自由度が飛躍的に高くなり、特に、水面より波の影響の少ない水中に生け簀を配置させ、生け簀が流されたり破壊されるのを防止することができる。また、強風時の生け簀の退避及びその後の復帰が簡単に行える。さらに、生け簀を水流の速い湾外水域や波の強い外海等での利用が実現できるので、湾内等に設置する際の海底に沈殿した餌のヘドロ化による海洋汚染や、魚介類の病気の伝染、赤潮の発生、及び溶存酸素不足等による魚介類の被害等の種々の問題を解決できる。
【0033】
また、生け簀は自由状態で水中に沈降する構造体からなる構成とすることにより、金属パイプなどの高強度の構造体として生け簀枠を構成しつつ生け簀自体を生け簀沈降のためのおもりとして利用でき、浮沈制御を容易にでき、かつ製造コストを低減できる。
【0034】
また、浮力手段は、自身の浮力調整が可能な浮力調整用フロートを含む構成とすることにより、必要に応じて、浮力調整用フロートの浮力を増大して生け簀を水上に浮力支持したり、浮力を減少して生け簀を水中の任意位置に沈み配置させることができ、生け簀の浮沈自在の構成を実現できる。
【0035】
また、浮力手段は、常時生け簀を水上に浮力支持する固定浮力フロートを含む構成とすることにより、生け簀の浮上に必要な浮力を得るとともに、生け簀を沈降させた際に生け簀に浮力を作用させ、生け簀の水中での重量を軽減し、係留手段の支持力を軽減できる。
【0036】
また、係留手段に連係して生け簀をその周囲からの張力を緩衝しつつ支持する張力緩衝ロープ機構を備えた構成とすることにより、生け簀に対する張力を分散して平均的張力で生け簀を支持させ速い水流への設置や、荒天、時化時等での過酷な条件下でも安定した魚介類の養殖を行うことが可能である。
【0037】
また、張力緩衝ロープ機構は、生け簀に連結されて該生け簀の周囲を取り囲むように配置された側張りロープを含む構成とすることにより、簡単な構成で生け簀の周囲からの平均的な張力で安定した生け簀の支持を行うと共に、生け簀の水中配置時の水中高さ位置設定、アンカーロープからの保護等をも同時に達成し得る。
【0038】
また、係留手段は、アンカーと、アンカーに連結され他端側が側張りロープにそれぞれ連結されたアンカーロープと、を有し、さらに、アンカーロープと側張りロープとの結着点には係留フロートが接続されて該結着点を浮力支持した構成とすることにより、側張りロープとアンカーロープとの結着点を浮力支持して側張りロープを水中の一定深さ位置で保持し、水流によるロープの撓みなどを防止して側張りロープの種々の機能を実効化あらしめることができる。
【0039】
また、生け簀は、浮上させた際に作業用足場となり得る上枠体と、上枠体に取りつけられて水中に張設される生け簀網と、を有し、生け簀網の下端側には、下枠体が取りつけられた構成とすることにより、例えば、給餌や捕獲等の作業時の作業性が良好であるとともに、生け簀網の変形や破損を防止し、さらには、魚介類を保護できる。
【0040】
さらに、本発明の生け簀養殖方法によれば、自由状態で水上または水中に浮力支持しつつ必要に応じて水上と水中の任意の沈み位置とに位置変更設定させながら養殖を行うこととすることにより、水流や、気候条件に応じて湾内外等の生け簀の設置位置の自由度が飛躍的に高くなり、特に、水面より波の影響の少ない水中に生け簀を配置させ、生け簀が流されたり破壊されるのを防止することができる。また、強風時の生け簀の退避及びその後の復帰が簡単に行える。さらに、水流が速い水域や波のうねりが強い水域でも、常時は生け簀を波の影響の小さい海中に沈降させておき、給餌等の作業の際だけ生け簀を浮上させるようにすることで、生け簀が受ける波の影響を軽減して生け簀が破損するのを防止し、良好に養殖を行うことができる。また、生け簀を水流の速い湾外水域や波の強い外海等での利用が実現できるので、湾内等に設置する際の海底に沈殿した餌のヘドロ化による海洋汚染や、魚介類の病気の伝染、赤潮の発生、及び溶存酸素不足等による魚介類の被害等の種々の問題を解決できる。
【図面の簡単な説明】
【図1】本発明の生け簀装置の一実施形態の斜視図である。
【図2】図1の生け簀装置の一部省略した平面図である。
【図3】図1の生け簀装置の側面図である。
【図4】図1の生け簀装置の作用説明図である。
【図5】図1の生け簀装置を複数連結した実施例の説明図である。
【符号の説明】
10 生け簀装置
12 生け簀
14 係留手段
16 浮力手段
18 上枠体
20 生け簀網
22 下枠体
24 固定浮力フロート
26 浮力調整用フロート
32 側張りロープ
33 張力緩衝ロープ機構
36 アンカー
38 アンカーロープ
40 係留フロート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cage system and a cage culture method used for aquaculture of fish and shellfish.
[0002]
[Prior art]
Conventionally, the cultivation of fish and shellfish has been done by placing a fish cage on land near the coast or in an inner bay where the current is relatively slow and the waves are gentle, for example, attaching a float to a fish cage frame assembled with wood, bamboo, etc., and floating it on the sea. A net suspended from the frame was stretched underwater to create an enclosure for cultivating seafood.
[0003]
[Problems to be solved by the invention]
In the case where a fish cage is disposed in a slow-flowing inner bay or the like as in the prior art, there has been a problem that the rest of the food given to the fish in the fish cage sediments on the sea floor and becomes sludge, thereby causing marine pollution. In addition, fish diseases are easily transmitted in closed water bodies, such as inner bays, where water exchange is small. In particular, in recent years, nitrogen, phosphorus, and the like contained in wastewater from homes and factories flow into the sea, and eutrophication tends to occur, and red tide is generated on the sea surface, and fish and shellfish are adversely affected. Furthermore, when cultivating a large amount of fish in the limited space in the bay, the fish cages must be densely arranged, and there is a risk that the dissolved oxygen in the water becomes insufficient and the fish die. In addition, in the case of strong winds such as typhoons, the cages floating on the sea surface are directly affected by the swell of strong waves generated by strong winds and the rapid flow of water, so that the cages are washed away or damaged, and furthermore the cages are damaged. The damage caused the seafood to escape, causing severe damage. On the other hand, if a fish cage is placed in the open sea in order to eliminate the effects of marine pollution and seafood, the fish cage will always be directly affected by the swell of strong waves and the rapid flow of water. Similarly, there is a high risk that the cage will be washed away or damaged, making it difficult to install the cage in the open sea.
[0004]
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to make it possible to float up and down freely, and to arrange it in the water as needed, even in a water area with a fast current or a strong open sea. It is an object of the present invention to provide a live cage device and a live cage culture method capable of preventing ripening and breakage and satisfactorily farming. Another object of the present invention is to provide a pen cage apparatus and a pen cage culture method capable of buffering and dispersing the tension of a rope or the like supporting the pen to stably support the pen. It is a further object of the present invention to provide a fish cage device and a fish cage culture method that protect fish and shellfish by preventing deformation of the fish cage net while ensuring workability when the fish cage is raised.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a living cage 12, a buoyancy means 16 for changing the position of the living cage to an arbitrary sinking position in the water and underwater as necessary while supporting the living cage 12 on or above the water. And a mooring means 14 for restraining the living cage 12 from moving in a plane and mooring and supporting the same.
[0006]
In addition, the living cage 12 may be made of a structure that sinks in water in a free state.
[0007]
In addition, the buoyancy means 16 may include a buoyancy adjustment float 26 capable of adjusting its own buoyancy.
[0008]
In addition, the buoyancy means 16 may include a fixed buoyancy float 24 that constantly supports the living cage 12 on the water.
[0009]
Further, a tension buffer rope mechanism 33 may be provided in cooperation with the mooring means 14 to support the living cage while buffering tension from its surroundings.
[0010]
Further, the tension buffer rope mechanism 33 may include a side tension rope 32 connected to the living cage 12 and arranged so as to surround the periphery of the living cage 12.
[0011]
Further, the mooring means 14 has an anchor 36 and an anchor rope 38 connected to the anchor 36 and the other end connected to the side rope 32, respectively. The mooring float 40 may be connected to the attachment point P to support the attachment point P by buoyancy.
[0012]
In addition, the living cage 12 has an upper frame 18 that can be a working scaffold when floated, and a living cage net 20 attached to the upper frame 18 and stretched underwater. The lower frame 22 may be attached to the side.
[0013]
In addition, the living cage 12 having a net suspended and suspended in the water in a free state and submerged in the water is supported by the buoyancy means 16 on the water or in the water while supporting the water cage 12 as required. It comprises a livestock cage culture method characterized by performing aquaculture while changing the position to the sinking position.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a cage system and a cage culture method of the present invention will be described with reference to the accompanying drawings. The cage device of the present invention, the position of the frame is set to any sinking position as needed while supporting the cage in the water or buoyancy, thereby, the state in which the frame body floats on the water surface, the frame body in the water This is a living cage device that performs aquaculture while changing the state of sedimentation and arrangement as needed.
[0015]
FIGS. 1 to 4 show an embodiment of a fish cage device of the present invention. In the embodiment, the fish cage device 10 includes a fish cage 12, buoyancy means 16, and mooring means 14 for mooring and supporting the fish cage. ing.
[0016]
In FIG. 1, the cage 12 includes an upper frame 18 and a cage net 20. The living cage 12 is a frame means with an aquaculture net for arranging a frame body, for example, constantly on the water, suspending a net for the aquarium, and putting a bream, a sea bream, a hamachi, other target fish, and the like to be cultured therein for aquaculture. The fish cage net is formed in a square shape with a bottom so that the target fish does not escape, and is suspended in water. As shown in FIG. 2, the upper frame 18 is formed of, for example, a frame in which metal such as a steel pipe is assembled in a rectangular shape in a plan view. The inner and outer frames are assembled to have a certain width so that they can be used as a scaffold. The upper frame 18 has a strength that can withstand the weight of a person and the impact of a certain amount of water flow or waves. The upper frame 18 is not limited to a steel pipe, and may be made of any material having a certain level of strength and corrosion resistance. The mounting structure is not limited to a rectangular shape in a plan view, but may be a triangle, a pentagon, other polygons, a circle, an ellipse, or any other shape. As shown in FIG. 3, a handrail 19 is attached to the upper frame body 18 in the same shape as the inner frame supported by a vertical rod erected from the inner frame. The upper frame 18 is buoyantly supported by buoyancy means 16 having a plurality of floats 24.26 described later. In this embodiment, since the upper frame body 18 is formed from a steel pipe, the mass of the upper frame body itself exceeds the buoyancy and enters the water in a free state alone, that is, in a free state in which the upper frame body is not supported by buoyancy means with a large buoyancy such as a float. Settles. The upper frame 18 serves as a foothold for an operator when floated on the sea surface, and has good workability such as feeding and catching of fish and shellfish.
[0017]
In this embodiment, as shown in FIGS. 1 and 3, the cage net 20 is stretched underwater at a position directly below the central opening of the upper frame 18 to form, for example, a three-dimensional rectangular box. I have. The fish cage net 20 surrounds six sides, that is, up, down, front, back, left, and right, and forms an accommodation space for fish and shellfish therein. A part of the net on the upper surface side can be freely opened and closed to provide a lid net for feeding. In addition, the shape of the net is not limited, and a three-dimensional polygonal shape, a cylindrical shape, and other shapes are formed in accordance with the shape of the upper frame. The living cage net 20 is formed of, for example, a wire net. Since the wire mesh has a certain degree of rigidity, the wire mesh is not easily deformed even when used in a water area where a water flow is fast or a water area where a wave is strong. In addition, the cage net 20 is not limited to a wire net, but may be made of a synthetic fiber such as polyethylene, a rope formed of a rope, or another material suitable for a culture net. When the upper frame 18 is buoyantly supported on the water, the fish net 20 on the upper surface side is positioned above the water surface so that the fish and shellfish are not alerted by the undulating sound caused by the contact between the water and the net. It is good to provide.
[0018]
As shown in FIG. 3, a lower frame 22 is fixed to a lower end side of the net cage 20. As shown in FIGS. 1 and 3, the lower frame 22 is formed of the same steel pipe as the upper frame 18, and is connected and fixed in a rectangular frame shape to the square side on the bottom side of the net cage 20. The lower frame 22 prevents deformation of the cage net 20 due to the water flow, and prevents the fish and shellfish from unexpectedly coming into contact with the net and being damaged. Further, the lower frame 22 fixes the weight body to the lower end side of the net cage 20, thereby lowering the center of gravity of the net cage 12 below and maintaining the stability of the net in the water.
[0019]
In this embodiment, the living cage 12 is composed of a heavy structure in which the upper frame body 18 made of a steel pipe, a wire mesh, or the like and the living cage net 20 are assembled, so that the living cage 12 is free, that is, the living cage 12 (in this embodiment, the upper and lower frames). If the buoyancy is not supported by large buoyancy such as a float, only the bodies 18 and 22 and the net cage 20) will sink in water. The living cage 12 is buoyantly supported by buoyancy means 16 as shown in FIG.
[0020]
In the present embodiment, the buoyancy means 16 is a buoyancy support means of the livestock cage 12 which buoyancy-supports the water above the water and changes and sets an arbitrary sinking position in the water as needed. In this embodiment, the buoyancy means 16 has a fixed buoyancy float 24 and a buoyancy adjustment float 26 as shown in FIGS. As shown in FIGS. 2 and 3, the fixed buoyancy float 24 is, for example, provided in a substantially bale shape, and a plurality of the fixed buoyancy floats 24 are arranged and fixed on the lower surface side of the upper frame 18. The fixed buoyancy float 24 is filled with air, and constantly exerts a constant buoyancy on the living cage 12. The fixed buoyancy float 24 can reduce the weight of the cage 12 in water and reduce the support force of the mooring means 16 during sinking of the cage. If the fixed buoyancy floats 24 are arranged in a well-balanced manner so that the buoyancy to the living pens 12 acts evenly, the living pens are stable and suitable. In this embodiment, the upper frame body 18 is symmetrically arranged on opposing sides, and the four sides are arranged so as to exert the same buoyancy. Since the fixed buoyancy float 24 floats and sinks integrally with the living cage 12, it is formed of a material having high pressure resistance against water pressure.
[0021]
The buoyancy adjusting float 26 adjusts the buoyancy of the entire living pens 12 by freely adjusting its own buoyancy, thereby causing the living pens to float. In this embodiment, as shown in FIGS. 2 and 3, the float 26 for adjusting buoyancy is formed in a substantially bale shape by a hard synthetic resin, for example, and a hollow portion in which air for generating buoyancy is stored. Is formed. The buoyancy adjusting float 26 is arranged and fixed in a well-balanced manner on the lower surface side of the upper frame body 18 at the center of each of four sides of the upper frame body 18, and is installed so that buoyancy is evenly generated. In this embodiment, the float 26 for adjusting buoyancy adjusts the buoyancy of the float itself by allowing water or air to flow into and out of the hollow interior. The float 26 for adjusting the buoyancy is provided with an air valve 28 that communicates with the hollow interior and serves as an air inlet / outlet above the body. A hose is connected to the air valve 28, and air supply means such as a compressor is connected to the extension end side. Further, a water supply / drain port 30 which communicates with the hollow interior and serves as an inlet / outlet of water is provided below the body of the float 26 for adjusting buoyancy. In addition, each float including a buoyancy adjusting float, a fixed buoyancy float, and a mooring float may be appropriately coated with an expandable synthetic resin or the like on the inner and outer surfaces of the float body so as to improve the buoyancy or the protective effect of the float. Good to do.
[0022]
As shown in FIG. 4, when sinking the living cage 12, the air valve 28 is opened and the surrounding water is introduced into the float hollow from the water supply / drain port while exhausting air, thereby reducing the buoyancy of the buoyancy adjusting float. And reduce the weight of the cage to a level greater than the buoyancy to sink the cage. On the other hand, when the living cage 12 is raised, the air is pressure-fed from the air valve 28 by the compressor C to drain the internal water from the water supply / drain opening, and the buoyancy is increased again to float on the water. The rate of change of the internal buoyancy changes due to the adjustment of the sending pressure of the compressor C and the like, and the rising speed of the cage changes. The air enters and exits so that all of the plurality of adjusting floats 26 always have the same buoyancy. When the living cage 12 is raised, the air valve 28 of the buoyancy-adjusting float 26 is closed to prevent sudden escape of air and entry of water, thereby preventing buoyancy from decreasing. In this embodiment, the buoyancy adjustment float is adjusted by using a compressor that pumps air. However, a buoyancy adjustment float may be adjusted by letting water in and out of the buoyancy adjustment float. The number of air valves and water supply / drainage ports is arbitrary, and the installation positions thereof may also be arbitrary. The float for buoyancy adjustment, if you set the maximum buoyancy so that the upper frame body is placed above the water surface when floating the cage, it will not be exposed to waves when putting on the upper frame body Workability such as feeding can be improved.
[0023]
The mooring means 14 is a mooring means for mooring and supporting the living cage 12 at a fixed installation position so that the living cage 12 is not washed away by water currents or waves, and suppresses the planar movement of the living cage. As shown in FIGS. 2 and 3, the mooring means 14 has four anchors 36 and anchor ropes 38 respectively connected to the anchors 36. In this embodiment, the other side of the anchor rope 38 is connected to the side tension rope 32 arranged around the living cage 12 and connected to the living cage 12. That is, the anchor rope 38 connected to the anchor 36 is mooring and supporting the fish cage through the side tension rope 32. In this embodiment, the anchors 36 are arranged at equal intervals so as to surround the cage in the diagonal extension of the upper frame body in plan view. The weight and number of the anchors 36, the length of the anchor ropes 38, and the like are arbitrarily set according to the size and weight of the fish cage, the climate of the installation sea area, the speed of the water flow, the strength of the waves, the water depth, and the like.
[0024]
As shown in FIG. 2, the side tension rope 32 is stretched so as to form a substantially rectangular frame in a plan view larger than the upper frame body 18 so as to surround the living cage 12 in a planar manner, as shown in FIG. 3. , At an arbitrary depth in the water. The side tension rope 32 is connected to the cage 12 and is disposed so as to surround the periphery of the cage, thereby forming a tension buffering rope mechanism 33 that buffers the tension from the periphery of the cage 12. Here, the tension buffer rope mechanism 33 is a tension buffer unit that supports the living cage 12 while cooperating with the mooring means 14 to buffer the tension from around the living cage 12. In the embodiment, the four corners of the quadrangular shape formed by the side tension rope 32 and the four corners of the upper frame 18 are connected and connected by connection ropes 34, respectively. The other ends of the anchor ropes 38 are connected to the respective corners of the rectangular frame of the side tension rope 32, and are always stretched and supported uniformly in four directions by the anchor.
[0025]
When the living cage 12 is floating on the water surface, the supporting tension from the anchor rope 38 having one end fixed to the anchor 36 temporarily extends to the side tension rope 32, and the connection rope 34 connected to this side tension rope. The living cage 12 is indirectly supported via the. Therefore, in this state, for example, when the water area is aging, for example, the tension of the four anchor ropes 38 anchored in the corner extension direction is applied to the side tension ropes 34 and further connected in a square shape. The ropes corresponding to each side of the side rope are attracted to each other and buffered, and the tension is averaged. Further, the connecting ropes 34 connected to the corner positions of the side ropes are connected to the four corners with the averaged stable tension. The upper frame body 18 is pulled and supported from the position. In addition, for example, when the anchor rope 38 is directly connected to the cage, a large tensile force is instantaneously and irregularly and instantaneously applied to the cage in a timely manner, so that the cage is damaged or damaged. There is a possibility that the device itself or the cultured fish may be damaged and escaped, causing serious damage.
[0026]
Further, a mooring float 40 floating on the water is connected via a mooring rope 42 to a connection point P between the side tension rope 32 and the anchor rope 38. Since the side tension rope 32 is buoyantly supported at the binding point P by the mooring float 40, the supporting force of the anchor rope 38 due to the tension toward the sea bottom and the mooring rope 42 due to the buoyancy toward the sea surface. It is kept constant at an arbitrary depth position in the water by balance. The buoyancy of the fixed buoyancy float 24 and the mooring float 40 is set so that the side tension rope 32 does not sink due to the weight of the cage 12 when the cage 12 sinks in water. The side tension rope 32 is always supported at a fixed position irrespective of the state of the living cage 12.
[0027]
As shown in FIG. 4, the lowest position H (vertical movement width of the livestock cage) of the livestock cage 12 is determined by the depth position where the side tension rope 32 is arranged and the length of the connection rope 34. In this embodiment, the underwater arrangement position of the side tension rope 32 is provided so as to be half of the lowest settlement position H, and the connection rope 34 is substantially tensioned when the living cage 12 rises and sinks. The living cage 12 is stably moored and supported. And, since the cages 12 are restricted from sinking to the sea floor, the cages 20 can be prevented from being damaged or deformed due to contact with the sea bottom, and are suitable for fish and shellfish without the sinking of the cages even in deep water. It is possible to realize the use of a fish cage at a water depth (water pressure) position. If the fish net is settled on the bottom of the water, the bottom of the fish net contacts the seabed and is damaged.In the case of a deep sea, water pressure adversely affects fish and shellfish, and the air supply hose is lengthened. Increasing the pressure resistance of the float increases material costs. Also, since the side tension ropes are disposed in the water, the ropes are not obstructed when, for example, approaching the boat to the living cage 12, and the ropes can be prevented from being cut off by screws or the like. When the lowest sinking position H of the fish cage 12 is set so that the bottom side of the fish cage net 20 does not contact the seabed, the side rope 32 is arranged and held at a certain position in the water. In addition, since the living cage 12 floats and sinks while being surrounded by the side tension ropes 32, the planar displacement is more effectively prevented when the living cage 12 moves up and down during settling time. Further, since the side tension ropes 32 are directly connected to the anchor ropes in the water and in a ring shape, that is, in a square shape, the side ropes 32 prevent a large bending of the anchor ropes due to the water flow in the water, and form a living cage in the water. It also has a function to help stable buoyancy support.
[0028]
FIG. 5 shows an embodiment in which a plurality of fish cages 12 are connected to side tension ropes 32. As shown in FIG. 5, a plurality of living cages 12 are connected, side ropes are installed so as to surround them, and corners of the respective living cages are connected to the side ropes. While providing buoyancy support capable of mooring and sinking and sinking a plurality of cage devices collectively, protection of the cages in water can be further performed. Note that the side tension rope is not limited to the rectangular frame shape, and may be stretched in an arbitrary shape corresponding to the shape of the fish cage, the arrangement position of the anchor, and the like.
[0029]
Next, an embodiment of the livestock cultivation method of the present invention will be described together with the operation of the livestock cultivation device according to the embodiment. The fish cage device 10 contains, for example, fish and shellfishes in a fish cage net 20, and is normally arranged with the fish cage 12 floating above the sea, and is moored and supported by the mooring means 14, as shown in FIG. Movement is suppressed. At this time, the inside of the buoyancy adjusting float of the buoyancy means 16 is filled with air, and acts together with the fixed buoyancy float 24 to exert buoyancy capable of floating the living cage 12 on the water surface. For example, in strong winds such as in stormy weather, seawater is introduced from the water supply / drain port 30 to reduce buoyancy while discharging the internal air from the air valves 28 of the respective buoyancy adjustment floats 26 to reduce the buoyancy, thereby sinking the cage in the water. By submerging the cage in the sea, the waves are weaker than the sea surface in the sea, so the influence of the waves received by the cage is weak and the cage can be prevented from being washed away or destroyed. Then, when the strong wind has subsided, the compressor C or the like drains water from the water supply / drain port 30 to increase the buoyancy while sending pressurized air from the air valve 28 of the buoyancy adjustment float to the inside of the buoyancy adjustment float, thereby increasing the buoyancy again. Surface above sea level. Also, when a red tide occurs, the red tide is generated on the water surface side, so that the red tide can be similarly sunk in the sea to avoid an influence on fish and shellfish.
[0030]
Further, as another usage mode, it is also possible to use such a state that the cage is settled in the water where the influence of the wave is weaker than the water surface side, and the cage is raised only when necessary for feeding or catching work. Therefore, even if the cage is placed in the water area where the current is fast flowing or the sea area where the wave is strong, the cage can be prevented from being damaged by disposing the cage in the water. Since it can be used in places where the flow of water is fast, lack of dissolved oxygen and marine pollution are unlikely to occur, and the aquaculture efficiency can be improved. Further, since the temperature change is smaller in the water than in the sea surface, a favorable environment for the fish and shellfish can be maintained.
[0031]
The cage device of the present invention is not limited to the above-described embodiment, and may be arbitrarily modified without departing from the essence of the invention described in the claims. For example, the shape and size of the living cage, the fixed buoyancy float, the float for adjusting buoyancy, and the like are arbitrarily set. Further, the number and arrangement position of the fixed buoyancy float, the float for adjusting buoyancy and the like are arbitrary, and it is preferable to mount the float so that the buoyancy acts evenly. In addition, the float for adjusting buoyancy or other floats may have a metal float structure.
[0032]
【The invention's effect】
As described above, according to the cage device of the present invention, a cage, a buoyancy means for changing the position of the cage to an arbitrary sinking position on the water and in the water as needed while supporting the cage in the water or in the water, and buoyancy means, The structure is provided with a mooring means for suppressing the planar movement of the cage and mooring and supporting the cage, so that the cage can be freely raised and lowered, and the setting of the cage inside and outside the bay according to the water flow and the climatic conditions. The degree of freedom of the position is dramatically increased, and in particular, it is possible to dispose the cage in water that is less affected by waves than the water surface, and to prevent the cage from being washed away or destroyed. In addition, evacuation of the cage in a strong wind and subsequent return can be easily performed. In addition, the fish cage can be used in areas outside the bay where the water flow is fast, or in the open sea where the waves are strong, so that when it is installed in the bay etc., marine pollution due to sludge of the food deposited on the seabed and the transmission of diseases of fish and shellfish And various problems such as generation of red tide and damage to fish and shellfish due to lack of dissolved oxygen.
[0033]
In addition, by using a structure consisting of a structure that sinks in water in a free state, the cage can be used as a weight for sinking the cage while constructing the cage frame as a high-strength structure such as a metal pipe, Floating and sinking control can be facilitated and manufacturing costs can be reduced.
[0034]
In addition, the buoyancy means is configured to include a buoyancy adjustment float capable of adjusting its own buoyancy, so as to increase the buoyancy of the buoyancy adjustment float to support the buoyancy on the water, or to increase the buoyancy of the float, if necessary. Can be reduced and the cage can be sunk and arranged at an arbitrary position in the water, and a configuration in which the cage can float and sink can be realized.
[0035]
In addition, the buoyancy means is configured to include a fixed buoyancy float that constantly supports the buoy on the water, thereby obtaining the necessary buoyancy for the surfacing of the basin, and exerting buoyancy on the basin when the basin sinks, The weight of the underwater cage in water can be reduced, and the supporting force of the mooring means can be reduced.
[0036]
In addition, by using a structure including a tension buffering rope mechanism that supports the cage in connection with the mooring means while buffering the tension from its surroundings, the tension with respect to the cage is dispersed, and the cage is supported with an average tension and the cage is supported quickly. It is possible to stably cultivate fish and shellfish even under severe conditions such as installation in a water stream or in stormy weather or aging.
[0037]
In addition, the tension buffering rope mechanism is configured to include side tension ropes connected to the living cage and arranged so as to surround the surrounding of the living cage, so that the tension can be stabilized with an average tension from the periphery of the living cage with a simple configuration. In addition to supporting the preserved cage, the underwater height position setting when the cage is placed in the water, protection from the anchor rope, and the like can be achieved at the same time.
[0038]
In addition, the mooring means has an anchor and an anchor rope connected to the anchor and the other end side connected to the side rope, respectively, and further, a mooring float is provided at a connection point between the anchor rope and the side rope. The connection point is buoyantly supported at the connection point, so that the connection point between the side rope and the anchor rope is supported by buoyancy to hold the side rope at a constant depth position in the water, and the rope by water flow Various functions of the side rope can be realized by preventing bending of the rope.
[0039]
In addition, the fish cage has an upper frame that can be a working scaffold when floated, and a fish cage net attached to the upper frame and stretched underwater, and at the lower end side of the fish cage net, By adopting a configuration in which the frame is attached, for example, workability during operations such as feeding and catching is good, and deformation and breakage of the fish cage net can be prevented, and further, fish and shellfish can be protected.
[0040]
Furthermore, according to the cage cultivation method of the present invention, by performing culturing while changing the position on the water and any sinking position in the water as needed while supporting buoyancy on the water or in the water in a free state. Depending on the water flow and climatic conditions, the degree of freedom in the location of the cages inside and outside the bay is dramatically increased, especially when the cages are placed in water less affected by waves than the water surface, and the cages are washed away or destroyed Can be prevented. In addition, evacuation of the cage in a strong wind and subsequent return can be easily performed. Furthermore, even in the water area where the water flow is fast or the swell of the waves is strong, the fish cage is always settled in the sea where the influence of the waves is small, and the fish cage is raised only during the work such as feeding. The influence of the waves received can be reduced to prevent the cage from being damaged, and the aquaculture can be carried out well. In addition, because the fish cage can be used in areas outside the bay where the water flow is fast, or in the open sea where the waves are strong, it is possible to realize marine pollution due to sludge of the food that has settled on the bottom of the sea when installing it in the bay, etc., and transmission of fish and shellfish diseases. And various problems such as generation of red tide and damage to fish and shellfish due to lack of dissolved oxygen.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of a fish cage device of the present invention.
FIG. 2 is a partially omitted plan view of the living cage device of FIG.
FIG. 3 is a side view of the cage apparatus of FIG. 1;
FIG. 4 is an operation explanatory view of the living cage device of FIG. 1;
FIG. 5 is an explanatory view of an embodiment in which a plurality of the living cage devices of FIG. 1 are connected.
[Explanation of symbols]
10 Living cage device
12 living cage
14 Mooring means
16 Buoyancy means
18 Upper frame
20 netting net
22 Lower frame
24 fixed buoyancy float
26 Float Adjustment Float
32 Side rope
33 Tension buffer rope mechanism
36 anchor
38 Anchor rope
40 Mooring float

Claims (9)

生け簀と、
生け簀を水上または水中に浮力支持しつつ必要に応じて生け簀を水上と水中の任意の沈み位置とに位置変更設定させる浮力手段と、
生け簀の平面的な移動を抑制して係留支持する係留手段と、を備えたことを特徴とする生け簀装置。
A living cage,
A buoyancy means for changing the position of the cage to the above water and any sinking position in the water as needed while supporting the cage in the water or buoyancy in the water,
A mooring device, comprising: mooring means for suppressing mooring and supporting the mooring in a planar manner.
生け簀は自由状態で水中に沈降する構造体からなる請求項1記載の生け簀装置。2. The cage device according to claim 1, wherein the cage is a structure that sinks in water in a free state. 浮力手段は、自身の浮力調整が可能な浮力調整用フロートを含む請求項1または2記載の生け簀装置。3. The cage apparatus according to claim 1, wherein the buoyancy means includes a buoyancy adjustment float capable of adjusting the buoyancy of the buoyancy means. 浮力手段は、常時生け簀を水上に浮力支持する固定浮力フロートを含む請求項1ないし3のいずれかに記載の生け簀装置。4. The cage apparatus according to claim 1, wherein the buoyancy means includes a fixed buoyancy float that constantly supports the cage in water. 5. 係留手段に連係して生け簀をその周囲からの張力を緩衝しつつ支持する張力緩衝ロープ機構を備えたことを特徴とする請求項1ないし4のいずれかに記載の生け簀装置。The apparatus according to any one of claims 1 to 4, further comprising a tension buffering rope mechanism that supports the living cage while buffering the tension from the surroundings in cooperation with the mooring means. 張力緩衝ロープ機構は、生け簀に連結されて該生け簀の周囲を取り囲むように配置された側張りロープを含む請求項5記載の生け簀装置。6. The cage apparatus according to claim 5, wherein the tension buffer rope mechanism includes a side tension rope connected to the cage and arranged to surround the periphery of the cage. 係留手段は、アンカーと、アンカーに連結され他端側が側張りロープにそれぞれ連結されたアンカーロープと、を有し、
さらに、アンカーロープと側張りロープとの結着点には係留フロートが接続されて該結着点を浮力支持してなる請求項6記載の生け簀装置。
The mooring means has an anchor and an anchor rope connected to the anchor and the other end connected to the side rope,
7. The livestock cage device according to claim 6, wherein a mooring float is connected to a connection point between the anchor rope and the side tension rope to support the connection point by buoyancy.
生け簀は、浮上させた際に作業用足場となり得る上枠体と、
上枠体に取りつけられて水中に張設される生け簀網と、を有し、
生け簀網の下端側には、下枠体が取りつけられた請求項1ないし7のいずれかに記載の生け簀装置。
The living cage is an upper frame that can be a work scaffold when floated,
A fish cage net attached to the upper frame and stretched underwater,
8. The cage system according to claim 1, wherein a lower frame is attached to a lower end of the cage network.
自由状態で水中に沈降する枠体に垂下されて水中に配置される網を有する生け簀を、浮力手段により水上または水中に浮力支持しつつ必要に応じて水上と水中の任意の沈み位置とに位置変更設定させながら養殖を行うことを特徴とする生け簀養殖方法。A cage with a net that is suspended in the water and sinks in the water in a free state, and that has a net placed in the water. A livestock cage cultivation method characterized by culturing while changing the setting.
JP2002276494A 2002-09-24 2002-09-24 Crawl apparatus and method for culturing in crawl Pending JP2004113003A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002276494A JP2004113003A (en) 2002-09-24 2002-09-24 Crawl apparatus and method for culturing in crawl
CNB021514984A CN1219431C (en) 2002-09-24 2002-11-22 Net cage and net cage breed aquatics method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276494A JP2004113003A (en) 2002-09-24 2002-09-24 Crawl apparatus and method for culturing in crawl

Publications (1)

Publication Number Publication Date
JP2004113003A true JP2004113003A (en) 2004-04-15

Family

ID=32104924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276494A Pending JP2004113003A (en) 2002-09-24 2002-09-24 Crawl apparatus and method for culturing in crawl

Country Status (2)

Country Link
JP (1) JP2004113003A (en)
CN (1) CN1219431C (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016621A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Structure for use in seawater, wire-shaped or rod-shaped copper alloy material for constituting the same, and process for production thereof
WO2010139831A1 (en) * 2009-06-01 2010-12-09 Unda Desarrollos Tecnológicos Marinos, S.L. Modular cage structure for fattening octopuses
EP2360235A1 (en) * 2008-12-03 2011-08-24 Inha Industry Partnership Institute Photobioreactor for a large-scale marine microalgal culture using half-transmitting film
WO2011102693A2 (en) * 2010-02-22 2011-08-25 인하대학교 산학협력단 Photobioreactor for mass culture of microalgae, and method for culturing microalgae by using same
WO2011123895A1 (en) * 2010-04-07 2011-10-13 Leslie Steven J Aquaculture assembly and method
CN102308763A (en) * 2010-07-06 2012-01-11 中国水产科学研究院东海水产研究所 Turbot cultivation net cage having anti-pollution function
CN102919181A (en) * 2012-11-21 2013-02-13 浙江海洋学院 Multi-ecological culture device for shallow sea
KR101241454B1 (en) 2012-10-10 2013-03-27 한국수자원공사 Solar power plant constructed on the water with safety rope for anti sinking
JP2016149978A (en) * 2015-02-18 2016-08-22 一般財団法人沖縄美ら島財団 Fish capture device
CN106106301A (en) * 2016-08-15 2016-11-16 郭伟锋 Floated automatic lifting Margarita freshwater mussel keeps hanging device and keeps hanging method
JP2017148035A (en) * 2016-02-25 2017-08-31 キム ソンウクKIM,Sung−Uk Underwater aquaculture device of salmon
CN107318728A (en) * 2017-07-19 2017-11-07 合肥学院 The single-point anchoring type net cage with power pooling feature is fixed with etting
CN108575868A (en) * 2018-06-25 2018-09-28 温州农联农业科技与项目设计研究所 A kind of aquaculture device and the aquaculture method with the device
CN109042399A (en) * 2018-07-05 2018-12-21 长江大学 A kind of monopterus albus fry original position breeding method
US20210214048A1 (en) * 2018-05-18 2021-07-15 Subsea Farming As System and method for controlling a structure suspended in water
CN117958194A (en) * 2024-01-24 2024-05-03 中国水产科学研究院南海水产研究所 Mooring system and lifting type cultivation net cage

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341401C (en) * 2004-12-18 2007-10-10 中国水产科学研究院黄海水产研究所 Pump pressure type method of sinking floating net cage and control device
CN100502647C (en) * 2007-07-09 2009-06-24 中国海洋大学 Convenient lifting rope type marine culture mesh cage
CN101946726B (en) * 2010-08-03 2012-06-27 席振乐 Soft-frame-type sea-bottom cultivation net cage
CN102027885A (en) * 2010-10-29 2011-04-27 吕军仪 Suspended aquaculture device capable of moving shellfish for fattening and collecting infant shellfish
CN103380750B (en) * 2013-06-27 2015-04-22 浙江大学宁波理工学院 Automatic deepwater net cage intelligent settlement system
CN103734055B (en) * 2014-01-02 2015-07-01 浙江海洋学院 Rack driving type mobile pluggable net cage
CN103858797A (en) * 2014-02-17 2014-06-18 施建华 Rising-falling type hard-bottom seawater ecological farming net cage
CN107155989A (en) * 2017-06-02 2017-09-15 马导利 Aquaculture device
CN107155991A (en) * 2017-06-16 2017-09-15 大连理工大学 A kind of semi-submersible type aquaculture net cage group system
FR3067906A1 (en) * 2017-06-27 2018-12-28 Serge Menard FLOATING AND SUBMERSIBLE HIGH SEA AQUACULTURE INSTALLATION
CN107801668A (en) * 2017-09-22 2018-03-16 广西壮族自治区海洋研究所 A kind of blue crab cultivation cage that can adjust depth
CN107926800A (en) * 2017-12-24 2018-04-20 沃邦(天津)科技有限公司 A kind of preventing deep water breeding net case device
CN108477044B (en) * 2018-02-02 2020-10-20 中国水产科学研究院东海水产研究所 Large-scale floating culture platform net cage structure
CN109220936A (en) * 2018-11-09 2019-01-18 美钻深海能源科技研发(上海)有限公司 A kind of the water injection sink-float system and its sink-float control method of underwater net cage cultivation
CN109430131A (en) * 2018-11-28 2019-03-08 太湖县木子峰农业发展有限公司 A kind of radix saposhnikoviae wave type aquaculture equipment
CN109430132A (en) * 2018-12-10 2019-03-08 美钻深海能源科技研发(上海)有限公司 Underwater breeding mesh cage, which is intelligently inhaled, catches cultivation apparatus
CN110036959B (en) * 2019-04-25 2021-10-22 上海工程技术大学 Multifunctional primary-secondary type marine ecological breeding net cage
CN110326573B (en) * 2019-08-19 2021-06-08 浙江海洋大学 Round platform type wind wave resistant net cage

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171886B2 (en) 2004-08-10 2012-05-08 Mitsubishi Shindoh Co., Ltd. Structure used in seawater, copper alloy wire or bar forming the structure, and method for manufacturing the copper alloy wire or bar
JP2007332466A (en) * 2004-08-10 2007-12-27 Sanbo Copper Alloy Co Ltd Copper alloy and structure for use in seawater using the same
AU2005256111B2 (en) * 2004-08-10 2010-07-01 Mitsubishi Shindoh Co., Ltd. Structure for use in seawater, wire-shaped or rod-shaped copper alloy material for constituting the same, and process for production thereof
WO2006016621A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Structure for use in seawater, wire-shaped or rod-shaped copper alloy material for constituting the same, and process for production thereof
EP2360235A1 (en) * 2008-12-03 2011-08-24 Inha Industry Partnership Institute Photobioreactor for a large-scale marine microalgal culture using half-transmitting film
US9181520B2 (en) 2008-12-03 2015-11-10 Inha-Industry Partnership Institute Photobioreactor for mass-culturing marine microalgae using semi-permeable membrane
EP2360235A4 (en) * 2008-12-03 2013-01-16 Inha Ind Partnership Inst Photobioreactor for a large-scale marine microalgal culture using half-transmitting film
WO2010139831A1 (en) * 2009-06-01 2010-12-09 Unda Desarrollos Tecnológicos Marinos, S.L. Modular cage structure for fattening octopuses
ES2364717A1 (en) * 2009-06-01 2011-09-13 Unda Desarrollos Tecnologicos Marinos, S.L. Modular cage structure for fattening octopuses
WO2011102693A3 (en) * 2010-02-22 2012-01-05 인하대학교 산학협력단 Photobioreactor for mass culture of microalgae, and method for culturing microalgae by using same
WO2011102693A2 (en) * 2010-02-22 2011-08-25 인하대학교 산학협력단 Photobioreactor for mass culture of microalgae, and method for culturing microalgae by using same
KR102003270B1 (en) 2010-04-07 2019-07-24 스티븐 제이. 레슬리 Aquaculture assembly and method
US10932452B2 (en) 2010-04-07 2021-03-02 Steven J. Leslie Aquaculture assembly and method
WO2011123895A1 (en) * 2010-04-07 2011-10-13 Leslie Steven J Aquaculture assembly and method
KR20130054259A (en) * 2010-04-07 2013-05-24 이본느 이. 영 Aquaculture assembly and method
AU2011238426B2 (en) * 2010-04-07 2015-01-29 Steven J. Leslie Aquaculture assembly and method
CN102308763A (en) * 2010-07-06 2012-01-11 中国水产科学研究院东海水产研究所 Turbot cultivation net cage having anti-pollution function
CN102308763B (en) * 2010-07-06 2013-02-06 中国水产科学研究院东海水产研究所 Turbot cultivation net cage having anti-pollution function
KR101241454B1 (en) 2012-10-10 2013-03-27 한국수자원공사 Solar power plant constructed on the water with safety rope for anti sinking
CN102919181A (en) * 2012-11-21 2013-02-13 浙江海洋学院 Multi-ecological culture device for shallow sea
JP2016149978A (en) * 2015-02-18 2016-08-22 一般財団法人沖縄美ら島財団 Fish capture device
JP2017148035A (en) * 2016-02-25 2017-08-31 キム ソンウクKIM,Sung−Uk Underwater aquaculture device of salmon
CN106106301A (en) * 2016-08-15 2016-11-16 郭伟锋 Floated automatic lifting Margarita freshwater mussel keeps hanging device and keeps hanging method
CN106106301B (en) * 2016-08-15 2023-01-10 郭伟锋 Suspension type automatic lifting pearl mussel hanging culture device and method
CN107318728A (en) * 2017-07-19 2017-11-07 合肥学院 The single-point anchoring type net cage with power pooling feature is fixed with etting
US20210214048A1 (en) * 2018-05-18 2021-07-15 Subsea Farming As System and method for controlling a structure suspended in water
CN108575868A (en) * 2018-06-25 2018-09-28 温州农联农业科技与项目设计研究所 A kind of aquaculture device and the aquaculture method with the device
CN109042399A (en) * 2018-07-05 2018-12-21 长江大学 A kind of monopterus albus fry original position breeding method
CN109042399B (en) * 2018-07-05 2021-09-28 长江大学 In-situ cultivation method for finless eel fries
CN117958194A (en) * 2024-01-24 2024-05-03 中国水产科学研究院南海水产研究所 Mooring system and lifting type cultivation net cage

Also Published As

Publication number Publication date
CN1484948A (en) 2004-03-31
CN1219431C (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JP2004113003A (en) Crawl apparatus and method for culturing in crawl
KR100925403B1 (en) Submersible marine aquaculture apparatus
JP3847587B2 (en) Fish farming system and method
KR100888927B1 (en) Submersible offshore marine aquaculture apparatus
US5412903A (en) Sea cage fish farming system
EP3209124B1 (en) Submersible cage for aquaculture and method of adjusting the depth of said cage
AU2001277114A1 (en) Fish farming system and method
US20090288612A1 (en) Submersible mooring grid
JPH0697928B2 (en) Column buoy enclosure
KR101845500B1 (en) Submersible cage device
IL168522A (en) Mooring system for offshore fish production
KR20190058268A (en) Submergible fish cage having double buoys and net made of multiple materials
JPH05103560A (en) Submerging and floating type marine structure
KR100951177B1 (en) Flating apparatus having fish breeding ground block
CN112154954A (en) Full-submerged suspension type breeding equipment
KR20090067387A (en) Deep-sea submerged cage farming method and device
KR19990055863A (en) Aquaculture Equipment
JPH1156138A (en) Apparatus for planting water plant
NO344724B1 (en) An aquatic system
JP2002218860A (en) Device for holding the shape of fish-culture net cage
KR101947320B1 (en) The method using submersible marine aquaculture apparatus
CN213961364U (en) Full-submerged suspension type breeding equipment
JP2002065104A (en) Floating fish preserve
JP2000255484A (en) Marine floating wave dissipation revetment
KR19990068296A (en) Structure